CN117003546A - 一种发泡陶瓷及其制备方法 - Google Patents

一种发泡陶瓷及其制备方法 Download PDF

Info

Publication number
CN117003546A
CN117003546A CN202310574233.1A CN202310574233A CN117003546A CN 117003546 A CN117003546 A CN 117003546A CN 202310574233 A CN202310574233 A CN 202310574233A CN 117003546 A CN117003546 A CN 117003546A
Authority
CN
China
Prior art keywords
parts
fluorine
foamed ceramic
retired
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310574233.1A
Other languages
English (en)
Inventor
罗尧
魏钢
张海燕
陈立亮
万冬毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN202310574233.1A priority Critical patent/CN117003546A/zh
Publication of CN117003546A publication Critical patent/CN117003546A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种发泡陶瓷及其制备方法。所述发泡陶瓷按重量份数计,包括,退役含氟吸附剂:50~100份;发泡剂:30~50份;除氟剂:1~30份;莫来石:1~20份;陶土:10~20份。其制备方法包括,S1.将退役含氟吸附剂和莫来石研磨混合后过筛,得到粉料;S2.在粉料中加入淀粉、熟石灰后继续研磨后,加入水陈化,得到坯料;S3.将坯料放入模具中压制成型后放入干燥箱中干燥;S4.将干燥好的试样放入烧结设备中烧结,结束自然冷却,即制得发泡陶瓷。本发明能够实现退役含氟吸附剂的资源化利用。

Description

一种发泡陶瓷及其制备方法
技术领域
本发明涉及陶瓷材料技术领域,具体涉及一种发泡陶瓷及其制备方法。
背景技术
随着国家生态工业建设进程加快,固废资源化综合利用技术越发凸显其重要性。含氟吸附剂主要用于在电气设备的绝缘介质中去除SF6有毒、有害分解气体。由于吸附了H2S、SO2、SOF2、SO2F2等有害气体,使得退役的含氟吸附剂中氟含量较高,属于有毒有害物质。在其退役后,若不进行适当处理而随意掩埋,会对环境造成严重危害。目前,对退役含氟吸附剂的处理主要是去除有害元素后作为工业垃圾处理。大量退役含氟吸附剂堆积,侵占大量土地,造成空间的浪费。但是,国内暂无针对退役含氟吸附剂资源化利用相关的研究。
发泡陶瓷是一种具有三维空间网状结构且伴有高气孔率的新型功能材料,具有密度小、强度大、孔隙率高、耐高温、抗腐蚀、寿命长等优点,被广泛应用于环保、化工、生物、医学等领域。戴永刚等学者以煤矸石和粉煤灰为主要原料,SiC为发泡剂,采用粉料堆积法,在1180℃保温30min的条件下,制备出孔隙率为65.3%,体积密度为0.503g/cm3,抗压强度为8.35MPa的发泡陶瓷材料。解传娣等学者利用煤矸石和废玻璃制备发泡陶瓷材料,研究结果表明:当煤矸石利用量为40g,废玻璃利用量为60g,在烧成温度1120℃,加热速度5℃/min的条件下制备出的发泡陶瓷性能最优。
退役含氟吸附剂的主要成分为SiO2和Al2O3,均为制备陶瓷的良好原材料。如何结合退役含氟吸附剂的特点,找到其资源化利用的合理方向,实现退役含氟吸附剂的资源化利用,是现阶段亟需解决的技术问题。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提供一种发泡陶瓷及其制备方法,该发泡陶瓷采用退役含氟吸附剂作为原料,提高了工业固废的利用效率,实现退役含氟吸附剂的资源化利用。
为了解决上述技术问题,本发明采用如下技术方案:
一种发泡陶瓷,按重量份数计,包括,
退役含氟吸附剂:50~100份;
发泡剂:30~50份;
除氟剂:1~30份;
莫来石:1~20份;
陶土:10~20份。
作为优选,该发泡陶瓷按重量份数计,包括,
退役含氟吸附剂:80~100份;
发泡剂:40~50份;
除氟剂:20~30份;
莫来石:10~20份;
陶土:10~20份。
作为优选,所述退役含氟吸附剂中,Al2O3的质量分数为18~22%;SiO2的质量百分比为20~25%。
作为优选,所述发泡剂为淀粉,淀粉在高温燃烧时不与坯体材料发生反应,且仅仅产生CO2与H2O,对陶瓷坯体无害,是良好的发泡剂。
作为优选,所述除氟剂为熟石灰。采用熟石灰作为吸附剂,是因为其能够与退役含氟吸附剂中F发生反应:Ca2++F-→CaF2↓。这样,将退役含氟吸附剂中的F元素固化为CaF2。CaF2是陶瓷工业中良好的助熔剂,在制备过程中能够降低陶瓷的制备温度,起到降低能耗的作用。
本发明还提供一种发泡陶瓷的制备方法,包括以下步骤,
S1.将退役含氟吸附剂和莫来石研磨混合30min-45min后过筛,得到粉料;优选将混合研磨后的原料过200目筛子,粉料的粒径大小约为0.075mm,这样,相较于150目和100目的原料颗粒的粒径更小,制备出的发泡陶瓷的抗压强度更大。
S2.在粉料中加入淀粉、熟石灰后继续研磨20min-30min后,加入10~15重量份的水后陈化15-30min,得到坯料;陈化的目的是使吸附剂中F元素转化为F-,与Ca(OH)2发生反应:Ca2++2F-→CaF2↓。
S3.将坯料放入模具中压制成型后放入干燥箱中,在75℃-130℃下干燥45min~60min;
S4.将干燥好的试样放入烧结设备中,在1000℃~1300℃下烧结45min~60min,结束自然冷却,即制得所述的发泡陶瓷。
具体实施时,在步骤S3中,所述压制成型采用手动压制或自动压制;压制的压力为5~15MPa,压制时间为45~120s。
具体实施时,在步骤S4中,烧结设备采用升温速率可控的烧结设备进行烧结,烧结时的温升速率为3~8℃/min。
作为优选所述烧结设备包括管式炉或电阻炉。
与现有技术相比,本发明具有如下优点:
1.本发明提供的发泡陶瓷具有陶瓷孔隙率良好,抗压强度高的优点。该发泡陶瓷采用退役含氟吸附剂作为主要原料,实现了退役含氟吸附剂的资源化利用,有效解决目前退役含氟吸附剂存放及利用的问题,并且提高了工业固废的利用效率,为工业固废提高其附加值,积极响应了国家绿色环保的发展理念。
该发泡陶瓷抗压强度为49.36~52.34MPa,孔隙率为42.33~44.83%,体积密度为2.10~2.19g/cm3
2.本发明提供的制备方法,工艺流程简单,易于操作。有利于工业化生产。
附图说明
图1为本发明实施例1制备的发泡陶瓷的形貌图。
图2为本发明实施例1制备的发泡陶瓷的XRD图。
图3为本发明实施例3制备的发泡陶瓷的形貌图。
图4为本发明实施例3制备的发泡陶瓷的SEM图。
具体实施方式
本发明实施例公开一种发泡陶瓷,按重量份数计,包括,
退役含氟吸附剂:50~100份;
发泡剂:30~50份;
除氟剂:1~30份;
莫来石:1~20份;
陶土:10~20份。
该发泡陶瓷的制备方法为,
S1.将退役含氟吸附剂和莫来石研磨混合30min-45min后过筛,得到粉料;
S2.在粉料中加入淀粉、熟石灰后继续研磨20min-30min后,加入10~15重量份的水后陈化15-30min,得到坯料;
S3.将坯料放入模具中压制成型后放入干燥箱中,在75℃-130℃下干燥45min~60min;
S4.将干燥好的试样放入烧结设备中,在1000℃~1300℃下烧结45min~60min,结束自然冷却,即制得所述的发泡陶瓷。
本发明实施例中,退役含氟吸附剂、陶土和莫来石的成分如表1所示。
表1
实施例1
一种发泡陶瓷,按重量份数计,包括,退役含氟吸附剂100份,淀粉50份,熟石灰20份,莫来石20份,陶土20份。其制备方法为,
S1.将100份电力含氟吸附剂、20份莫来石研磨30min,用200目筛子取粒径大小约0.075mm的粉料。
S2.在粉料中加入50份淀粉、20份熟石灰和20份陶土,继续研磨30min,在研磨好的粉料中加入15份水陈化,,得到坯料。
S3.将坯料放入模具中5MPa压制60s成型后放入干燥箱中,在120℃干燥45min。
S4.将干燥好的试样放入管式炉中烧制,升温速率4℃/min,烧结温度为1200℃,保温时间45min,冷却至室温,即制得所述的发泡陶瓷,其形貌如图1所示。从图1可知制备的陶瓷样品质地均匀,无开裂、坍塌或鼓包的情况出现。
经测试,本实施例制备的发泡陶瓷的抗压强度52.34MPa,孔隙率为44.83%,体积密度为2.19g/cm3。对其进行XRD测试,如图2所示,含氟物质全部固化为CaF2。因此,本发明能够起到固化氟元素,降低退役含氟吸附剂毒性,实现退役含氟吸附剂资源化利用的作用。拓宽了退役吸附剂的资源化利用的途径,提高其附加值。
实施例2
一种发泡陶瓷,按重量份数计,包括,退役含氟吸附剂80份,淀粉40份,熟石灰20份,莫来石15份,陶土10份。其制备方法为,
S1.将80份电力含氟吸附剂、15份莫来石研磨35min,用200目筛子取粒径大小约0.075mm的粉料。
S2.在粉料中加入40份淀粉、20份熟石灰和10份陶土,继续研磨20min,在研磨好的粉料中加入10份水陈化,得到坯料。
S3.将坯料放入模具中10MPa压制60s成型后放入干燥箱中,在120℃干燥45min。
S4.将干燥好的试样放入管式炉中烧制,升温速率5℃/min,烧结温度为1100℃,保温时间60min,冷却至室温,即制得所述的发泡陶瓷。
经测试,本实施例制备的发泡陶瓷的抗压强度50.12MPa,孔隙率为43.83%,体积密度为2.10g/cm3
实施例3
一种发泡陶瓷,按重量份数计,包括,退役含氟吸附剂50份,淀粉40份,熟石灰30份,莫来石10份,陶土15份。其制备方法为,
S1.将50份电力含氟吸附剂、10份莫来石研磨40min,用200目筛子取粒径大小约0.075mm的粉料
S2.在粉料中加入40份淀粉、30份熟石灰和15份陶土,继续研磨20min,在研磨好的粉料中加入10份水陈化,得到坯料。
S3.将坯料放入模具中8MPa压制70s成型后放入干燥箱中,在110℃干燥40min。
S4.将干燥好的试样放入管式炉中烧制,升温速率5℃/min,烧结温度为1000℃,保温时间60min,冷却至室温,冷却至室温,即制得所述的发泡陶瓷,其形貌如图3所示。从图3可知,制备的陶瓷样品质地均匀,无开裂及坍塌或鼓包的情况出现。
经测试,本实施例制备的发泡陶瓷的抗压强度49.36MPa,孔隙率为42.33%,体积密度为2.11g/cm3
图4为本实施例制备的发泡陶瓷的扫描电子显微镜(SEM)照片。从图中可知,高温生成的液相经冷却后形成玻璃相,覆盖了大量气孔,使得抗压强度上升。
在多孔材料体系中,陶瓷的抗压强度主要受到烧结样品的致密程度、晶体的显微形貌结构等因素影响,陶瓷的孔隙率越小、抗压强度越大。本发明提供的实施例中,由于采用的退役含氟吸附剂中含有SiO2,其与陶土在1100℃高温及以上阶段会产生大量液相,这些液相在冷却后形成大量玻璃相,使得部分气孔被堵塞,导致孔隙率变小,从而提高了发泡陶瓷的抗压强度。同时,莫来石与陶土在孔壁固化形成稳定的屏障,增加了液相膜强度,使得形成的气孔在冷却过程中不容易塌陷,有利于骨架结构的稳定,骨架结构越稳定,抗压强度越好。再者,CaAl2Si2O8钙长石的生成,会减小液相量,增大硅酸盐熔体的熔点和黏度,提高陶瓷的致密度,致密度越高,抗压强度越高。其中,CaAl2Si2O8钙长石的生成过程为,
Ca(OH)2+CO2→CaCO3↓+H2O;
Al2O3+SiO2→(高温)Al2SiO5
CaCO3+Al2SiO5→CaAl2Si2O8+CO2
实施例4
一种发泡陶瓷,按重量份数计,包括,退役含氟吸附剂90份,淀粉45份,熟石灰25份,莫来石20份,陶土15份。其制备方法为,
S1.将90份电力含氟吸附剂、20份莫来石研磨60min,用200目筛子取粒径大小约0.075mm的粉料
S2.在粉料中加入45份淀粉、25份熟石灰和15份陶土,继续研磨30min,在研磨好的粉料中加入15份水陈化,得到坯料。
S3.将坯料放入模具中10MPa压制60s成型后放入干燥箱中,在130℃干燥30min。
S4.将干燥好的试样放入管式炉中烧制,升温速率6℃/min,烧结温度为1300℃,保温时间60min,冷却至室温,即制得所述的发泡陶瓷。
经测试,本实施例制备的发泡陶瓷的抗压强度52.14MPa,孔隙率为44.31%,体积密度为2.17g/cm3
综上,本发明提供的发泡陶瓷具有陶瓷孔隙率良好,抗压强度高的优点。该发泡陶瓷采用退役含氟吸附剂作为主要原料,实现了退役含氟吸附剂的资源化利用,有效解决目前退役含氟吸附剂存放及利用的问题,并且提高了工业固废的利用效率,为工业固废提高其附加值,积极响应了国家绿色环保的发展理念。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (9)

1.一种发泡陶瓷,其特征在于,按重量份数计,包括,
退役含氟吸附剂:50~100份;
发泡剂:30~50份;
除氟剂:1~30份;
莫来石:1~20份;
陶土:10~20份。
2.根据权利要求1所述的发泡陶瓷,其特征在于,按重量份数计,包括,
退役含氟吸附剂:80~100份;
发泡剂:40~50份;
除氟剂:20~30份;
莫来石:10~20份;
陶土:10~20份。
3.根据权利要求1或2所述的发泡陶瓷,其特征在于,所述退役含氟吸附剂中,Al2O3的质量百分比为18~22%;SiO2的质量百分比为20~25%。
4.根据权利要求1或2所述的发泡陶瓷,其特征在于,所述发泡剂为淀粉。
5.根据权利要求1或2所述的发泡陶瓷,其特征在于,所述除氟剂为熟石灰。
6.一种发泡陶瓷的制备方法,其特征在于,包括以下步骤,
S1.将退役含氟吸附剂和莫来石研磨混合30min-45min后过筛,得到粉料;
S2.在粉料中加入淀粉、熟石灰后继续研磨20min-30min后,加入10~15重量份的水后陈化15-30min,得到坯料;
S3.将坯料放入模具中压制成型后放入干燥箱中,在75℃-130℃下干燥45min~60min;
S4.将干燥好的试样放入烧结设备中,在1000℃~1300℃下烧结45min~60min,结束自然冷却,即制得如权利要求1所述的发泡陶瓷。
7.根据权利要求6所述的发泡陶瓷的制备方法,其特征在于,步骤S3中,所述压制成型采用手动压制或自动压制;压制的压力为5~15MPa,压制时间为45~120s。
8.根据权利要求6所述的发泡陶瓷的制备方法,其特征在于,步骤S4中,烧结设备采用升温速率可控的烧结设备进行烧结,烧结时的温升速率为3~8℃/min。
9.根据权利要求8所述的发泡陶瓷的制备方法,其特征在于,所述烧结设备包括管式炉或电阻炉。
CN202310574233.1A 2023-05-22 2023-05-22 一种发泡陶瓷及其制备方法 Pending CN117003546A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310574233.1A CN117003546A (zh) 2023-05-22 2023-05-22 一种发泡陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310574233.1A CN117003546A (zh) 2023-05-22 2023-05-22 一种发泡陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN117003546A true CN117003546A (zh) 2023-11-07

Family

ID=88571716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310574233.1A Pending CN117003546A (zh) 2023-05-22 2023-05-22 一种发泡陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN117003546A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063089A (zh) * 1991-01-12 1992-07-29 太原工业大学 含氟水处理工艺
CN1724362A (zh) * 2005-06-03 2006-01-25 天津大学 水体的降氟离子筛的制备方法
CN102807360A (zh) * 2012-08-28 2012-12-05 黄靖宇 采用氟化钙污泥制新型陶粒
US20160083296A1 (en) * 2013-04-11 2016-03-24 Monalisa Group Co., Ltd. Low-temperature fast-fired lightweight ceramic heat insulation plate and preparation method thereof
CN107583606A (zh) * 2017-09-27 2018-01-16 天津大学 高效除氟的火山岩基多孔陶粒及制备方法和应用
CN111116164A (zh) * 2020-02-19 2020-05-08 北京朗新明环保科技有限公司 一种粉煤灰基多孔除氟材料及其制备方法和应用
CN112777703A (zh) * 2020-12-31 2021-05-11 苏州博睿特环保科技有限公司 一种新型的除氟材料及其制备工艺
US20220153604A1 (en) * 2019-03-19 2022-05-19 Shiraishi Central Laboratories Co., Ltd. Calcium carbonate sintered body and method for producing same, and bone grafting material
CN114890519A (zh) * 2022-05-24 2022-08-12 重庆科技学院 一种含氟吸附剂的处理方法
CN115121590A (zh) * 2022-06-27 2022-09-30 重庆新离子环境科技有限公司 一种协同污泥和铝灰的生活垃圾焚烧飞灰高温熔融处理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063089A (zh) * 1991-01-12 1992-07-29 太原工业大学 含氟水处理工艺
CN1724362A (zh) * 2005-06-03 2006-01-25 天津大学 水体的降氟离子筛的制备方法
CN102807360A (zh) * 2012-08-28 2012-12-05 黄靖宇 采用氟化钙污泥制新型陶粒
US20160083296A1 (en) * 2013-04-11 2016-03-24 Monalisa Group Co., Ltd. Low-temperature fast-fired lightweight ceramic heat insulation plate and preparation method thereof
CN107583606A (zh) * 2017-09-27 2018-01-16 天津大学 高效除氟的火山岩基多孔陶粒及制备方法和应用
US20220153604A1 (en) * 2019-03-19 2022-05-19 Shiraishi Central Laboratories Co., Ltd. Calcium carbonate sintered body and method for producing same, and bone grafting material
CN111116164A (zh) * 2020-02-19 2020-05-08 北京朗新明环保科技有限公司 一种粉煤灰基多孔除氟材料及其制备方法和应用
CN112777703A (zh) * 2020-12-31 2021-05-11 苏州博睿特环保科技有限公司 一种新型的除氟材料及其制备工艺
CN114890519A (zh) * 2022-05-24 2022-08-12 重庆科技学院 一种含氟吸附剂的处理方法
CN115121590A (zh) * 2022-06-27 2022-09-30 重庆新离子环境科技有限公司 一种协同污泥和铝灰的生活垃圾焚烧飞灰高温熔融处理方法

Similar Documents

Publication Publication Date Title
US6444162B1 (en) Open-cell glass crystalline porous material
Zhu et al. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al 2 O 3
CN112430124B (zh) 一种利用铝灰制备轻质多孔烧结材料的方法
CN113563102A (zh) 一种含铝灰渣水基浆料原位固化成型制备多孔陶瓷的方法
CN111018422B (zh) 一种酸法锂渣制备的多孔自载沸石材料及其制备方法和应用
AU2020102254A4 (en) Raw material for preparing porous ceramic material and preparation method of porous ceramic material
CN110104979B (zh) 一种采用带式烧结制备煤矸石轻骨料的方法
CN112552072A (zh) 一种建筑废弃物再生发泡陶瓷及其制备方法
CN113173802A (zh) 一种利用二次铝灰制备多孔莫来石砖的方法
CN114620938B (zh) 一种多级孔玻璃陶瓷及其制备方法
CN114085068A (zh) 一种铝灰轻质砖及其制备方法
CN117003546A (zh) 一种发泡陶瓷及其制备方法
CN111943716A (zh) 一种新型赤泥-粉煤灰基梯度结构多孔陶瓷的制备方法
CN113144818A (zh) 一种粉煤灰基二氧化碳吸收体系及用于吸收二氧化碳的粉煤灰循环利用方法
CN115340405B (zh) 一种铝灰微孔砖及其制备方法
CN110483092B (zh) 一种微孔陶瓷体的制备方法、微孔陶瓷体及应用
CN110256063B (zh) 一种莫来石/白榴石多孔陶瓷复合材料的制备方法
CN114031416B (zh) 一种利用机制砂泥饼烧制陶粒的方法
CN115259711A (zh) 一种利用LDHs强化固废基人造骨料碳矿化的方法
CN112759376B (zh) 一种开口多孔类球状外形的莫来石纤维支撑体材料及其制备方法和应用
CN108503380B (zh) 一种轻质隔热材料的制备方法
CN114105671A (zh) 一种煤矸石-石英基陶瓷支撑体及其制备方法
CN111196718B (zh) 一种采用微乳液模板法制备莫来石多孔陶瓷的方法
CN115677377A (zh) 一种尾矿基多孔陶瓷材料的制备方法
CN114315407A (zh) 一种利用铝矾土尾矿制备小粒径多孔陶砂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination