CN117062938A - 金属、硬质金属、金属陶瓷或陶瓷体上的AlN基硬材料层及其制造方法 - Google Patents

金属、硬质金属、金属陶瓷或陶瓷体上的AlN基硬材料层及其制造方法 Download PDF

Info

Publication number
CN117062938A
CN117062938A CN202280022065.9A CN202280022065A CN117062938A CN 117062938 A CN117062938 A CN 117062938A CN 202280022065 A CN202280022065 A CN 202280022065A CN 117062938 A CN117062938 A CN 117062938A
Authority
CN
China
Prior art keywords
layer
aln
hard coating
based hard
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280022065.9A
Other languages
English (en)
Inventor
M·霍恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of CN117062938A publication Critical patent/CN117062938A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及材料工程领域,并且涉及金属、硬质合金、金属陶瓷或陶瓷体上的AlN基硬材料层及其制造方法。本发明的目的是提供一种AlN硬材料层,其具有改善的硬度和耐磨性并且可以以廉价且省时的方式制造。根据本发明,提供一种AlN基硬材料层,其为单层或多层系统,其中至少所述单层或所述多层系统中的至少一层为氧掺杂的具有六方晶格结构的AlN基硬材料层,该六方晶格结构具有<002>织构,其中氧掺杂的范围为0.01at.%至15at.%。硬材料层可作为切削刀具的磨损保护层。

Description

金属、硬质金属、金属陶瓷或陶瓷体上的AlN基硬材料层及其 制造方法
技术领域
本发明涉及材料技术领域,涉及金属、硬质合金、金属陶瓷或陶瓷体上的AlN基硬涂层及其制造方法。本发明的AlN基硬涂层是高度织构化和氧掺杂的,并且可以用作例如切削工具的抗磨层、涡轮叶片的保护层或微电子学中的扩散阻挡层。
背景技术
现有技术公开了主要用作介电层和用于微电子学中的电阻存储器的AlON层。这些层是通过各种不同的CVD(热CVD、RTP-MOCVD)和PVD方法制造的。
JP 2001 287 104 A1公开了一种由一层或多层含有氧氮化铝的层组成的涂层。每个氧氮化铝层由固体Al-O-N溶液、结晶Al-O-N化合物或两者的混合物组成。另外,可以将AlN与其混合。
DE 10 2010 052 687 A1公开了一种多层氮氧化物层系统,其包含在基材例如优选HSS和硬质合金上的立方AlN和AION。这里公开的是由多层组成的层结构,包括氮氧化物层,优选地由元素Cr、Al、O和N组成,层厚度在0.3微米和2.5微米之间。
US 4 336 305 A1公开了一种陶瓷可转位切削刀片,在其表面上通过CVD方法设置了至少一层Al2O3或AlON的薄涂层。
WO 2012 126 031 A1公开了TiAlN层与由AlON和任选的碳组成的第二层的组合,其中Al可以部分地被另一种金属替代。
现有技术中已知的解决方案的缺点是所产生的AlN硬涂层的硬度和耐磨性不足。根据现有技术的AlN基硬涂层显示出约2000HV的硬度。另一个缺点是这种AlN基硬涂层的制造耗时且成本高。
发明内容
所解决的问题是提供具有改善的硬度和耐磨性的AlN硬涂层。本发明解决的另一个问题是提供一种用于制造AlN硬涂层的时间和成本有效的热CVD方法。
这些问题通过权利要求的特征来解决,并且本发明还包括各个从属权利要求在AND链接意义上的组合,只要它们不互相排斥。
根据本发明,该问题通过在由金属、硬质合金、金属陶瓷或陶瓷制成的主体上的AlN基硬涂层来解决,该硬涂层是多层系统或通过CVD方法在没有等离子激发的情况下制造的单层,其中至少所述单层或所述多层系统中的至少一层是氧掺杂的具有六方晶格结构的AlN基硬涂层,该六方晶格结构具有<002>织构,其中氧掺杂在0.01at%至15at%的范围内而没有直接晶格结合在六方结构中。
有利地,织构的织构因子TC>2.5至8。
还有利地,织构是柱状形式的。
有利地,AlN基六方硬涂层(h-AlN基硬涂层)的Al含量比例≥45at%。
进一步有利地,h-AlN基硬涂层具有5μm至40μm之间的层厚度。
在本发明的有利构造中,至少一个h-AlN基硬涂层为纳米晶体形式,其中晶体尺寸特别有利地为5nm至100nm。
另外,特别有利的是,该纳米晶体的h-AlN基硬涂层可以具有非晶组分,其中非常特别有利的是0.01at%至25at%的氧掺杂。
有利地,至少一个h-AlN基硬涂层具有2500HV[0.01]至2800HV[0.01]的硬度。
另外,有利的是h-AlN基硬涂层具有Zr、Si、Hf、Ta和/或Ti的掺杂。
在一种有利的构造中,存在至少一个连接层、中间层和/或外层,其特别有利地由PTE的第4-6族过渡元素的氮化物、碳化物、碳氮化物、碳氧化物、碳氮氧化物或由Al或Zr的氧化物组成。非常特别有利的是,连接层、中间层和/或外层是TiN、TiCN、TiAlN和/或它们的组合。
本发明还提供了一种在由金属、硬质合金、金属陶瓷或陶瓷制成的主体上制造AlN基硬涂层的方法,其中通过热CVD方法在没有等离子激发的情况下,在CVD反应器中从由AlCl3、H2、N2、NH3、CO和/或CO2组成的气相并且在850℃至1050℃的温度和0.1kPa至30kPa的压力下沉积织构化的、氧掺杂的h-AlN基硬涂层,其中经由单独的气体供应将CO和/或CO2单独地输送至CVD反应器。
有利地,将NH3单独供应至CVD反应器以产生气相,并且特别有利地沉积包含0.2体积%至2体积%的CO和/或CO2的气相。
同样有利地,AlN基硬涂层从具有0.30体积%至2体积%的NH3的气相沉积。
在该方法的有利配置中,沉积h-AlN基硬涂层之前沉积至少一个由PTE的第4-6族过渡元素的氮化物、碳化物、碳氮化物、碳氧化物、碳氮氧化物或由Al或Zr的氧化物组成的连接层、中间层和/或外层,其非常特别有利地沉积为包含TiN、TiCN、TiAlN和/或其组合的连接层、中间层和/或外层。
本发明提供了一种氧掺杂的、织构化的h-AlN基硬涂层,其通过热CVD工艺在没有等离子激发的情况下而以时间和成本有效的方式制造,并且具有改进的硬度和耐磨性。
本发明提供了纯AlN基硬涂层,其始终具有在<002>方向上形成的六方晶格结构的织构。为了获得AlN硬涂层的六方晶格结构,建议具体地通过CVD方法在没有等离子激发的情况下将CO和/或CO2经由单独的气体进料选择性地且单独地引入CVD涂覆室中,以便由此将氧掺杂到六方晶格结构中并选择性地将其结合在那里。这里不发生氧的直接晶格结合。与现有技术相反,h-AlN基硬涂层因此不具有归因于CVD反应器中的杂质和泄漏的氧含量,而是影响形态性质的受控的氧掺杂,而没有仅直接晶格结合在间隙晶格位点处。
结果,提供了一种新型的高度织构化的、氧掺杂的h-AlN硬涂层,其具有最高至2800HV[0.01]的高硬度和高耐磨性。令人惊奇的是,在层的沉积中选择性结合特定比例的氧对本发明的h-AlN基硬涂层的结构和性能具有积极影响。
这是通过提供和制造具有六方晶格结构的AlN基硬涂层来实现的,该硬涂层具有织构并且含有0.01at%至15at%范围内的氧掺杂,因此具有高硬度和优异的耐磨性。
本发明上下文中,织构应理解为是指在没有等离子激发的情况下借助于本发明的CVD方法在基底上生长的氧掺杂的h-AlN基硬涂层的晶体的结晶取向。该织构有利地呈柱状形式,其中每个柱具有基本上六边形并因此具有蜂窝状形式。
氧掺杂的、高度织构化的h-AlN基硬涂层的织构的柱状形成凭借本发明的AlN基硬涂层内相邻柱的直接接触而产生固有应力,这导致硬涂层中的张力,从而显著提高硬度和耐磨性。
根据本发明,氧掺杂的AlN基层系统的至少一层具有六方晶格结构,该晶格结构具有<002>织构。
本发明的各个层的织构可以由织构因子TC来表示。
该织构因子TC根据JCPDS 0-25-1133通过以下公式计算:
以下8个晶面用于计算:<100>、<002>、<101>、<102>、<110>、<103>、<200>、<112>。
有利地,根据本发明,已高度织构化的、氧掺杂的h-AlN基硬涂层的TC>2.5至8。
本发明的解决方案在由金属、硬质合金、金属陶瓷或陶瓷制成的主体上提供了一种新型的氧掺杂的h-AlN基硬涂层,其中h-AlN基硬涂层是单层或多层系统。
在多层系统中,层系统的至少一层h-AlN基硬涂层可以是纳米晶体形式。该纳米晶体层是特别细的晶粒形式并且具有5nm至100nm的晶体尺寸。这样的纳米晶体的AlN基硬涂层可以另外具有非晶组分并且有利地具有0.01at%至25at%的氧掺杂。
当待涂覆的主体和本发明的氧掺杂的h-AlN基硬涂层之间存在一层或多层连接层、中间层和/或外层时,这是特别有利的。一层或多层连接层、中间层和/或外层的预先沉积尤其可以实现本发明的氧掺杂的h-AlN基硬涂层在由金属、硬质合金、金属陶瓷或陶瓷制成的主体上的显著更好的粘附性。
在连接层和外层之间沉积一个或多个中间层实现了整个层系统的、尤其是连接层的硬度的提高。
施涂一层或多层的外层能够进一步提高抗氧化性并改善随后设置在其上的h-AlN基硬涂层的结合。这还实现了高度织构化的、氧掺杂的h-AlN基硬涂层与待加工的材料之间的摩擦减小的效果,这实现了例如显著提高的抗磨损层的使用寿命。有利地,连接层、中间层或外层由PTE的第4-6族过渡元素的氮化物、碳化物、碳氮化物、碳氧化物、碳氮氧化物或Al或Zr的氧化物组成。
特别有利地,连接层、中间层和/或外层可以由TiN、TiCN、TiAlN和/或它们的组合组成。为了在待涂覆的物体上具有良好的粘附性,例如,连接层可以由TiN组成。为了提高硬度,可以存在沉积在连接层上的中间层,例如由TiCN组成的中间层。另外,为了进一步改进本发明的h-AlN基硬涂层的粘附性,可以在中间层的顶上提供额外的TiN外层。
本发明的AlN基硬涂层的六方晶格结构以及在CVD涂覆设备中控制使用CO和/或CO2作为附加氧源与本发明的织构相结合实现了2500HV[0.01]至2800HV[0.01]的特别高的硬度值,Al元素含量高达≥45at%。Al的最大元素含量增加了抗氧化性,因此对耐磨性具有积极影响,特别是在高温下。
当h-AlN基硬涂层具有Zr、Si、Hf、Ta和/或Ti的附加掺杂时是有利的。少量Zr、Si、Hf、Ta和/或Ti的引入将外来原子引入到六方晶格结构中,因此提高了h-AlN基硬涂层的硬度和耐磨性。
本发明的具有织构和氧掺杂的h-AlN基硬涂层的改进的耐磨性能是通过热CVD方法在没有等离子激发的情况下实现的,其中该层在CVD反应器中在850℃至1050℃的温度和0.1kPa至30kPa的压力下以由AlCl3、H2、N2和NH3组成的气相沉积的,选择性添加CO和/或CO2
已经发现,当涂层所需的反应气相仅在CVD反应器内混合时是有利的,在CVD反应器中涂层直接沉积在基材上。
为了在CVD反应器中提供气相,当NH3经由单独的气体供应装置导入反应室中时是有利的。
气相成分的单独供给的优点在于,气相在反应器中沉积时具有显著更高的反应性,因此降低了在气体供给装置中过早反应的风险。此外,向CVD反应器单独供应反应气体可以单独地且以简单的方式调节气相的组成,尤其是控制NH3、CO2和/或CO的供应。
同样已经发现,当沉积具有0.2体积%至2.0体积%的CO和/或CO2的气相时是有利的。选择性添加CO和/或CO2导致氧特定地嵌入AlN基硬涂层中,而没有直接晶格结合到六方晶格结构中。这尤其导致h-AlN基硬涂层的抗氧化性提高。有利地,气相可以另外具有Zr、Si、Hf、Ta和/或Ti的掺杂,其在硬涂层的沉积过程中并入h-AlN基硬涂层的六方晶格结构中。
令人惊奇地发现,当待沉积的气相具有0.3体积%至2.0体积%的NH3比例时,实现了具有>2.5至8的高织构因子TC的显著织构化。
在本发明的组合物中,提供了新型的高度织构化的、氧掺杂的h-AlN基硬涂层,其具有高达2800HV[0.01]的高硬度和高耐磨性。令人惊奇的是,在层的沉积中选择性结合特定比例的氧对本发明的h-AlN基硬涂层的结构和性能具有积极影响。新型的LPCVD工艺允许在850℃-1050℃的温度范围内制造层。
附图说明
下面通过多个工作示例和相应的附图详细说明本发明。附图示出:
图1:根据示例1通过CVD制造的高度织构化的、氧掺杂的h-AlN层的x射线衍射图,
图2:根据示例1的高度织构化的、氧掺杂的h-AlN基硬涂层的TEM图像,
图3:根据示例1的高度织构化的、氧掺杂的h-AlN基硬涂层的TEM-EDX分析,
图4:示例2通过CVD制造的高度织构化的、氧掺杂的h-AlN基硬涂层的x射线衍射图,
图5:根据示例2的高度织构化的、氧掺杂的h-AlN基硬涂层的TEM图像,
图6:根据示例2的高度织构化的、氧掺杂的h-AlN基硬涂层的TEM-EDX分析,
图7:根据示例3的40μm厚的高度织构化的、氧掺杂的h-AlN基硬涂层的SEM抛光截面图像,
图8:根据示例4通过CVD制造的掺杂有硅的高度织构化的、氧掺杂的h-AlN基硬涂层的EDX分析,
图9:根据示例5通过CVD制造的掺杂有锆的高度织构化的、氧掺杂的h-AlN基硬涂层的EDX分析,
图10:根据示例1、4和5的高度织构化的、氧掺杂的h-AlN基硬涂层的磨损测试。
具体实施方式
示例1
通过热CVD方法,在没有等离子激发的情况下,在预涂有5μm厚的作为连接层、中间层和外层的TiN/TiCN/TiN层系统的WC/Co硬质合金可转位切削刀片上沉积高度织构化且氧掺杂的h-AlN基硬涂层作为外层。涂覆过程在内径为75毫米的热壁CVD反应器中进行。CVD涂层用由0.46体积%的AlCl3、0.31体积%的NH3、0.72体积%的CO2、4.80体积%的N2和93.71体积%的H2组成的气相进行。沉积温度为900℃,工艺压力为6kPa。涂覆时间为90分钟后,获得5.2μm厚的高度织构化且氧掺杂的h-AlN基硬涂层。
在进行的X射线晶体学层分析中,检测到h-AlN相,其晶体在<002>方向上以高度织构化的方式生长。织构因子TC为7.2。根据图2和图3的TEM分析与元素分析相结合表明h-AlN相掺杂有13at%的氧。通过维氏压头,测得显微硬度为2690HV[0.01]。
TEM中的元素分析得出以下元素含量:
47at%的Al,
39.5at%的N,
13at%的O,
和0.5at%的Cl。
示例2
采用热CVD方法在预涂有5μm厚的作为连接层、中间层和外层的TiN/TiCN/TiN层系统的WC/Co硬质合金可转位切削刀片上沉积高度织构化且氧掺杂的h-AlN基硬涂层作为外层,该硬涂层是具有非晶成分的纳米晶体。涂覆过程在内径为75毫米的热壁CVD反应器中进行。CVD涂层用由0.46体积%的AlCl3、0.42体积%的NH3、0.61体积%的CO2、4.68体积%的N2和93.83体积%的H2组成的气相进行。沉积温度为850℃,工艺压力为6kPa。涂覆时间为90分钟后,获得了6.0μm厚的高度织构化且氧掺杂的h-AlN基硬涂层,该硬涂层为具有非晶成分的纳米晶体形式。
在通过根据图4的X射线衍射图进行的X射线晶体学层分析中,检测到h-AlN相,其晶体在<002>方向上以高度织构化的方式生长。织构因子TC为4.2。根据图5和图6,TEM分析与元素分析相结合表明h-AlN相掺杂了24at%的氧。通过维氏压头,测得显微硬度为2580HV[0.01]。
TEM中的元素分析得出以下元素含量:
45at%的Al,
30.5at%的N,
24at%的O,
和0.5at%的Cl。
示例3
通过热CVD方法在预涂有1μm厚的TiN连接层的WC/Co硬质合金可转位切削刀片上沉积高度织构化且氧掺杂的h-AlN基硬涂层作为外层。涂覆过程在内径为75毫米的热壁CVD反应器中进行。CVD涂层用由0.46体积%的AlCl3、0.45体积%的NH3、0.58体积%的CO2、4.80体积%的N2和93.71体积%的H2组成的气相进行。沉积温度为1000℃,工艺压力为6kPa。涂覆时间为150分钟后,获得40.0μm厚的高度织构化且氧掺杂的h-AlN基硬涂层。
在进行的X射线晶体学层分析中,检测到h-AlN相,其晶体在<002>方向上以高度织构化的方式生长。织构因子TC为5.4。根据图7的抛光截面的SEM分析显示了40μm厚的高度织构化h-AlN基硬涂层。通过维氏压头,测得显微硬度为2760HV[0.01]。
示例4
通过热CVD方法在预涂有5μm厚的作为连接层、中间层和/或外层的TiN/TiCN/TiN层系统的WC/Co硬质合金可转位切削刀片上沉积掺杂硅的高度织构化且氧掺杂的h-AlN基硬涂层作为外层。涂覆过程在内径为75毫米的热壁CVD反应器中进行。CVD涂层用由0.46体积%的AlCl3、0.06体积%的SiCl4、0.31体积%的NH3、0.72体积%的CO2、4.80体积%的N2和93.65体积%的H2组成的气相进行。沉积温度为900℃,工艺压力为6kPa。90分钟的涂覆时间后,获得4.8微米厚的高度织构化且氧掺杂的h-AlN基硬涂层,该硬涂层掺杂有硅。
在进行的X射线晶体学层分析中,检测到h-AlN相,其晶体在<002>方向上以高度织构化的方式生长。织构因子TC为3.7。根据图8,抛光截面的EDX分析显示,高度织构化的h-AlN层掺杂了氧和硅。通过维氏压头,测得显微硬度为2610HV[0.01]。
示例5
通过热CVD方法在预涂有5μm厚的作为连接层、中间层和外层的TiN/TiCN/TiN层系统的WC/Co硬质合金可转位切削刀片上沉积掺杂锆的高度织构化且氧掺杂的h-AlN基硬涂层作为外层。涂覆过程在内径为75毫米的热壁CVD反应器中进行。CVD涂层用由0.46体积%的AlCl3、0.04体积%的ZrCl4、0.31体积%的NH3、0.72体积%的CO2、4.80体积%的N2和93.67体积%的H2组成的气相进行。沉积温度为1030℃,工艺压力为6kPa。90分钟的涂覆时间后,获得4.5微米厚的高度织构化且氧掺杂的h-AlN基硬涂层,该硬涂层掺杂有锆。
在进行的X射线晶体学层分析中,检测到h-AlN相,其晶体在<002>方向上以高度织构化的方式生长。织构因子TC为4.1。根据图9,抛光截面的EDX分析显示,高度织构化的h-AlN基硬涂层中掺杂有氧和锆。通过维氏压头,测得显微硬度为2650HV[0.01]。

Claims (19)

1.一种在由金属、硬质合金、金属陶瓷或陶瓷制成的主体上的AlN基硬涂层,所述硬涂层是多层系统或通过CVD方法在没有等离子激发的情况下制造的单层,其中至少所述单层或所述多层系统的至少一层为氧掺杂的具有六方晶格结构的AlN层,所述六方晶格结构具有<002>织构,其中氧掺杂在0.01at%至15at%的范围内而没有直接晶格结合在所述六方晶格结构中。
2.根据权利要求1所述的硬涂层,其中所述织构的织构因子TC>2.5至8。
3.根据前述权利要求中任一项所述的硬涂层,其中Al含量≥45at%。
4.根据前述权利要求中任一项所述的硬涂层,其中所述织构为柱状形式。
5.根据前述权利要求中任一项所述的硬涂层,其中所述h-AlN基硬涂层具有5μm至40μm的层厚度。
6.根据前述权利要求中任一项所述的硬涂层,其中至少一个h-AlN基硬涂层是纳米晶体。
7.根据权利要求6所述的硬涂层,其中晶体尺寸为5nm至100nm。
8.根据权利要求6所述的硬涂层,其中所述纳米晶体的h-AlN基硬涂层具有非晶成分。
9.根据权利要求8所述的硬涂层,其中存在0.01at%至25at%的氧掺杂。
10.根据前述权利要求中任一项所述的硬涂层,其中所述h-AlN基硬涂层具有Zr、Si、Hf、Ta和/或Ti的掺杂。
11.根据前述权利要求中任一项所述的硬涂层,其中至少一个h-AlN基硬涂层具有2500HV[0.01]至2800HV[0.01]的硬度。
12.根据前述权利要求中任一项所述的硬涂层,其中存在至少一个连接层、中间层和/或外层。
13.根据权利要求12所述的硬涂层,其中所述连接层、中间层和/或外层由PTE的第4-6族过渡元素的氮化物、碳化物、碳氮化物、碳氧化物、碳氮氧化物或者Al或Zr的氧化物组成。
14.根据权利要求12或13所述的硬涂层,其中所述连接层、中间层和/或外层是TiN、TiCN、TiAlN和/或它们的组合。
15.一种在由金属、硬质合金、金属陶瓷或陶瓷制成的主体上制造AlN基硬涂层的方法,其中通过热CVD方法在没有等离子激发的情况下,在CVD反应器中从由AlCl3、H2、N2、NH3、CO和/或CO2组成的气相并且在850℃至1050℃的温度和0.1kPa至30kPa的压力下沉积织构化的、氧掺杂的h-AlN基硬涂层,其中通过单独的气体供应将CO和/或CO2单独供应到CVD反应器。
16.根据权利要求15所述的方法,其中通过单独的气体供应将NH3单独供应至所述CVD反应器以产生气相。
17.根据前述权利要求15或16所述的方法,其中使用具有0.30体积%至2体积%的NH3的气相。
18.根据前述权利要求15至17中任一项所述的方法,其中在沉积所述h-AlN基硬涂层之前沉积至少一个由以下物质组成的连接层、中间层和/或外层:PTE的第4-6族过渡元素的氮化物、碳化物、碳氮化物、碳氧化物、碳氮氧化物或者Al或Zr的氧化物。
19.根据权利要求18所述的方法,其中沉积包含TiN、TiCN、TiAlN和/或其组合的连接层、中间层和/或外层。
CN202280022065.9A 2021-03-18 2022-03-18 金属、硬质金属、金属陶瓷或陶瓷体上的AlN基硬材料层及其制造方法 Pending CN117062938A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102021106674.3 2021-03-18
DE102021106674.3A DE102021106674A1 (de) 2021-03-18 2021-03-18 AlN-basierte Hartstoffschicht auf Körpern aus Metall, Hartmetall, Cermet oder Keramik und Verfahren zu deren Herstellung
PCT/EP2022/057100 WO2022195054A1 (de) 2021-03-18 2022-03-18 Aln-basierte hartstoffschicht auf körpern aus metall, hartmetall, cermet oder keramik und verfahren zu deren herstellung

Publications (1)

Publication Number Publication Date
CN117062938A true CN117062938A (zh) 2023-11-14

Family

ID=81328579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280022065.9A Pending CN117062938A (zh) 2021-03-18 2022-03-18 金属、硬质金属、金属陶瓷或陶瓷体上的AlN基硬材料层及其制造方法

Country Status (10)

Country Link
US (1) US20240158909A1 (zh)
EP (1) EP4308745A1 (zh)
JP (1) JP2024510283A (zh)
KR (1) KR20230157483A (zh)
CN (1) CN117062938A (zh)
BR (1) BR112023018737A2 (zh)
CA (1) CA3211966A1 (zh)
DE (1) DE102021106674A1 (zh)
MX (1) MX2023010940A (zh)
WO (1) WO2022195054A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913475B2 (ja) 1978-12-19 1984-03-29 日本特殊陶業株式会社 セラミツク・スロ−アウエイチツプとその製造法
AU2211488A (en) * 1987-10-01 1989-04-06 Gte Laboratories Incorporated Oxidation resistant, high temperature thermal cyling resistant coatings on silicon-based substrates and process for the production thereof
JP2001287104A (ja) 2000-04-04 2001-10-16 Toshiba Tungaloy Co Ltd 被覆cBN含有焼結体切削工具
DE102010052687A1 (de) 2010-11-26 2012-05-31 GFE Gesellschaft für Fertigungstechnik u. Entwicklung Schmalkalden e.V. Hartstoff-Beschichtung für Maschinenteile und Werkzeuge zum Verschleißschutz und zur Wärmedämmung
US8574728B2 (en) * 2011-03-15 2013-11-05 Kennametal Inc. Aluminum oxynitride coated article and method of making the same
AT510981B1 (de) 2011-03-18 2012-08-15 Boehlerit Gmbh & Co Kg Beschichteter körper, verwendung desselben und verfahren zu dessen herstellung
JP5710008B2 (ja) * 2011-08-30 2015-04-30 京セラ株式会社 切削工具
US9138864B2 (en) * 2013-01-25 2015-09-22 Kennametal Inc. Green colored refractory coatings for cutting tools
JP7025727B2 (ja) * 2017-07-18 2022-02-25 三菱マテリアル株式会社 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具

Also Published As

Publication number Publication date
EP4308745A1 (de) 2024-01-24
US20240158909A1 (en) 2024-05-16
BR112023018737A2 (pt) 2023-10-24
JP2024510283A (ja) 2024-03-06
DE102021106674A1 (de) 2022-09-22
KR20230157483A (ko) 2023-11-16
WO2022195054A1 (de) 2022-09-22
MX2023010940A (es) 2023-09-28
CA3211966A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
EP3091102B1 (en) Cutting tool and method for making the same
US8748016B2 (en) Coated bodies made of metal, hard metal, cermet, or ceramic, and method(s) for coating of such bodies
EP0816531B1 (en) Alumina coated tool and production method thereof
US5674564A (en) Alumina-coated sintered body
US5980988A (en) Alumina coated cutting tool
US5766782A (en) Aluminum oxide coated cutting tool and method of manufacturing thereof
US5902671A (en) Oxide coated cutting tool with increased wear resistance and method of manufacture thereof
US11459660B2 (en) Articles consisting of metal, hard metal, cermet or ceramic and coated with a hard material, and method for producing such articles
US6855413B2 (en) Oxide coated cutting tool
CN117062938A (zh) 金属、硬质金属、金属陶瓷或陶瓷体上的AlN基硬材料层及其制造方法
EP3868501A1 (en) Cutting tool
JP2003039207A (ja) 被覆工具
KR100991355B1 (ko) 절삭공구 / 내마모성 공구용 표면 피복부재용 박막
JP4480090B2 (ja) 被覆工具
JP4761291B2 (ja) 切断工具の耐摩耗性複合セラミック被膜
US11390942B2 (en) Cutting tool
US11292065B2 (en) Cutting tool
US11293095B2 (en) Cutting tool
US11103930B2 (en) Cutting tool
US20120141783A1 (en) Aluminum oxide coated body and method for the production thereof
EP3868502A1 (en) Cutting tool
JP2021137955A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination