CN117096210A - 一种高外辐射效率结构的反向三结太阳电池结构 - Google Patents

一种高外辐射效率结构的反向三结太阳电池结构 Download PDF

Info

Publication number
CN117096210A
CN117096210A CN202310980819.8A CN202310980819A CN117096210A CN 117096210 A CN117096210 A CN 117096210A CN 202310980819 A CN202310980819 A CN 202310980819A CN 117096210 A CN117096210 A CN 117096210A
Authority
CN
China
Prior art keywords
layer
electric field
doped
thickness
algainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310980819.8A
Other languages
English (en)
Inventor
刘如彬
郭宏亮
张启明
裴东
张恒
姚立勇
薛超
杨亦桐
黄洪昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cetc Blue Sky Technology Co ltd
Original Assignee
Cetc Blue Sky Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cetc Blue Sky Technology Co ltd filed Critical Cetc Blue Sky Technology Co ltd
Priority to CN202310980819.8A priority Critical patent/CN117096210A/zh
Publication of CN117096210A publication Critical patent/CN117096210A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种高外辐射效率结构的反向三结太阳电池结构,属于太阳能电池技术领域,三个子电池采用高外辐射效率电池结构,每个子电池由11层组成,分别为前表面过渡层、窗口层、前侧同型结电场调控层、第一电场隔离层、发射区、PN结电场调控层、基区层、第二电场隔离层、后侧同型结电场调控层、背场层、后表面过渡层。通过上述结构,可以提高电池的外辐射效率,提升反向三结电池和光电转换效率。

Description

一种高外辐射效率结构的反向三结太阳电池结构
技术领域
本发明属于太阳能电池技术领域,特别是涉及一种高外辐射效率结构的反向三结太阳电池结构。
背景技术
反向晶格匹配三结太阳电池的带隙组合(1.9/1.4/0.95eV)和太阳光谱的匹配度更优,从而其光电转换效率更高,并具有轻质、可附形、高可靠等特点,可用于临近空间飞行器的太阳电池阵。进一步提高反向三结的效率,有助于提升电池的重量比功率,对临近空间飞行器有着重要的意义。
外辐射发光效率越高,意味着电池内部缺陷越少,载流子和光管理水平越高,电池的光电转换效率也随之提高。
现有技术CN201910219851.8提供一种GalnP/GaAs/InGaAs三结薄膜太阳电池,包括:按光入射方向依次布置的GalnP顶电池、GaAs中电池和InGaAs底电池;其中,所述GalnP顶电池与GaAs中电池布置有第一隧穿结;所述GaAs中电池和InGaAs底电池之间依次设置有第二隧穿结和晶格渐变缓冲层(CGB)。所述GalnP顶电池、GaAs中电池和InGaAs底电池均采用nP+异质结结构,相比传统采用N+p结构的GalnP/GaAs/InGaAs三结薄膜太阳电池,可减少GalnP顶电池表面金属栅线面积,降低CGB中缺陷对InGaAs底电池pn结区材料质量的影响,可以有效提高电池的短路电流(Jsc)和开路电压(Voc)。但是上述结构对材料晶体质量要求很高,对电池外辐射效率和光子循环增强的效果较小。
现有技术CN202011372923.1实现光子循环增强的多结太阳电池及其制作方法,通过分别在独立制备的顶层子电池背面与底层子电池表面蒸镀金属栅线后,通过图形键合实现子电池的集成。顶层子电池背面与底层子电池表面的特殊设计的光学膜层与图形键合后自然产生的空气层,形成多结太阳电池器件内部的光学限制腔,增强对子电池间光子入射、透过与反射的管控能力。通过图形键合,子电池在完成物理连接的同时实现了内部的电学级联,使器件可以双端模式输出电能,方便器件的后续使用。该发明不受太阳电池材料体系限制,可广泛运用于各种多结或叠层太阳电池。但是,主要依靠器件结构实现光子循环增强,提升效率有限。
发明内容
本发明所要解决的技术问题是,提供一种高外辐射效率结构的反向三结太阳电池结构,可以提高电池的外辐射效率,提升反向三结电池的开路电压和光电转换效率。
为了解决所述技术问题,本发明采用的技术方案是:一种高外辐射效率结构的反向三结太阳电池结构,由底层向顶层按生长方向依次包括:GaAs衬底、GaAs缓冲层、GaInP阻挡层、GaAs接触层、GaInP电池、第一隧道结、GaAs电池、第二隧道结、渐变缓冲层、GaInAs电池和帽层;GaInP电池、GaAs电池和GaInAs电池均采用高ERE电池结构,每个子电池由11层组成,分别为前表面过渡层、窗口层、前侧同型结电场调控层、第一电场隔离层、发射区、PN结电场调控层、基区层、第二电场隔离层、后侧同型结电场调控层、背场层、后表面过渡层;
所述GaInP子电池,包括AlGaInP前表面过渡层、AlGaInP窗口层、GaInP前侧同型结电场调控层、GaInP第一电场隔离层、GaInP发射区、GaInP PN结电场调控层、AlGaInP基区层、AlGaInP第二电场隔离层、AlGaInP后侧同型结电场调控层、AlGaInP背场层、AlGaInP后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;所述GaInP前侧同型结电场调控层,为n掺杂的GaInP,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaInP第一电场隔离层,为n掺杂的GaInP,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-400nm;所述GaInP发射区,为n掺杂的GaInP,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-200nm;所述GaInP PN结电场调控层,为弱n或弱p掺杂的GaInP,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaInP基区层,为p掺杂的AlGaInP,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaInP第二电场隔离层,为p掺杂的AlGaInP,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaInP后侧同型结电场调控层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaInP背场层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaInP后表面过渡层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm;
所述GaAs子电池,包括AlGaInP前表面过渡层、AlGaInP窗口层、AlGaAs前侧同型结电场调控层、GaAs第一电场隔离层、GaAs发射区、GaAs PN结电场调控层、AlGaAs基区层、AlGaAs第二电场隔离层、AlGaAs后侧同型结电场调控层、AlGaAs背场层、AlGaAs后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;所述AlGaAs前侧同型结电场调控层,为n掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaAs第一电场隔离层,为n掺杂的GaAs,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-600nm;所述GaAs发射区,为n掺杂的GaAs,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-400nm;所述GaAs PN结电场调控层,为弱n或弱p掺杂的GaAs,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaAs基区层,为p掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaAs第二电场隔离层,为p掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaAs后侧同型结电场调控层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaAs背场层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaAs后表面过渡层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm;
所述InGaAs子电池,包括:AlGaInP前表面过渡层、AlGaInP窗口层、AlGaInAs前侧同型结电场调控层、GaInAs第一电场隔离层、GaInAs发射区、GaInAs PN结电场调控层、AlGaInAs基区层、AlGaInAs第二电场隔离层、AlGaInAs后侧同型结电场调控层、AlGaInAs背场层、AlGaInAs后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;所述AlGaInAs前侧同型结电场调控层,为n掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaInAs第一电场隔离层,为n掺杂的GaInAs,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-600nm;所述GaInAs发射区,为n掺杂的GaInAs,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-400nm;所述GaInAs PN结电场调控层,为弱n或弱p掺杂的GaInAs,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaInAs基区层,为p掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaInAs第二电场隔离层,为p掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaInAs后侧同型结电场调控层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaInAs背场层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaInAs后表面过渡层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm。
所述第一隧道结包括n型掺杂的n+-(AlhGa1-h)0.5In0.5P层和p型掺杂的p+-AlyGa1- yAs层,其中0≤h≤0.3和0.1≤y≤0.5,n+-(AlhGa1-h)0.5In0.5P层和p+-AlyGa1-yAs层中掺杂浓度均为1×1019-1×1021cm-3,厚度范围均为1-100nm。
所述第二隧道结包括n型掺杂的n+-(AlhGa1-h)0.5In0.5P层和p型掺杂的p+-AlyGa1- yAs层,其中0≤h≤0.3和0.1≤y≤0.5,n+-(AlhGa1-h)0.5In0.5P层和p+-AlyGa1-yAs层中掺杂浓度均为1×1019-1×1021cm-3,厚度范围均为1-100nm。
所述渐变缓冲层为AlaGabIncAs,其中a+b+c=1,In的组分c从初始层至目标渐变层从0渐变到x,使用n型掺杂剂,掺杂浓度为1×1017-1×1019cm-3,厚度范围为1000-5000nm。
本发明的有益效果是:通过优化外延结构实现外辐射效率的提高,相比从器件结构角度,能够更有效、更直接地提高反向三结电池的开路电压和光电转换效率。
附图说明
图1为本发明外延片结构图。
图2为实施例电池的I-V曲线
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
太阳电池的开路电压由外辐射效率(ERE)决定:
ERE越高,开路电压越大。为实现高外辐射效率目的,对三个子电池均采用高外辐射效率结构设计。通过引入多电场结构,抑制载流子复合,提高载流子收集效率。涉及到的三个电场分别为:前侧同型结电场,通过掺杂或者电子亲和势的差异,在两个N型掺杂材料之间形成的电场。这一电场主要将电池靠近表面区域产生的电子空穴对进行分离。后侧同型结电场,在两个P型掺杂材料之间形成的电场。这一电场主要将电池后端区域产生的电子空穴对进行分离。中间的PN结载流子分离能力最强。三个电场方向一致。通过多个电场的作用,可以实现载流子的高效分离,减少内部的复合。高外辐射效率结构电池沿着光入射方向共分为以下11层:
1.前表面过渡层,主要目的是减少前表面复合的影响
2.窗口层,主要目的提供前侧同型结电场
3.前侧同型结电场调控层,主要目的是拓宽前侧同型结电场范围
4.第一电场隔离层,主要目的是形成载流子扩散层,同时起到前侧同型结电场和PN结电场分离的目的
5.发射区,主要目的是形成PN结
6.PN结电场调控层,主要目的是扩展PN结宽度
7.基区层,主要目的是形成PN结
8.第二电场隔离层,主要目的是形成载流子扩散层,同时起到后侧同型结电场和PN结电场分离的目的
9.后侧同型结电场调控层,主要目的是拓宽后侧同型结电场范围
10.背场层,主要目的是形成后侧同型结电场
11.后表面过渡层,主要目的是减少后表面复合的影响
本发明高外辐射效率结构的反向三结太阳电池结构,由底层向顶层按生长方向依次包括:GaAs衬底、GaAs缓冲层、GaInP阻挡层、GaAs接触层、GaInP电池、第一隧道结、GaAs电池、第二隧道结、渐变缓冲层、GaInAs电池和帽层;其特征在于,GaInP电池、GaAs电池和GaInAs电池均采用高ERE电池结构,每个子电池由11层组成,分别为前表面过渡层、窗口层、前侧同型结电场调控层、第一电场隔离层、发射区、PN结电场调控层、基区层、第二电场隔离层、后侧同型结电场调控层、背场层、后表面过渡层;
所述GaInP子电池,包括AlGaInP前表面过渡层、AlGaInP窗口层、GaInP前侧同型结电场调控层、GaInP第一电场隔离层、GaInP发射区、GaInP PN结电场调控层、AlGaInP基区层、AlGaInP第二电场隔离层、AlGaInP后侧同型结电场调控层、AlGaInP背场层、AlGaInP后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;述GaInP前侧同型结电场调控层,为n掺杂的GaInP,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaInP第一电场隔离层,为n掺杂的GaInP,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-400nm;所述GaInP发射区,为n掺杂的GaInP,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-200nm;所述GaInP PN结电场调控层,为弱n或弱p掺杂的GaInP,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaInP基区层,为p掺杂的AlGaInP,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaInP第二电场隔离层,为p掺杂的AlGaInP,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaInP后侧同型结电场调控层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaInP背场层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaInP后表面过渡层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm;
所述GaAs子电池,包括AlGaInP前表面过渡层、AlGaInP窗口层、AlGaAs前侧同型结电场调控层、GaAs第一电场隔离层、GaAs发射区、GaAs PN结电场调控层、AlGaAs基区层、AlGaAs第二电场隔离层、AlGaAs后侧同型结电场调控层、AlGaAs背场层、AlGaAs后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;所述AlGaAs前侧同型结电场调控层,为n掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaAs第一电场隔离层,为n掺杂的GaAs,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-600nm;所述GaAs发射区,为n掺杂的GaAs,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-400nm;所述GaAs PN结电场调控层,为弱n或弱p掺杂的GaAs,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaAs基区层,为p掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaAs第二电场隔离层,为p掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaAs后侧同型结电场调控层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaAs背场层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaAs后表面过渡层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm;
所述InGaAs子电池,包括:AlGaInP前表面过渡层、AlGaInP窗口层、AlGaInAs前侧同型结电场调控层、GaInAs第一电场隔离层、GaInAs发射区、GaInAs PN结电场调控层、AlGaInAs基区层、AlGaInAs第二电场隔离层、AlGaInAs后侧同型结电场调控层、AlGaInAs背场层、AlGaInAs后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;所述AlGaInAs前侧同型结电场调控层,为n掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaInAs第一电场隔离层,为n掺杂的GaInAs,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-600nm;所述GaInAs发射区,为n掺杂的GaInAs,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-400nm;所述GaInAs PN结电场调控层,为弱n或弱p掺杂的GaInAs,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaInAs基区层,为p掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaInAs第二电场隔离层,为p掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaInAs后侧同型结电场调控层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaInAs背场层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaInAs后表面过渡层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm。
所述第一隧道结包括n型掺杂的n+-(AlhGa1-h)0.5In0.5P层和p型掺杂的p+-AlyGa1- yAs层,其中0≤h≤0.3和0.1≤y≤0.5,n+-(AlhGa1-h)0.5In0.5P层和p+-AlyGa1-yAs层中掺杂浓度均为1×1019-1×1021cm-3,厚度范围均为1-100nm。
所述第二隧道结包括n型掺杂的n+-(AlhGa1-h)0.5In0.5P层和p型掺杂的p+-AlyGa1- yAs层,其中0≤h≤0.3和0.1≤y≤0.5,n+-(AlhGa1-h)0.5In0.5P层和p+-AlyGa1-yAs层中掺杂浓度均为1×1019-1×1021cm-3,厚度范围均为1-100nm。
所述渐变缓冲层为AlaGabIncAs,其中a+b+c=1,In的组分c从初始层至目标渐变层从0渐变到x,使用n型掺杂剂,掺杂浓度为1×1017-1×1019cm-3,厚度范围为1000-5000nm。
具体地说,本发明采用MOCVD即金属有机化学气相沉积技术在GaAs衬底上面依次生长GaAs缓冲层、GaInP阻挡层、GaAs接触层、GaInP子电池、第一隧道结、GaAs子电池、第二隧道结、晶格渐变缓冲层、GaInAs电池和帽层,具体制作过程为:
GaAs缓冲层,其n型掺杂剂为Si、Se或Te,掺杂浓度为1×1017-1×1019cm-3,生长温度为600–750℃,厚度范围为100-1000nm;
Ga0.5In0.5P阻挡层,其n型掺杂剂为Si、Se或Te,掺杂浓度为1×1017-1×1019cm-3,生长温度为600–750℃,厚度范围为50nm-500nm;
GaAs接触层,其n型掺杂剂为Si、Se或Te,掺杂浓度为1×1018-1×1021cm-3,生长温度为550–700℃,厚度范围为50nm-500nm;
GaInP子电池,依次生长AlGaInP后表面过渡层、AlGaInP背场层、AlGaInP后侧同型结电场调控层、AlGaInP第二电场隔离层、AlGaInP基区层、GaInP PN结电场调控层、GaInP发射区、GaInP第一电场隔离层、GaInP前侧同型结电场调控层、AlGaInP窗口层、AlGaInP前表面过渡层,生长温度为600–750℃。
第一隧道结,包括n型掺杂的n+-(AlhGa1-h)InP层和p型掺杂的p+-AlyGa1-yAs层,生长温度为500–700℃,其中所述n+-(AlhGa1-h)InP层中,其中0≤h≤0.3,掺杂剂为Si、Se或Te,掺杂浓度为1×1019-1×1021cm-3,厚度范围为1-100nm;所述p+-AlyGa1-yAs层,其中0.1≤y≤0.5,掺杂剂为Zn、Mg或C,掺杂浓度为1×1019-1×1021cm-3,厚度范围为1-100nm;
GaAs子电池,依次生长AlGaAs后表面过渡层、AlGaAs背场层、AlGaAs后侧同型结电场调控层、AlGaAs第二电场隔离层、AlGaAs基区层、GaAs PN结电场调控层、GaAs发射区、GaAs第一电场隔离层、AlGaAs前侧同型结电场调控层、AlGaInP窗口层、AlGaInP前表面过渡层,生长温度为550–700℃。
第二隧道结,包括n型掺杂的n+-GaAs层和p型掺杂的p+-AlyGa1-yAs层,生长温度为550–700℃,其中n+-GaAs层的掺杂剂为Si、Se或Te,掺杂浓度为1×1019-1×1021cm-3,厚度范围为1-100nm;其中p+-AlyGa1-yAs层的掺杂剂为Zn、Mg或C,0.1≤y≤0.5,掺杂浓度为1×1019-1×1021cm-3,厚度范围为1-100nm;
InGaAs子电池,依次生长AlGaInAs后表面过渡层、AlGaInAs背场层、AlGaInAs后侧同型结电场调控层、AlGaInAs第二电场隔离层、AlGaInAs基区层、GaInAs PN结电场调控层、GaInAs发射区、GaInAs第一电场隔离层、AlGaInAs前侧同型结电场调控层、AlGaInP窗口层、AlGaInP前表面过渡层,生长温度为550–700℃。
帽层为p型掺杂的Ga1-xInxAs,其中0.1≤x≤0.5,掺杂剂为Zn、Mg或C,掺杂浓度为1×1018-1×1021cm-3,厚度范围为50nm-500nm,生长温度为550–700℃。
按照上述结构外延片制备成电池,其I-V曲线见图2。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的技术人员能够理解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利范围,即凡本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (4)

1.一种高外辐射效率结构的反向三结太阳电池结构,由底层向顶层按生长方向依次包括:GaAs衬底、GaAs缓冲层、GaInP阻挡层、GaAs接触层、GaInP电池、第一隧道结、GaAs电池、第二隧道结、渐变缓冲层、GaInAs电池和帽层;其特征在于,GaInP电池、GaAs电池和GaInAs电池均采用高ERE电池结构,每个子电池由11层组成,分别为前表面过渡层、窗口层、前侧同型结电场调控层、第一电场隔离层、发射区、PN结电场调控层、基区层、第二电场隔离层、后侧同型结电场调控层、背场层、后表面过渡层;
所述GaInP子电池,包括AlGaInP前表面过渡层、AlGaInP窗口层、GaInP前侧同型结电场调控层、GaInP第一电场隔离层、GaInP发射区、GaInP PN结电场调控层、AlGaInP基区层、AlGaInP第二电场隔离层、AlGaInP后侧同型结电场调控层、AlGaInP背场层、AlGaInP后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;所述GaInP前侧同型结电场调控层,为n掺杂的GaInP,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaInP第一电场隔离层,为n掺杂的GaInP,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-400nm;所述GaInP发射区,为n掺杂的GaInP,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-200nm;所述GaInP PN结电场调控层,为弱n或弱p掺杂的GaInP,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaInP基区层,为p掺杂的AlGaInP,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaInP第二电场隔离层,为p掺杂的AlGaInP,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaInP后侧同型结电场调控层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaInP背场层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaInP后表面过渡层,为p掺杂的AlGaInP,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm;
所述GaAs子电池,包括AlGaInP前表面过渡层、AlGaInP窗口层、AlGaAs前侧同型结电场调控层、GaAs第一电场隔离层、GaAs发射区、GaAs PN结电场调控层、AlGaAs基区层、AlGaAs第二电场隔离层、AlGaAs后侧同型结电场调控层、AlGaAs背场层、AlGaAs后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;所述AlGaAs前侧同型结电场调控层,为n掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaAs第一电场隔离层,为n掺杂的GaAs,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-600nm;所述GaAs发射区,为n掺杂的GaAs,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-400nm;所述GaAs PN结电场调控层,为弱n或弱p掺杂的GaAs,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaAs基区层,为p掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaAs第二电场隔离层,为p掺杂的AlGaAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaAs后侧同型结电场调控层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaAs背场层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaAs后表面过渡层,为p掺杂的AlGaAs,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm;
所述InGaAs子电池,包括:AlGaInP前表面过渡层、AlGaInP窗口层、AlGaInAs前侧同型结电场调控层、GaInAs第一电场隔离层、GaInAs发射区、GaInAs PN结电场调控层、AlGaInAs基区层、AlGaInAs第二电场隔离层、AlGaInAs后侧同型结电场调控层、AlGaInAs背场层、AlGaInAs后表面过渡层;所述AlGaInP前表面过渡层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-5×1019cm-2,厚度为5-50nm;所述AlGaInP窗口层,Al的组分比为0.2-0.6,为n+掺杂的AlGaInP,掺杂浓度范围为1×1018-2×1019cm-2,厚度为10-100nm;所述AlGaInAs前侧同型结电场调控层,为n掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为1×1016-2×1018cm-2,厚度为20-200nm;所述GaInAs第一电场隔离层,为n掺杂的GaInAs,掺杂浓度范围为1×1016-5×1018cm-2,厚度为20-600nm;所述GaInAs发射区,为n掺杂的GaInAs,掺杂浓度范围为1×1016-1×1018cm-2,厚度为50-400nm;所述GaInAs PN结电场调控层,为弱n或弱p掺杂的GaInAs,掺杂浓度范围为0-2×1017cm-2,厚度为50-200nm;所述AlGaInAs基区层,为p掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-100nm;所述AlGaInAs第二电场隔离层,为p掺杂的AlGaInAs,Al的组分比为0-0.2,掺杂浓度范围为2×1016-5×1018cm-2,厚度为20-200nm;所述AlGaInAs后侧同型结电场调控层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-5×1018cm-2,厚度为20-200nm;所述AlGaInAs背场层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为1×1017-1×1019cm-2,厚度为20-200nm;所述AlGaInAs后表面过渡层,为p掺杂的AlGaInAs,Al的组分比为0-0.4,掺杂浓度范围为2×1017-5×1019cm-2,厚度为10-50nm。
2.根据权利要求1所述高外辐射效率结构的反向三结太阳电池结构,其特征在于,所述第一隧道结包括n型掺杂的n+-(AlhGa1-h)0.5In0.5P层和p型掺杂的p+-AlyGa1-yAs层,其中0≤h≤0.3和0.1≤y≤0.5,n+-(AlhGa1-h)0.5In0.5P层和p+-AlyGa1-yAs层中掺杂浓度均为1×1019-1×1021cm-3,厚度范围均为1-100nm。
3.根据权利要求1所述高外辐射效率结构的反向三结太阳电池结构,其特征在于,所述第二隧道结包括n型掺杂的n+-(AlhGa1-h)0.5In0.5P层和p型掺杂的p+-AlyGa1-yAs层,其中0≤h≤0.3和0.1≤y≤0.5,n+-(AlhGa1-h)0.5In0.5P层和p+-AlyGa1-yAs层中掺杂浓度均为1×1019-1×1021cm-3,厚度范围均为1-100nm。
4.根据权利要求1所述高外辐射效率结构的反向三结太阳电池结构,其特征在于,所述渐变缓冲层为AlaGabIncAs,其中a+b+c=1,In的组分c从初始层至目标渐变层从0渐变到x,使用n型掺杂剂,掺杂浓度为1×1017-1×1019cm-3,厚度范围为1000-5000nm。
CN202310980819.8A 2023-08-04 2023-08-04 一种高外辐射效率结构的反向三结太阳电池结构 Pending CN117096210A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310980819.8A CN117096210A (zh) 2023-08-04 2023-08-04 一种高外辐射效率结构的反向三结太阳电池结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310980819.8A CN117096210A (zh) 2023-08-04 2023-08-04 一种高外辐射效率结构的反向三结太阳电池结构

Publications (1)

Publication Number Publication Date
CN117096210A true CN117096210A (zh) 2023-11-21

Family

ID=88777979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310980819.8A Pending CN117096210A (zh) 2023-08-04 2023-08-04 一种高外辐射效率结构的反向三结太阳电池结构

Country Status (1)

Country Link
CN (1) CN117096210A (zh)

Similar Documents

Publication Publication Date Title
US11411129B2 (en) Solar cells having a transparent composition-graded buffer layer
US10355159B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
US7812249B2 (en) Multijunction photovoltaic cell grown on high-miscut-angle substrate
US7119271B2 (en) Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US7626116B2 (en) Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
TWI441343B (zh) 反向變質多接面太陽能電池中異質接面子電池
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
EP1047136A2 (en) Bilayer passivation structure for photovoltaic cells
US20070068572A1 (en) Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
WO2014018125A2 (en) Reverse heterojunctions for solar cells
WO2012174952A1 (zh) 一种高倍聚光多结太阳能电池及其制备方法
CN109524492B (zh) 一种提高多结太阳能电池少数载流子收集的方法
CN111092127A (zh) 一种正向晶格失配三结太阳电池
CN111430493B (zh) 一种多结太阳能电池及供电设备
CN111725332A (zh) 一种高性能三结砷化镓太阳电池
CN103000740A (zh) GaAs/GaInP双结太阳能电池及其制作方法
RU2442242C1 (ru) Многопереходный преобразователь
CN209880626U (zh) GaInP/GaAs/InGaAs三结薄膜太阳电池
CN117096210A (zh) 一种高外辐射效率结构的反向三结太阳电池结构
CN111430495A (zh) 一种多结太阳能电池及供电设备
CN111276560B (zh) 砷化镓太阳电池及其制造方法
JP2005347402A (ja) 裏面反射型化合物半導体太陽電池およびその製造方法
Yamaguchi et al. Super-high-efficiency III-V tandem and multi-junction cells
CN116914013A (zh) 一种带有翘曲控制层的反向生长三结太阳电池
CN212257428U (zh) 一种异质pn结空间电池外延片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination