CN117025433A - 一株降解甘露聚糖的弧菌属细菌及其培养方法与应用 - Google Patents

一株降解甘露聚糖的弧菌属细菌及其培养方法与应用 Download PDF

Info

Publication number
CN117025433A
CN117025433A CN202210884614.5A CN202210884614A CN117025433A CN 117025433 A CN117025433 A CN 117025433A CN 202210884614 A CN202210884614 A CN 202210884614A CN 117025433 A CN117025433 A CN 117025433A
Authority
CN
China
Prior art keywords
vibrio
degrading
strain
liquid
polysaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210884614.5A
Other languages
English (en)
Inventor
程媛媛
韩文君
古静燕
于克学
马冉
卫洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Agriculture and Engineering University
Original Assignee
Shandong Agriculture and Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Agriculture and Engineering University filed Critical Shandong Agriculture and Engineering University
Priority to CN202210884614.5A priority Critical patent/CN117025433A/zh
Publication of CN117025433A publication Critical patent/CN117025433A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/2488Mannanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/63Vibrio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及一株降解甘露聚糖的弧菌属细菌及其培养方法与应用,属于微生物技术领域。本发明的弧菌(Vibrio sp.)SG‑5能以微生物、海藻、陆地植物以及动物来源的多种类型的多糖为唯一碳源生长,所产多糖降解酶的种类丰富,是一株多能型多糖降解菌。用该菌株制备的胞外酶制剂,可降解微生物、海藻、植物和动物多糖,尤其对来源于植物的魔芋葡甘聚糖和槐豆胶降解活性显著,具有潜在的应用价值。

Description

一株降解甘露聚糖的弧菌属细菌及其培养方法与应用
技术领域
本发明涉及一株降解甘露聚糖的弧菌属细菌及其培养方法与应用,属于微生物技术领域。
背景技术
甘露聚糖是一类具有复杂结构的植物多糖,其主链通常是由甘露糖、葡萄糖单元通过β-1,4糖苷键链接而成[1,2]。根据其分支结构的糖单元组成特征,可分为纯甘露聚糖、葡甘聚糖、半乳甘露聚糖和半乳葡甘聚糖[3,4]。甘露聚糖具有独特的理化性质,如:可以吸水成胶、具有一定的化学惰性、且生物安全性高,因而这种多糖广泛应用于食品、制药和纺织工业中[5-7]。与甘露聚糖不同的是,甘露寡糖具有的重要生理活性,如改善肠道微环境[8]、提高机体免疫力[9]、促进细胞分裂[10]等。研究还表明,甘露寡糖的生物活性与糖单元的组成、聚合度的大小等密切相关[11]。甘露聚糖酶是一类糖基水解酶(Glycoside Hydrolases,GHs)的总称,能催化多糖内不同类型糖苷键的水解,从而生成分子量更小的寡糖。相比化学或物理方法,酶法降解甘露聚糖制备寡糖的策略,具有因反应条件温和、可控性强,底物选择性清晰而且产物明确等优势[12]。综上,甘露聚糖及其寡糖产物具有重要的应用价值,因此甘露聚糖降解菌及其甘露聚糖降解酶资源的开发一直是酶法制备寡糖的研究热点之一,其中新型甘露聚糖降解菌的发现是研制新型工具酶的源头保障。
甘露聚糖降解菌是指能以甘露聚糖为唯一碳源进行生长的菌株。一株甘露聚糖降解菌,能产生多种类型的甘露聚糖降解酶,催化底物分子中糖单元间糖苷键的断裂,并产生一系列寡糖乃至单糖,从而实现菌株对甘露聚糖这类碳源的降解和利用。目前,已报道的甘露聚糖降解菌主要分离自陆地土壤。海洋来源的甘露聚糖酶菌株仅见国内如Bacillussp.B555[13]和国外如Rhodothermus marinus ATCC 43812[14]、Vibrio sp.MA-138[15]等少数菌株的报道。关于弧菌中甘露聚糖降解活性的专利申请或研究少见报道。
弧菌被认为是海洋环境中细菌的代表性物种,它们数量大、种类多、分布广,其资源学和生态学的研究意义十分重要[16]。已有研究表明,弧菌是水生动物常见的致病菌,人类食用了弧菌超标的海鲜或者伤口被弧菌感染,均会对人类的健康带来严重的危害,甚至危及生命。因此,对于弧菌的研究主要集中于病害防治与生物多样性分析等方面[17,18]。关于弧菌中多糖降解功能和资源发掘的研究很少,对于这一重要海洋微生物物种的资源开发必然有利于相关分子致病机制的认知或功能寡糖药物的研制。
发明内容
本发明针对现有技术的不足,提供一株来源于海藻及其附着物、能降解利用甘露聚糖的弧菌及其培养方法与应用。
本发明是通过以下技术方案实现的:
一株弧菌(Vibrio sp.)SG-5,于2022年06月13日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏地址:北京市朝阳区北辰西路1号院3号,保藏编号:CGMCCNO.25076。
根据本发明优选的,所述弧菌(Vibrio sp.)SG-5的16S rRNA基因的核苷酸序列如SEQ ID NO.1所示。
弧菌(Vibrio sp.)SG-5,革兰氏染色阴性,该菌株在平板上形成圆形菌落,扁平,表面较光滑,湿润,整体呈淡黄色。
上述弧菌(Vibrio sp.)SG-5的培养方法,包括如下步骤:
(1)将弧菌(Vibrio sp.)SG-5划线至初筛固体培养基上,25~30℃倒置培养24~48h,制得活化菌株;
(2)挑取步骤(1)制得的活化菌株,接种至初筛液体培养基中,在温度为25~30℃、转速为180~220转/分钟的条件下,摇床培养12~18h,制得种子液;
(3)将步骤(2)制得的种子液,按1~5%的体积百分比接种于发酵培养基中,在温度为25~30℃、转速为180~220转/分钟的条件下,扩大培养3~5天,制得弧菌(Vibriosp.)SG-5菌液。
根据本发明优选的,所述步骤(1)中的初筛固体培养基,每升组分如下:
酵母提取物5g,胰蛋白胨10g,魔芋葡甘聚糖2g,琼脂15g,余量人工海水,pH 7.2。
进一步优选的,所述人工海水组分如下:
KH2PO4 3.0g,K2HPO4·3H2O 7.0g、(NH4)2SO4 2.0g、NaCl 30.0g、FeSO4·7H2O0.01g,MgSO4·12H2O 0.01g,ddH2O 1000mL。
根据本发明优选的,所述步骤(2)中的初筛液体培养基,每升组分如下:
酵母提取物5g,胰蛋白胨10g,魔芋葡甘聚糖2g,余量人工海水,pH 7.2。
进一步优选的,所述人工海水组分如下:
KH2PO4 3.0g,K2HPO4·3H2O 7.0g、(NH4)2SO4 2.0g、NaCl 30.0g、FeSO4·7H2O0.01g,MgSO4·12H2O 0.01g,ddH2O 1000mL。
根据本发明优选的,所述步骤(3)中的发酵培养基,每升组分如下:
酵母提取物5g,蛋白胨10g,余量人工海水,pH 7.2。
进一步优选的,所述人工海水组分如下:
KH2PO4 3.0g,K2HPO4·3H2O 7.0g、(NH4)2SO4 2.0g、NaCl 30.0g、FeSO4·7H2O0.01g,MgSO4·12H2O 0.01g,ddH2O 1000mL。
弧菌(Vibrio sp.)SG-5,经测定,其16S rRNA基因的序列长度为1509bp,如SEQ IDNO.1所示。通过使用美国生物工程信息中心(National Center for BiotechnologyInformation,NCBI)BLASTN程序搜索比对,证明本发明菌株的16S rRNA基因序列与NCBI注册的弧菌标准菌株(Vibrio)16S rRNA基因序列具有较高的同源性,其中与标准菌株Vibriokanaloae LMG 20539亲缘关系最相似,其序列的一致性为98.59%。
弧菌(Vibrio sp.)SG-5,采用16S rRNA基因构建系统发育树,结果如图3所示。结果表明,菌株SG-5与弧菌属的模式菌株聚类,且位于该属的分支内部。因此,将菌株SG-5鉴定至弧菌属。
上述弧菌(Vibrio sp.)SG-5在制备降解甘露聚糖酶制剂中的应用。
根据本发明优选的,所述应用,步骤如下:
1)取上述弧菌(Vibrio sp.)SG-5菌液,按1~5%的体积百分比接种于发酵培养基中,在温度为25~30℃、转速为180~220转/分钟的条件下,扩大培养3~7天,制得弧菌(Vibrio sp.)SG-5发酵液;
2)取步骤1)制得的弧菌(Vibrio sp.)SG-5发酵液,固液分离,取液体,加入硫酸铵,使浓度达到饱和度的80%,离心,收集沉淀,用20~50倍体积的TGE缓冲液重悬沉淀,透析去除硫酸铵,制得胞外酶制剂,即降解甘露聚糖酶制剂。
根据本发明优选的,所述步骤1)中的发酵培养基,每升组分如下:
酵母提取物5g,蛋白胨10g,余量人工海水,pH 7.2。
进一步优选的,所述人工海水组分如下:
KH2PO4 3.0g,K2HPO4·3H2O 7.0g、(NH4)2SO4 2.0g、NaCl 30.0g、FeSO4·7H2O0.01g,MgSO4·12H2O 0.01g,ddH2O 1000mL。
根据本发明优选的,所述步骤2)中,固液分离的条件为:12,000×g,4℃离心5~20min。
根据本发明优选的,所述步骤2)中,离心为:15,000×g,4℃离心15~30min。
根据本发明优选的,所述步骤2)中,TGE缓冲液组分如下:
50mM Tris,50mM NaCl,0.5mM EDTA,5mM DTT(二硫苏糖醇),5.0%(v/v)甘油,ddH2O 1000mL,pH 7.9。
根据本发明优选的,所述步骤2)中,透析为采用分子截留量10,000Da的透析袋,进行搅拌透析。
上述弧菌(Vibrio sp.)SG-5或上述降解甘露聚糖酶制剂在降解微生物来源的多糖、海藻来源的多糖、高等植物来源的多糖和/或动物来源的多糖中的应用。
根据本发明优选的,所述高等植物多糖为微晶纤维素、纤维素、羧甲基纤维素、果胶、木聚糖、淀粉、魔芋葡甘聚糖、槐豆胶;海藻多糖为琼脂糖、褐藻胶、卡拉胶、λ型-卡拉胶、κ型-卡拉胶、ι型-卡拉胶;动物多糖为透明质酸、硫酸软骨素A、硫酸软骨素C、硫酸软骨素E、几丁质、壳聚糖;微生物多糖为黄原胶。
上述降解甘露聚糖酶制剂在降解魔芋葡甘聚糖或槐豆胶中的应用。
根据本发明优选的,所述降解甘露聚糖酶制剂降解魔芋葡甘聚糖或槐豆胶的产物主要以二糖、三糖和四糖为主。
有益效果:
本发明从海藻及其附着物中分离获得一株弧菌(Vibrio sp.)SG-5,该菌株能以微生物、海藻、陆地植物以及动物来源的多种类型的多糖为唯一碳源生长,所产多糖降解酶的种类丰富,是一株多能型多糖降解菌。用该菌株制备的胞外酶制剂,可降解微生物、海藻、植物和动物多糖,尤其对来源于植物的魔芋葡甘聚糖和槐豆胶降解活性显著,具有潜在的应用价值,这充分表明SG-5是一株海洋来源的、可高效降解甘露聚糖的菌株,与现有已知的弧菌属(Vibrio sp.)菌株功能显著不相同。
附图说明
图1为菌株SG-5的基本形态学特征照片;
其中,图A为培养2天后菌株在固体培养基上的菌落形态;图B为刚果红染液染色照片;
图2为菌株SG-5在不同多糖唯一碳源培养基中生长的最高菌体浓度柱状图;
图3为菌株SG-5基于16S rRNA基因序列绘制的进化树;
图4为弧菌(Vibrio sp.)SG-5胞外酶制剂的SDS-变性凝胶电泳分析照片;
图中:标准品泳道为10μL蛋白质分子量标准物SM0431;样品泳道为10μL菌株SG-5胞外酶制剂;
图5为弧菌(Vibrio sp.)SG-5胞外酶制剂对多糖降解能力的分析柱状图;
图6为弧菌(Vibrio sp.)SG-5胞外酶制剂降解甘露聚糖所得产物的TLC分析图;
图中:泳道M为0.5μL甘露二糖-甘露六糖分子量标准物;泳道1为对照组灭活酶降解魔芋葡甘聚糖产物;泳道2为胞外酶制剂降解魔芋葡甘聚糖产物;泳道3为对照组灭活酶降解槐豆胶产物;泳道4为胞外酶制剂降解槐豆胶产物。
具体实施方式
下面结合实施例对本发明的技术方案做进一步说明,但本发明所保护范围不限于此。
实施例中涉及的人工海水组分如下:
KH2PO4 3.0g,K2HPO4·3H2O 7.0g、(NH4)2SO4 2.0g、NaCl 30.0g、FeSO4·7H2O0.01g,MgSO4·12H2O 0.01g,ddH2O 1000mL。
实施例1、海藻及其附着物微生物的分离与纯化
取青岛金沙滩附近海藻及其附着物,取1g样品,置于体积为100mL的魔芋葡甘聚糖或槐豆胶为唯一碳源液体培养基中,在温度为28℃、转速为200转/分钟的条件下,培养至溶液浑浊;取溶液1mL加入到9mL无菌水中,分别稀释至浓度为10-1、10-2、10-3、10-4、10-5的5个浓度梯度。将稀释后的菌悬液涂布于唯一碳源固体培养基,每个浓度做两个平行,28℃培养7天。挑出能在平板上生长菌落较大且形态各异的单菌落,经过3次平板划线分离纯化后,挑单菌落于初筛液体培养基中,28℃、200转/分钟培养3天,取培养物1.6mL加入400μL甘油,混匀后于-80℃冰箱长期保存。
上述魔芋葡甘聚糖或槐豆胶为唯一碳源液体培养基,配制方法如下:
向人工海水中分别添加魔芋葡甘聚糖或槐豆胶至终浓度为0.10%(w/v,g/mL);在115℃高压灭菌20min。
固体培养基中加入质量浓度为1.5%(w/v,g/mL)的琼脂。
上述初筛液体培养基,每升组分如下:
酵母提取物5g,胰蛋白胨10g,魔芋葡甘聚糖2g,余量人工海水,pH 7.2。
实施例2、甘露聚糖降解菌的筛选
把实施例1中所得到的菌株单克隆,分别接种到魔芋葡甘聚糖或槐豆胶为唯一碳源液体培养基中,200转/分钟、28℃培养72h,观察菌液浑浊情况及培养液粘稠度的变化情况。依据上述两个指标选择产酶菌株。将在各唯一碳源培养基中菌体浑浊度以及粘稠度变化较大的菌株,挑取到唯一碳源固体培养基上划线并培养,分别保种并编号记录如SG-1、SG-2、SG-3,…等;将单菌落培养2~3天后,用刚果红染液染色。
上述刚果红染液,每升组分如下:
刚果红1.0g,ddH2O定容至1L。
按照如上所述方法,分离得到菌株SG-5,菌株SG-5在魔芋葡甘聚糖唯一碳源平板培养2天之后的菌落形态如图1A所示。该菌株在固体培养基上,菌落淡黄色、扁平、较湿润。在魔芋葡甘聚糖唯一碳源平板上经刚果红染液染色后,菌株周围出现明显水解圈,如图1B所示,这表明,菌株SG-5能分泌胞外甘露聚糖降解酶且降解甘露聚糖后产生了寡糖。
将菌株SG-5分别接种到不同多糖为唯一碳源的液体培养基(向人工海水中分别添加不同多糖至终浓度为0.10%(w/v,g/mL);在115℃高压灭菌20min)中,200转/分钟、28℃培养,测定最高菌体浓度,结果如图2所示,菌株SG-5能利用多种多糖为唯一碳源进行生长,其中,在魔芋葡甘聚糖、槐豆胶中生长较为旺盛,在纤维素、透明质酸、黄原胶等中生长较弱,在羧甲基纤维素、κ/τ型-卡拉胶、硫酸软骨素、几丁质和壳聚糖中未见显著生长。这一分析表明,菌株SG-5至少能够降解10种多糖,是一株多能型多糖降解菌。
实施例3、菌株SG-5基于16S rRNA基因的分子鉴定
使用细菌基因组提取试剂盒(天根生化)制备菌株SG-5的基因组DNA,用作模板,使用细菌16S rRNA基因的通用引物(27f和1492r)进行扩增,并进行琼脂糖凝胶电泳,然后用胶回收试剂盒(天根生化)纯化PCR扩增产物,电泳验证后,连接到pCE2 TA/Blunt-ZeroVector,转化到E.coli DH5α感受态细胞。经氨苄抗性筛选,获得阳性克隆。所得16S rRNA基因测序由生工生物工程(上海)股份有限公司完成,其16S rRNA基因序列的核苷酸序列如SEQ ID NO.1所示,将该序列与美国国家生物信息中心(NCBI)收录的标准菌株的16S rRNA基因序列进行比对检索,应用MEGA6.0构建系统发育树。
上述用于菌株16S rRNA基因扩增的通用引物为:
正向引物为27f:5’-AGAGTTTGATCCTGGCTCAG-3’(SEQ ID NO.2);
反向引物为1492r:5’-GGTTACCTTGTTACGACTT-3’(SEQ ID NO.3)。
上述用于菌株16S rRNA基因PCR扩增的反应体系如下,总体积30μL:
每30μL反应体系中加入浓度为10mmol/L的27f和1492r各1.0μL,10mmol/L的dNTP0.5μL,2×Phanta Max Buffer 12.5μL,1U/μL的Phanta Max Super-Fidelity DNApolymerase 0.5μL,模板2μL,ddH2O 12.5μL。所用基因扩增试剂购自南京诺唯赞生物科技股份有限公司。
上述用于菌株16S rRNA基因PCR扩增的程序为:
95℃预变性5min;94℃变性30s,55℃退火30s,72℃延伸90s,共35个循环;72℃延伸15min;降温至4℃并保温15min。
上述基于16S rRNA基因系统发育树构建方法:
应用MEGA6.0软件包中的Clustal W对测得的16S rRNA基因序列以及自NCBI基因数据库中获得的标准菌株的相似序列,一起进行多序列比对,用Neighbor-Joining法构建系统发育树,并进行1000次Bootstraps检验,获得统计树。
结果如图3所示,本发明筛选到的菌株SG-5与数据库中Vibrio kanaloae LMG20539的亲缘关系最近,且16S rRNA基因之间的相似度为98.59%。基于16S rRNA基因构建所得的统计树表明,菌株SG-5与弧菌属的多个标准菌株聚类,并位于该分支内部。因此,菌株SG-5被鉴定至弧菌属。
一株弧菌(Vibrio sp.)SG-5,于2022年06月13日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏地址:北京市朝阳区北辰西路1号院3号,保藏编号:CGMCCNO.25076。
实施例4、弧菌(Vibrio sp.)SG-5胞外酶制剂的制备
(1)将-80℃冰箱菌株SG-5划线于初筛固体培养基上,28℃倒置培养24~48h,制得活化菌株;
(2)挑取步骤(1)制得的SG-5活化菌株接种至初筛液体培养基中,在温度为28℃、转速为200转/分钟的条件下,摇床培养12~18h,制得种子液100mL;
(3)将步骤(2)制得的种子液,按1%的体积百分比接种于发酵培养基(100mL/瓶)中,在温度为28℃、转速为200转/分钟的条件下,扩大培养5天,制得菌株SG-5发酵液共1000mL;
(4)取步骤(3)制得的菌株SG-5发酵液,12,000×g,4℃,离心10min,取上清,加入硫酸铵,使浓度达到饱和度的80%,15,000×g、4℃离心30min后收集80%硫酸铵饱和度下所得沉淀,用20倍体积的TGE缓冲液重悬沉淀,并使用分子截留量为10,000Da的透析袋搅拌透析,以去除硫酸铵,制得胞外酶制剂。
所述步骤(1)、(2)中的初筛培养基,每升组分如下:
酵母提取物5g,胰蛋白胨10g,魔芋葡甘聚糖2g,余量人工海水,pH 7.2;固体培养基中加入质量浓度为1.5%(w/v)的琼脂。
所述步骤(3)中的发酵培养基为产酶培养基,每升组分如下:
酵母提取物5g,蛋白胨10g,余量人工海水,pH 7.2。
所述步骤(4)中的TGE缓冲液的组分如下:
50mM Tris,50mM NaCl,0.5mM EDTA,5mM DTT(二硫苏糖醇),5.0%(v/v)甘油,ddH2O 1000mL,pH 7.9。
所述步骤(4)中的透析,使用分子截留量为10,000Da的透析袋,在低温环境中对20倍体积TGE缓冲液的重悬液进行搅拌透析,然后用SDS-变性凝胶电泳对菌株SG-5的胞外酶制剂进行检测。结果显示菌株SG-5胞外酶制剂含有多条蛋白条带,如图4所示。
实施例5、菌株SG-5胞外酶制剂对不同多糖降解能力的分析
将浓度为3mg/mL的多糖底物、实施例4制备的胞外酶制剂、PBS缓冲液按1:1:1(体积比)的比例混合后,在28℃、pH 7.2下反应24h,沸水浴中温育10min使酶失活,12,000×g,4℃离心10min,取上清,作为胞外酶制剂的酶解产物,用DNS法检测生成的还原糖。
结果如图5所示,菌株SG-5制备的胞外酶制剂不仅能降解微生物多糖如黄原胶等,还能够降解来源于海藻的琼脂糖、褐藻胶以及来源于动物的透明质酸,尤其对于来源于高等植物多糖如魔芋葡甘聚糖、槐豆胶降解活性显著。因此,利用该菌株制备的胞外酶制剂富含多种不同类型的多糖降解酶,具有潜在的开发价值。
实施例6、胞外酶制剂降解甘露聚糖所得产物的TLC分析;
将浓度为3mg/mL的魔芋葡甘聚糖或槐豆胶、实施例4制备的胞外酶制剂、PBS缓冲液按1:1:1(体积比)的比例混合后,在30℃、pH 7.2的条件下反应24h,沸水浴中温育10min,12,000×g,4℃离心10min,取上清,作为胞外酶制剂的酶解产物。用沸水浴预先灭活的酶,进行对照组实验。取上述酶解产物4μL进行薄层色谱(TLC)分析,所用薄板为TLC Silicagel 60F254,展开剂为正丁醇∶乙醇∶水=2∶1∶1(体积比),显色剂(二苯胺∶苯胺∶磷酸∶丙酮=1g∶1mL∶5mL∶50mL)染色后;110℃加热10min显色。
结果如图6所示,胞外酶制剂的降解产物中含有与甘露二糖至甘露六糖的Rf值一致的系列寡糖。这表明:菌株SG-5胞外酶制剂降解甘露聚糖后的可产生一系列大小不等的甘露寡糖,主要以二糖-四糖为主。
参考文献:
[1]Madhavan A,Sukumaran R K.Secreted expression of an active humaninterferon-beta(HuIFNβ)in Kluyveromyces lactis[J].Engineering in LifeSciences,2016,16(4):379-385.
[2]陈晓飞,李珊珊,刁文涛,等.高产β-甘露聚糖酶菌株的分离鉴定及酶学性质研究[J].中国酿造,2021,40(9):92-97.
[3]宓延红.两种新型甘露聚糖水解酶的生化特征、分子改造与催化特性的研究[D].山东大学,2020.
[4]李延啸.米黑根毛霉和微孢根霉β-甘露聚糖酶的分子改造、高效表达及应用[D].中国农业大学,2018.
[5]Behera S S,Ray R C.Nutritional and potential health benefits ofkonjac glucomannan,a promising polysaccharide of elephant foot yam,Amorphophallus konjac K.Koch:A review[J].Food reviews international,2017,33(1):22-43.
[6]Ji L,Xue Y,Zhang T,et al.The effects of microwave processing onthe structure and various quality parameters of Alaska pollock surimiprotein-polysaccharide gels[J].Food Hydrocolloids,2017,63:77-84.
[7]Prajapati V D,Jani G K,Moradiya N G,et al.Galactomannan:aversatile biodegradable seed polysaccharide[J].International journal ofbiological macromolecules,2013,60:83-92.
[8]Yan S K,Shi R J,Li L L,et al.Mannan oligosaccharide suppresseslipid accumulation and appetite in Western-diet-induced obese mice viareshaping gut microbiome and enhancing short-chain fatty acids production[J].Molecular Nutrition and Food Research,2019,63(23):e1900521.
[9]Xiao R,Power R F,Mallonee D,et al.Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broilerchickens[J].Poultry science,2012,91(7):1660-1669.
[10]Regmi S,Pradeep G C,Choi Y H,et al.Amulti-tolerant low molecularweight mannanase from Bacillus sp.CSB39 and its compatibility as anindustrial biocatalyst[J].Enzyme and microbial technology,2016,92:76-85.
[11]潘炳菊,张宛怡,申会涛,等.甘露寡糖分离纯化研究进展[J].中国生物工程杂志,2020,40(11):90-95.
[12]者园园,苗华彪,吴倩,等.耐热β-甘露聚糖酶的异源表达及低聚寡糖制备研究[J].饲料研究,2021,44(23):63-68.
[13]李云程,林娟,梁燕辉,等.产甘露聚糖酶海洋微生物的筛选及酶学性质研究[J].中国食品学报,2015,15(12):66-73.
[14]Politz O,Krah M,Thomsen K K,et al.Ahighly thermostable endo-(1,4)-β-mannanase from the marine bacterium Rhodothermus marinus[J].AppliedMicrobiology and Biotechnology,2000,53(6):715-721.
[15]Tamaru Y,Araki T,Amagoi H,et al.Purification and characterizationof an extracellularβ-1,4-mannanase from a marine bacterium,Vibrio sp.strainMA-138[J].Applied and Environmental Microbiology,1996,61(12):4454-4458.
[16]张瑞卿.山东省贝源弧菌流行病学调查及其毒力基因检测[D].山东农业大学,2021.
[17]Park S Y,Lee H Y,Kim S J,et al.Identification of pathogenicvariations in seafood Vibrio parahaemolyticus isolates by comparing genomesequences.[J].Journal of food protection,2021,84(7):1141-1149.
[18]Song X J,Zang J L,Yu W S,et al.Occurrence and identification ofpathogenic Vibrio contaminants in common seafood available in a Chinesetraditional market in Qingdao,Shandong Province.[J].Frontiers inmicrobiology,2020,11:1488。

Claims (10)

1.一株弧菌(Vibrio sp.)SG-5,于2022年06月13日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏地址:北京市朝阳区北辰西路1号院3号,保藏编号:CGMCCNO.25076;
优选的,所述弧菌SG-5的16S rRNA基因的核苷酸序列如SEQ ID NO.1所示。
2.如权利要求1所述的弧菌SG-5的培养方法,其特征在于,包括如下步骤:
(1)将弧菌SG-5划线至初筛固体培养基上,25~30℃倒置培养24~48h,制得活化菌株;
(2)挑取步骤(1)制得的活化菌株,接种至初筛液体培养基中,在温度为25~30℃、转速为180~220转/分钟的条件下,摇床培养12~18h,制得种子液;
(3)将步骤(2)制得的种子液,按1~5%的体积百分比接种于发酵培养基中,在温度为25~30℃、转速为180~220转/分钟的条件下,扩大培养3~5天,制得弧菌SG-5菌液。
3.如权利要求3所述的培养方法,其特征在于,满足以下条件之一项或多项:
i.步骤(1)中的初筛固体培养基,每升组分如下:
酵母提取物5g,胰蛋白胨10g,魔芋葡甘聚糖2g,琼脂15g,余量人工海水,pH 7.2;
ii.步骤(2)中的初筛液体培养基,每升组分如下:
酵母提取物5g,胰蛋白胨10g,魔芋葡甘聚糖2g,余量人工海水,pH 7.2;
iii.步骤(3)中的发酵培养基,每升组分如下:
酵母提取物5g,蛋白胨10g,余量人工海水,pH 7.2;
进一步优选的,所述人工海水组分如下:
KH2PO4 3.0g,K2HPO4·3H2O 7.0g、(NH4)2SO4 2.0g、NaCl 30.0g、FeSO4·7H2O 0.01g,MgSO4·12H2O 0.01g,ddH2O 1000mL。
4.权利要求1所述的弧菌SG-5在制备降解甘露聚糖酶制剂中的应用。
5.如权利要求4所述的应用,其特征在于,步骤如下:
1)取弧菌SG-5菌液,按1~5%的体积百分比接种于发酵培养基中,在温度为25~30℃、转速为180~220转/分钟的条件下,扩大培养3~7天,制得弧菌SG-5发酵液;
2)取步骤1)制得的弧菌SG-5发酵液,固液分离,取液体,加入硫酸铵,使浓度达到饱和度的80%,离心,收集沉淀,用20~50倍体积的TGE缓冲液重悬沉淀,透析去除硫酸铵,制得胞外酶制剂,即降解甘露聚糖酶制剂。
6.如权利要求5所述的应用,其特征在于,满足以下条件之一项或多项:
a.所述步骤1)中的发酵培养基,每升组分如下:
酵母提取物5g,蛋白胨10g,余量人工海水,pH 7.2;
进一步优选的,所述人工海水组分如下:
KH2PO4 3.0g,K2HPO4·3H2O 7.0g、(NH4)2SO4 2.0g、NaCl 30.0g、FeSO4·7H2O 0.01g,MgSO4·12H2O 0.01g,ddH2O 1000mL;
b.所述步骤2)中,固液分离的条件为:12,000×g,4℃离心5~20min;
c.所述步骤2)中,离心为:15,000×g,4℃离心15~30min;
d.所述步骤2)中,TGE缓冲液组分如下:
50mM Tris,50mM NaCl,0.5mM EDTA,5mM DTT(二硫苏糖醇),5.0%(v/v)甘油,ddH2O1000mL,pH 7.9;
e.所述步骤2)中,透析为采用分子截留量10,000Da的透析袋,进行搅拌透析。
7.权利要求1所述的弧菌SG-5或权利要求5所述的降解甘露聚糖酶制剂在降解微生物来源的多糖、海藻来源的多糖、高等植物来源的多糖和/或动物来源的多糖中的应用。
8.如权利要求7所述的应用,其特征在于,所述高等植物多糖为微晶纤维素、纤维素、羧甲基纤维素、果胶、木聚糖、淀粉、魔芋葡甘聚糖、槐豆胶;海藻多糖为琼脂糖、褐藻胶、卡拉胶、λ型-卡拉胶、κ型-卡拉胶、ι型-卡拉胶;动物多糖为透明质酸、硫酸软骨素A、硫酸软骨素C、硫酸软骨素E、几丁质、壳聚糖;微生物多糖为黄原胶。
9.权利要求4或5所述的降解甘露聚糖酶制剂在降解魔芋葡甘聚糖或槐豆胶中的应用。
10.如权利要求9所述的应用,其特征在于,所述降解甘露聚糖酶制剂降解魔芋葡甘聚糖或槐豆胶的产物主要以二糖、三糖和四糖为主。
CN202210884614.5A 2022-07-26 2022-07-26 一株降解甘露聚糖的弧菌属细菌及其培养方法与应用 Pending CN117025433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210884614.5A CN117025433A (zh) 2022-07-26 2022-07-26 一株降解甘露聚糖的弧菌属细菌及其培养方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210884614.5A CN117025433A (zh) 2022-07-26 2022-07-26 一株降解甘露聚糖的弧菌属细菌及其培养方法与应用

Publications (1)

Publication Number Publication Date
CN117025433A true CN117025433A (zh) 2023-11-10

Family

ID=88600981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210884614.5A Pending CN117025433A (zh) 2022-07-26 2022-07-26 一株降解甘露聚糖的弧菌属细菌及其培养方法与应用

Country Status (1)

Country Link
CN (1) CN117025433A (zh)

Similar Documents

Publication Publication Date Title
CN108929859B (zh) 一种类芽胞杆菌菌株hb172198及其应用
CN108018234B (zh) 一株产褐藻胶裂解酶的菌株及其应用
CN101608166B (zh) 一株黄杆菌菌株及其在产生琼胶酶中的应用
CN112210513B (zh) 产褐藻胶裂解酶菌株及其应用
CN104450561B (zh) 一株产甲壳素酶菌株及其利用蟹壳发酵产甲壳素酶的应用
CN109593672B (zh) 一株假交替单胞菌属多糖降解菌及其培养方法与应用
CN111484954B (zh) 一株产褐藻胶裂解酶的产黑假交替单胞菌
Sun et al. Hydrolyzing Laminaria japonica with a combination of microbial alginate lyase and cellulase
CN114540252B (zh) 一种转化畜禽养殖废弃物的微小杆菌p6及应用
CN107801938B (zh) 一种槟榔的生物软化方法
CN111100825B (zh) 一株芽孢杆菌及其在工业中的应用
CN106434475B (zh) 一株链霉菌属多糖降解菌及其培养方法与应用
CN114717145A (zh) 一株黄瓜金黄杆菌及其在降解海藻渣中的应用
KR101206006B1 (ko) 한천분해활성을 갖는 플라메오비르가 속 균주 및 상기 균주를 이용한 한천올리고당의 제조방법
CN114214247A (zh) 一株地衣芽孢杆菌及其应用
CN112592914B (zh) 一种专用绿藻多糖裂解酶及其生产工艺
CN115404169A (zh) 枝孢霉菌及其应用
Ojwach et al. Fructosyltransferase and inulinase production by indigenous coprophilous fungi for the biocatalytic conversion of sucrose and inulin into oligosaccharides
CN106754486A (zh) 一株高产海藻糖合酶的假单胞菌及其发酵产酶方法
CN117025433A (zh) 一株降解甘露聚糖的弧菌属细菌及其培养方法与应用
CN116622538A (zh) 一株需钠弧菌及其应用
CN112458022B (zh) 高产几丁质脱乙酰酶的地衣芽孢杆菌Bl22及其相关产品和应用
CN108192848A (zh) 一种产乳糖酶的嗜冷杆菌菌株及使用该菌株制备低温乳糖酶的方法
KR100887682B1 (ko) 한국산 미역귀 유래의 푸코이단 분해능을 보유한 신규한스핑고모나스속 균주
CN104498412B (zh) 一种能降解琼脂的柯恩氏菌

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination