CN117050370A - 一种具有g赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料及其制备方法与应用 - Google Patents

一种具有g赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料及其制备方法与应用 Download PDF

Info

Publication number
CN117050370A
CN117050370A CN202310836051.7A CN202310836051A CN117050370A CN 117050370 A CN117050370 A CN 117050370A CN 202310836051 A CN202310836051 A CN 202310836051A CN 117050370 A CN117050370 A CN 117050370A
Authority
CN
China
Prior art keywords
polymer
electromagnetic shielding
shielding material
wave band
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310836051.7A
Other languages
English (en)
Inventor
张溪文
孙昊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310836051.7A priority Critical patent/CN117050370A/zh
Publication of CN117050370A publication Critical patent/CN117050370A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/048Bimodal pore distribution, e.g. micropores and nanopores coexisting in the same foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料的制备方法,包括:在PEDOT:PSS水溶液中加入凝胶基质,搅拌混合后静置;将静置后的产物分别进行冻融循环、冷冻干燥,得到具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料。本发明还公开了由上述制备方法制备得到的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料。本发明制备方法简单,制备得到的聚合物基电磁屏蔽材料具有双尺度闭合微孔和参错的层状结构,能够产生多重反射,拓展了电磁波屏蔽带宽,提高了电磁屏蔽效能,在5G乃至6G技术领域的抗电磁干扰和电磁兼容设计中具有广阔的应用前景。

Description

一种具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽 材料及其制备方法与应用
技术领域
本发明属于电子材料领域,具体涉及一种具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料及其制备方法与应用。
背景技术
万物互联的概念早在20世纪末就已经提出,彼时的美好愿景在科技迅猛发展的今日也被逐步实现。但是,随着通讯技术的发展,从现在的5G技术到未来的6G技术,通信频率从G赫兹提高至太赫兹,通信频段也将增宽,电磁波对于生活的渗透也将更加全面且深入,通信器件产生的电磁干扰也将更为严重,能够同时面向G赫兹和太赫兹的电磁屏蔽材料的开发迫在眉睫。
在碳基电磁屏蔽材料研究方面,期刊Carbon(2022)第199卷第333–346页“Multifunctional graphene/carbon fiber aerogels towardcompatibleelectromagnetic wave absorption and shielding in gigahertz andterahertzbands with optimized radar cross section”通过溶剂热反应和冷冻干燥合成了超轻且机械耐用的石墨烯/碳纤维复合气凝胶,该复合气凝胶在0.3~1.5THz的波段能够达到97.4%的平均吸收率。
期刊Chemical Engineering Journal(2023)第467卷第143213页“Ultra-broadband shielding of cellulose nanofiber commingled biocarbonfunctionalconstructs:A paradigm shift towards sustainable terahertzabsorbers”使用纤维素纳米纤维和生物基高导电碳制备了一种3D多孔超轻气凝胶和柔性纳米纸,并在0.4~2.0THz的波段内最高达到了46dB(600μm厚纳米纸)和70dB(3.00mm厚气凝胶)的屏蔽效能。
公告号为CN 113512215 B的专利文献公开了一种基于石墨烯基的柔性电磁波屏蔽薄膜,通过将氧化石墨烯分散于高分子导电聚合物溶液中,经过抽滤和还原,得到由还原氧化石墨烯层和高分子导电聚合物层交替排布的柔性电磁波屏蔽薄膜。该薄膜电导率可达92.5S/cm,屏蔽效能最大可达到为49.67dB。
在MXene基电磁屏蔽材料研究方面,期刊ACS Nano(2021)第15卷第13646-13652页“Substrate-Independent Ti3C2Tx MXene WaterbornePaint for Terahertz Absorptionand Shielding”公开了一种基于共聚聚丙烯乳胶和MXene的水性涂料,在石英基底上以38.3μm的厚度最高达到了0.2~1.6THz波段内64.9dB的屏蔽效能。
期刊ACS Appl.Mater.Interfaces(2022)第14卷第57008-57015页“LightweightMXene-Based Hybrid Aerogels with Ultrabroadband TerahertzAbsorption andAnisotropic Strain Sensitivity”使用双向冷冻技术将基于MXene的混合气凝胶制成各向异性的层状结构,在0.5~3.0THz波段最高达到了57.5dB的屏蔽效能。
期刊J.Mater.Chem.A(2023)第11卷第5593页“MultifunctionalMXene-basedcomposite films with simultaneous terahertz/gigahertz waveshieldingperformance for future 6G communication”公开了通过氢键诱导自组装制备的MXene/聚芳酰胺复合薄膜,以20μm的厚度在0.2-1.6THz最高达到了52.7dB的屏蔽效能。
公开号为CN 115612181 A的专利文献公开了一种用于电磁干扰屏蔽的复合气凝胶及其制备方法,将聚吡咯修饰的纤维素纳米纤维、聚乙烯吡咯烷酮修饰的铜纳米线和MXene按比例均匀分散于水中,液氮定向冷冻,冷冻干燥后得到复合气凝胶。
由上述现有技术可知,各种碳材料与MXene在太赫兹屏蔽领域得到了大量的研究与应用,但是现有技术制备工艺复杂,涉及的填料种类较多,生产的绿色安全性无法得到保证,并且所制备的电磁屏蔽材料的屏蔽效能可能无法满足未来6G技术领域尖端应用的更高要求。
发明内容
鉴于现有技术的不足,本发明提供了一种具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料的制备方法,该制备方法简单、安全,适合大规模生产,且制备得到的聚合物基电磁屏蔽材料的电磁屏蔽性能优异,能够满足实际需求。
一种具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料的制备方法,包括以下步骤:
(1)在PEDOT:PSS水溶液中加入凝胶基质,搅拌混合后静置;
(2)将步骤(1)中得到的产物分别进行冻融循环、冷冻干燥,得到具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料。
本发明通过在PEDOT:PSS水溶液中加入凝胶基质,再分别进行冻融循环、冷冻干燥制备聚合物基电磁屏蔽材料。PEDOT:PSS与凝胶基质混合液在冻融循环的过程中会形成均一的双尺度闭合多孔导电网络,从而使得制备的聚合物基电磁屏蔽材料具备双尺度闭合微孔,该双尺度闭合微孔结构能够提供更多的多重反射,更完整的导电网络,更强的屏蔽性能。此外,该双尺度多孔导电网络能够在电磁波作用下形成闭合回路,感应生成磁场表现出负磁导率,以非磁性原料构建的结构通过磁损耗机理耗散电磁波,从而进一步增强了所制备的聚合物基电磁屏蔽材料的电磁屏蔽性能。
优选地,步骤(1)中,所述的凝胶基质为魔芋蒲甘聚糖、纤维素纳米纤维或聚乙烯醇中的一种。
优选地,步骤(1)中,以PEDOT:PSS水溶液的体积计,所述的凝胶基质的浓度为0.03~0.2g/ml。
优选地,步骤(1)中,所述的搅拌混合时间为5~30分钟。
优选地,步骤(1)中,所述的静置时间为5~30分钟。
优选地,步骤(2)中,所述的冻融循环的冷冻温度为-20~-30℃,冷冻时间为12~17小时;所述的冻融循环的解冻温度为室温或与室温相近的温度,解冻时间为5~10小时。
优选地,步骤(2)中,所述的冷冻干燥的预冻温度为-60~-70℃,预冻时间为3~7小时;所述的冷冻干燥的干燥真空度为2~10Pa,干燥时间为18~48小时。
优选地,步骤(1)中,在PEDOT:PSS水溶液中加入凝胶基质前,还包括向PEDOT:PSS水溶液中加入二甲基亚砜(DMSO)进行搅拌混合的步骤。
DMSO的添加能够增加PEDOT:PSS水溶液的电导率,并且能够调制导电网络的完整程度。在搅拌条件下向DMSO与PEDOT:PSS的混合液中再加入凝胶基质(KGM)并充分混合,在冻融循环操作下KGM产生凝胶化增强了导电网络的稳定性,同时在导电网络中产生分隔结构或多孔结构或多层结构形成电磁波的多次反射来提高电磁干扰屏蔽效率。此外,通过添加不同含量的DMSO,能够调制导电网络结构单元的厚度及结合形式,提高阻抗失配系数、介电损耗能力和传导损耗能力,进一步提高电磁干扰屏蔽效能。
优选地,所述的PEDOT:PSS水溶液与DMSO的体积比为1:0~0.2。
优选地,所述的PEDOT:PSS水溶液与二甲基亚砜(DMSO)搅拌混合的时间为12~48小时。
本发明还提供了一种由上述制备方法制备得到的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料。该聚合物基电磁屏蔽材料具有双尺度闭合微孔和参错的层状结构,能够产生大的电磁波屏蔽带宽和强的电磁屏蔽性能。
优选地,所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料包含100微米级和100纳米级的双尺度闭合微孔。
优选地,所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料在8.2~12.4GHz频段内的电磁屏蔽效能为40.0~140.0dB,在0.1~7THz频段内的最大电磁屏蔽效能为130.0~175.0dB,其中屏蔽效能大于20.0dB的频段占0.1~7THz频段的74.0~88.0%。
优选地,所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料在8.2~12.4GHz频段内存在负相对磁导率,所述负相对磁导率为-3.4~0。
本发明还提供了所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料在5G和6G技术领域的抗电磁干扰和电磁兼容设计中的应用。本发明制备的聚合物基电磁屏蔽材料在8.2~12.4GHz(代表性的G赫兹波段)的最大屏蔽效能超过139.0dB;在0.1~7THz的宽频段中,最大屏蔽效能超过172.0dB,能用于5G乃至6G技术领域的抗电磁干扰和电磁兼容设计。
相比于现有技术,本发明的有益效果如下:
(1)本发明通过在PEDOT:PSS水溶液中加入凝胶基质,再分别进行冻融循环、冷冻干燥制备聚合物基电磁屏蔽材料。PEDOT:PSS与凝胶基质混合液在冻融循环的过程中会形成均一的双尺度闭合多孔导电网络,从而使得制备的聚合物基电磁屏蔽材料具备双尺度闭合微孔,该双尺度闭合微孔结构能够提供更多的多重反射,更完整的导电网络,更强的屏蔽性能。此外,该双尺度多孔导电网络能够在电磁波作用下形成闭合回路,感应生成磁场表现出负磁导率,以非磁性原料构建的结构通过磁损耗机理耗散电磁波,从而进一步增强了所制备的聚合物基电磁屏蔽材料的电磁屏蔽性能。
(2)DMSO的添加能够增加PEDOT:PSS的电导率,并且能够调制导电网络的完整程度。在搅拌条件下向DMSO与PEDOT:PSS的混合液中再加入凝胶基质(KGM)并充分混合,在冷冻循环操作下KGM产生凝胶化增强了导电网络的稳定性,同时在导电网络中产生分隔结构或多孔结构或多层结构形成电磁波的多次反射来提高电磁干扰屏蔽效率。
(3)本发明制备的聚合物基电磁屏蔽材料具有双尺度闭合微孔和参错的层状结构,能够产生多重反射提高电磁屏蔽效能,拓展了聚合物基复合材料的电磁波屏蔽带宽,提高了太赫兹屏蔽效能。
(4)本发明制备的聚合物基电磁屏蔽材料在8.2~12.4GHz(代表性的G赫兹波段)的最大屏蔽效能超过139.0dB;在0.1~7THz的宽频段中,最大屏蔽效能超过172.0dB,能用于5G乃至6G技术领域的抗电磁干扰和电磁兼容设计。
(5)本发明的合成过程简单安全,适合大规模生产,并能够满足实际需求。
附图说明
图1为实施例1中制备的聚合物基电磁屏蔽材料的照片。
图2为实施例1中制备的聚合物基电磁屏蔽材料的SEM图片。
图3为实施例1中制备的聚合物基电磁屏蔽材料中纳米级闭合微孔的SEM图片。
图4为实施例4中制备的聚合物基电磁屏蔽材料的照片。
图5为实施例4中制备的聚合物基电磁屏蔽材料的SEM图片。
图6为实施例4中制备的聚合物基电磁屏蔽材料中纳米级闭合微孔的SEM图片。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。
实施例1
将PEDOT:PSS水溶液预搅拌6h,将10ml的PEDOT:PSS水溶液搅拌24h得到前体溶液;在前体溶液中加入0.4g的KGM并搅拌5min,搅拌完成后静置20分钟。
将溶液置于-20℃的环境中17h,之后取出置于室温中7h,再将溶液置于-20℃的环境中12h。之后进行冷冻干燥,预冷冻温度为-70℃,时间为7h,干燥过程中真空度小于10Pa,干燥过程为24h,得到聚合物基电磁屏蔽材料。
性能测试
图1为本实施例中制备的聚合物基电磁屏蔽材料的照片,样品宏观表现为黑色海绵状轻质块体,存在大量空隙。
图2为本实施例中制备的聚合物基电磁屏蔽材料的SEM图片,由图2可知,本实施例制备的聚合物基电磁屏蔽材料为松散的片状单元交错形成不规则的100微米级多孔结构,该多孔结构来源于冻融循环中的冰晶生长和聚合物链的定向汇集,该多孔结构提供了更多的空气界面,增加了多重反射对于屏蔽的贡献。
图3为本实施例中制备的聚合物基电磁屏蔽材料中纳米级闭合微孔的SEM图片,100纳米级的闭合微孔普遍存在于上述图2中的片状单元中,该纳米级多孔结构增加了多重反射对于屏蔽的贡献。
将本实施例制备的聚合物基电磁屏蔽材料样品切割为22.9mm*10.2mm的块体,使用矢量网络分析仪的波导法在X波段(8.2~12.4GHz)测量G赫兹电磁干扰屏蔽效能及样品厚度。测试得样品在8.2~12.4GHz的范围内存在负相对磁导率-2.252~-1.748。测试得样品厚度为5.809mm,其中屏蔽效能最大值为56.930dB,最小值为53.750dB,平均值为55.116dB。
使用太赫兹时域光谱的透射模式在0.1~7THz的范围内测量本实施例制备的聚合物基电磁屏蔽材料的太赫兹电磁干扰屏蔽效能,测得样品屏蔽效能最大值为172.493dB,且在0.1~5.582THz范围内屏蔽效能大于20dB。
实施例2
将PEDOT:PSS水溶液预搅拌6h,将10ml的PEDOT:PSS水溶液与0.025ml的DMSO混合搅拌24h得到前体溶液;在前体溶液中加入0.4g的KGM并搅拌5min,搅拌完成后静置20分钟。
将溶液置于-20℃的环境中14h,之后取出置于室温中8h,再将溶液置于-20℃的环境中12h。之后进行冷冻干燥,预冷冻温度为-70℃,时间为7h,干燥过程中真空度小于10Pa,干燥过程为24h。
性能测试
将本实施例制备的聚合物基电磁屏蔽材料样品切割为22.9mm*10.2mm的块体,使用矢量网络分析仪的波导法在X波段(8.2~12.4GHz)测量G赫兹电磁干扰屏蔽效能及样品厚度。测试得样品在8.2~12.4GHz的范围内存在负相对磁导率-1.540~-1.107。测试得样品厚度为4.787mm,其中屏蔽效能最大值为61.910dB,最小值为56.439dB,平均值为58.744dB。
使用太赫兹时域光谱的透射模式在0.1~7THz的范围内测量本实施例制备的聚合物基电磁屏蔽材料的太赫兹电磁干扰屏蔽效能,测得样品屏蔽效能最大值为172.493dB,且在0.1~5.258THz范围内屏蔽效能大于20dB。
实施例3
将PEDOT:PSS水溶液预搅拌6h,将10ml的PEDOT:PSS水溶液与0.075ml的DMSO混合搅拌24h得到前体溶液;在前体溶液中加入0.4g的KGM并搅拌10min,搅拌完成后静置10分钟。
将溶液置于-20℃的环境中12h,之后取出置于室温中8h,再将溶液置于-20℃的环境中12h。之后进行冷冻干燥,预冷冻温度为-70℃,时间为4h,干燥过程中真空度小于10Pa,干燥过程为24h。
性能测试
将本实施例制备的聚合物基电磁屏蔽材料样品切割为22.9mm*10.2mm的块体,使用矢量网络分析仪的波导法在X波段(8.2~12.4GHz)测量G赫兹电磁干扰屏蔽效能及样品厚度。测试得样品在8.2~12.4GHz的范围内存在负相对磁导率-3.391~-2.766。测试得样品厚度为2.744mm,其中屏蔽效能最大值为88.482dB,最小值为80.155dB,平均值为84.047dB。
使用太赫兹时域光谱的透射模式在0.1~7THz的范围内测量本实施例制备的聚合物基电磁屏蔽材料的太赫兹电磁干扰屏蔽效能,测得样品屏蔽效能最大值为154.331dB,且在0.1~6.178THz范围内屏蔽效能大于20dB。
实施例4
将PEDOT:PSS水溶液预搅拌6h,将10ml的PEDOT:PSS水溶液与0.15ml的DMSO混合搅拌24h得到前体溶液;在前体溶液中加入0.4g的KGM并搅拌15min,搅拌完成后静置5分钟。
将溶液置于-20℃的环境中12h,之后取出置于室温中8h,再将溶液置于-20℃的环境中12h。之后进行冷冻干燥,预冷冻温度为-70℃,时间为3h,干燥过程中真空度小于10Pa,干燥过程为24h。
性能测试
图4为本实施例中制备的聚合物基电磁屏蔽材料的照片,样品宏观表现为黑色海绵状轻质块体,存在少量空隙。
图5为本实施例中制备的聚合物基电磁屏蔽材料的SEM图片,随着DMSO的添加,本实施例的聚合物基电磁屏蔽材料结构单元由实施例1中的松散片状增厚为该实施例中彼此交联的块体,块状单元中普遍存在100微米级的多孔结构。该结构的聚合物基电磁屏蔽材料虽然减少了样品中的空气界面,但是增加了样品的导电性能,使得介电损耗主导的电磁波耗散机理增强。
图6为本实施例中制备的聚合物基电磁屏蔽材料中纳米级闭合微孔的SEM图片,100纳米级的闭合微孔普遍存在于上述图5中的块状单元中,该纳米级多孔结构增加了多重反射对于屏蔽的贡献。
将本实施例制备的聚合物基电磁屏蔽材料样品切割为22.9mm*10.2mm的块体,使用矢量网络分析仪的波导法在X波段(8.2~12.4GHz)测量G赫兹电磁干扰屏蔽效能及样品厚度。测试得样品在8.2~9.84GHz的范围内存在负相对磁导率-2.779~-0.012。测试得样品厚度为1.635mm,其中屏蔽效能最大值为139.390dB,最小值为98.514dB,平均值为109.841dB。
使用太赫兹时域光谱的透射模式在0.1~7THz的范围内测量本实施例制备的聚合物基电磁屏蔽材料的太赫兹电磁干扰屏蔽效能,测得样品屏蔽效能最大值为172.480dB,且在0.1~5.309THz范围内屏蔽效能大于20dB。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料的制备方法,其特征在于,包括以下步骤:
(1)在PEDOT:PSS水溶液中加入凝胶基质,搅拌混合后静置;
(2)将步骤(1)中得到的产物分别进行冻融循环、冷冻干燥,得到具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述的凝胶基质为魔芋蒲甘聚糖、纤维素纳米纤维或聚乙烯醇中的一种,以PEDOT:PSS水溶液的体积计,所述的凝胶基质的浓度为0.03~0.2g/ml,所述的搅拌混合时间为5~30分钟,所述的静置时间为5~30分钟。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述的冻融循环的冷冻温度为-20~-30℃,冷冻时间为12~17小时;所述的冻融循环的解冻温度为室温,解冻时间为5~10小时。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述的冷冻干燥的预冻温度为-60~-70℃,预冻时间为3~7小时;所述的冷冻干燥的干燥真空度为2~10Pa,干燥时间为18~48小时。
5.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,在PEDOT:PSS水溶液中加入凝胶基质前,还包括向PEDOT:PSS水溶液中加入二甲基亚砜进行搅拌混合的步骤。
6.根据权利要求5所述的制备方法,其特征在于,所述的PEDOT:PSS水溶液与DMSO的体积比为1:0~0.2,所述的PEDOT:PSS水溶液与二甲基亚砜搅拌混合的时间为12~48小时。
7.根据权利要求1-6中任一项所述的制备方法制备得到的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料。
8.根据权利要求7所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料,其特征在于,所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料包含100微米级和100纳米级的双尺度闭合微孔。
9.根据权利要求7所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料,其特征在于,所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料在8.2~12.4GHz频段内的电磁屏蔽效能为40.0~140.0dB,负相对磁导率为-3.4~0;在0.1~7.0THz频段内的最大电磁屏蔽效能为130.0~175.0dB,其中屏蔽效能大于20.0dB的频段占0.1~7THz频段的74.0~88.0%。
10.根据权利要求7-9中任一项所述的具有G赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料在5G和6G技术领域的抗电磁干扰和电磁兼容设计中的应用。
CN202310836051.7A 2023-07-10 2023-07-10 一种具有g赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料及其制备方法与应用 Pending CN117050370A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310836051.7A CN117050370A (zh) 2023-07-10 2023-07-10 一种具有g赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310836051.7A CN117050370A (zh) 2023-07-10 2023-07-10 一种具有g赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN117050370A true CN117050370A (zh) 2023-11-14

Family

ID=88654330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310836051.7A Pending CN117050370A (zh) 2023-07-10 2023-07-10 一种具有g赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN117050370A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067454A (ko) * 2016-12-12 2018-06-20 주식회사 아모그린텍 플렉서블 전자파차폐재용 전도성 복합섬유, 이의 제조방법, 이를 포함하는 플렉서블 전자파차폐재 및 이를 구비하는 전자기기
CN112708148A (zh) * 2020-12-24 2021-04-27 江西科技师范大学 一种应用于太阳能水净化的导电聚合物水凝胶的制备方法
CN113637181A (zh) * 2021-07-23 2021-11-12 武汉工程大学 一种聚乙烯醇基导电水凝胶及其制备方法与应用
CN114396869A (zh) * 2022-01-18 2022-04-26 山西大学 一种极端环境耐受型高灵敏度应变传感器的制备方法
CN115993086A (zh) * 2023-01-10 2023-04-21 合肥工业大学 基于pedot:pss的柔性应变传感器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067454A (ko) * 2016-12-12 2018-06-20 주식회사 아모그린텍 플렉서블 전자파차폐재용 전도성 복합섬유, 이의 제조방법, 이를 포함하는 플렉서블 전자파차폐재 및 이를 구비하는 전자기기
CN112708148A (zh) * 2020-12-24 2021-04-27 江西科技师范大学 一种应用于太阳能水净化的导电聚合物水凝胶的制备方法
CN113637181A (zh) * 2021-07-23 2021-11-12 武汉工程大学 一种聚乙烯醇基导电水凝胶及其制备方法与应用
CN114396869A (zh) * 2022-01-18 2022-04-26 山西大学 一种极端环境耐受型高灵敏度应变传感器的制备方法
CN115993086A (zh) * 2023-01-10 2023-04-21 合肥工业大学 基于pedot:pss的柔性应变传感器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIPORJOY SARKAR, ET AL.: "Lightweight and flexible conducting polymer sponges and hydrogels for electromagnetic interference shielding", JOURNAL OF MATERIALS CHEMISTRY C, vol. 9, no. 46, 27 October 2021 (2021-10-27), pages 16558 *
HAOWEN SUN, ET AL.: "An artificially re-structured PEDOT:PSS/konjac glucomannan sponge toward high-performance electromagnetic interference shielding from gigahertz to terahertz bands", JOURNAL OF MATERIALS CHEMISTRY A, vol. 11, no. 40, 4 October 2023 (2023-10-04), pages 21817 - 21827 *
高晗;张扬;: "聚(3, 4-乙烯二氧噻吩)在电磁屏蔽领域的应用", 高分子学报, no. 09, 26 May 2020 (2020-05-26) *

Similar Documents

Publication Publication Date Title
He et al. Developing MXenes from wireless communication to electromagnetic attenuation
Gupta et al. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band
Chang et al. Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: Component optimization and structure modulation
Chen et al. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding
Yang et al. Multifunctional Ti3C2TX MXene/Aramid nanofiber/Polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment
Liao et al. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding
CN112911920B (zh) 一种MXene-碳气凝胶/TPU复合材料的制备方法
CN111809439A (zh) 柔性高强MXene基电磁屏蔽复合薄膜及其制备方法
Cheng et al. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion
CN113185193B (zh) 一种MXene复合纤维增强石墨烯气凝胶吸波材料及其制备方法
Guo et al. Construction of interconnected and oriented graphene nanosheets networks in cellulose aerogel film for high-efficiency electromagnetic interference shielding
Chakradhary et al. Correlation between EMI shielding and reflection loss mechanism for carbon nanofiber/epoxy nanocomposite
Lai et al. Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance
Hua et al. Graphene/MWNT/poly (p-phenylenebenzobisoxazole) multiphase nanocomposite via solution prepolymerization with superior microwave absorption properties and thermal stability
CN109181637B (zh) 一种叠层状Mo2CTx/氮掺杂碳微纳杂化复合吸波材料及其制备方法
CN105860062A (zh) 一种具有负介电常数的碳纳米管/聚苯胺纳米粒子的制备方法
CN106432721A (zh) 一种具有超材料性能的碳纳米管/聚吡咯纳米粒子的制备方法
CN113088077A (zh) 一种聚酰亚胺/多壁碳纳米管复合气凝胶及其制备方法和用途
CN111138206A (zh) 一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法
Hu et al. High absorption shielding material of poly (phthalazinone etherketone)/multiwall carbon nanotube composite films with sandwich configurations
Yao et al. Multi-functional and multi-scenario applications for MXene aerogels with synergistically enhanced asymmetric modules
Yu et al. Novel flexible broadband microwave absorptive fabrics coated with graphite nanosheets/polyurethane nanocomposites
CN117050370A (zh) 一种具有g赫兹到太赫兹波段屏蔽效能的聚合物基电磁屏蔽材料及其制备方法与应用
Yang et al. Lightweight and anti-corrosive carbon nanotubes (CNTs)/bamboo fiber/HDPE composite for efficient electromagnetic interference shielding
CN105860066A (zh) 一种具有负介电常数的碳纳米管/聚吡咯纳米粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination