CN116995259A - 一种燃料电池复合双极板及其制备方法 - Google Patents

一种燃料电池复合双极板及其制备方法 Download PDF

Info

Publication number
CN116995259A
CN116995259A CN202310047128.2A CN202310047128A CN116995259A CN 116995259 A CN116995259 A CN 116995259A CN 202310047128 A CN202310047128 A CN 202310047128A CN 116995259 A CN116995259 A CN 116995259A
Authority
CN
China
Prior art keywords
bipolar plate
graphite
fuel cell
melamine foam
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310047128.2A
Other languages
English (en)
Inventor
于伟
茆晓雨
胡秀凤
赵成功
雷秋星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dietai Material Technology Co ltd
Shanghai Polytechnic University
Original Assignee
Shanghai Dietai Material Technology Co ltd
Shanghai Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dietai Material Technology Co ltd, Shanghai Polytechnic University filed Critical Shanghai Dietai Material Technology Co ltd
Priority to CN202310047128.2A priority Critical patent/CN116995259A/zh
Publication of CN116995259A publication Critical patent/CN116995259A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种燃料电池复合双极板及其制备方法,包括将三聚氰胺泡沫活化、配制氯化镍0.3‑6%、柠檬酸钠0.2‑4%、氨水0.5‑10%、去离子水80‑95%的镀镍液、将经活化处理的三聚氰胺泡沫镀镍、在模具中均匀铺设石墨材料,经1‑10MPa第一次预压得到底层石墨板,将镀镍三聚氰胺泡沫铺设在底层石墨板,上表面上均匀铺设石墨材料,冷压成型放入真空浸渍罐中,抽真空并保持0.5‑2h,然后吸入热固性树脂并加压0.01‑0.5MPa浸渍1‑20h,在烘箱中100‑180℃固化1‑5h制得复合双极板电导率达300S/cm以上、弯曲强度达56MPa、气密性达2.16×10 9cm3cm2s‑1。本发明协调了导电性、抗弯强度、气密性三者的关系,在维持平面内高电导率和面积比电阻的同时提高了抗弯曲强度和气密性,提高了其综合性能,同时缩短了干燥时间提高了生产效率。

Description

一种燃料电池复合双极板及其制备方法
技术领域
本发明属于燃料电池技术领域,具体涉及一种燃料电池复合双极板及其制备方法。
背景技术
相比传统能源,PEMFC具有效率高、使用寿命长、零排放、低温快速启动等优点。双极板作为 PEMFC 的核心部件,隔离了单个燃料电池又将其串联起来,通过阳极板和阴极板流道分别输送氢气和氧气燃料,完成散热和排水,同时支撑膜电极、运输燃料、分隔反应气体、收集并传导电流的作用,其质量约占电池堆的80%、成本约占38%,因此,双极板的综合性能对燃料电池的实际应用非常关键。
双极板分为石墨板和金属双极板。金属双极板采用多道工序的冲压成型,具有优良的导电性、抗弯强度,因其在超薄状态下的成形性能优于其它材料,在高功率电堆中得到了广泛应用,但金属双极板耐腐蚀性能较差,在酸性环境中极易腐蚀产生钝化和电离,为了提高金属双极板的耐腐蚀性,在金属板表面涂覆各种耐腐蚀涂层,这导致其较高的面积比电阻。石墨双极板具良好的化学稳定性和电导率,采用石墨粉和树脂粉末在模具中混合热压成型、泡沫柔性石墨冲压成型、雕刻机在成型后的石墨板上雕刻流道的方法,但其质脆、机械强度低,需做到5~6mm厚才能保证机械强度,这增加了双极板体积和重量,由于粉体量大,板材孔隙大,气体渗透性差,而高纯石墨板通过高纯石墨车铣加工后再经浸渍处理,加工工时长、成本高。
因此,如何协调使复合双极板同时兼具高导电率、高抗弯强度和高气密性三者间的关系是目前的技术难点。
发明内容
本发明的目的在于解决现有技术的不足,提供一种采用三聚氰胺泡沫化学镀负载金属和真空浸渍相结合的复合双极板的制备方法,以协调双极板的导电性能、抗弯强度和气密性,同时提高复合双极板的生产效率。
为了实现上述发明目的,本发明采用如下技术方案:
一种燃料电池复合双极板,采用三聚氰胺泡沫化学镀负载金属后上、下表层预压石墨再经真空浸渍制得厚度为1-5mm复合双极板。
进一步地,所述三聚氰胺泡沫经活化处理后化学镀负载金属镍。
一种燃料电池复合双极板的制备方法,包括下述步骤:
(1)将三聚氰胺泡沫用去离子水冲洗2-3次,在活化溶液中超声处理20-40min后用蒸馏水冲洗,在烘箱中40-50℃烘干,取出备用;
(2)将氯化镍0.3-6%、柠檬酸钠 0.2-4%、氨水0.5-10 %、去离子水80-95 %混合搅拌1-5min,得到镀镍液;
(3)将步骤(1)经活化处理的三聚氰胺泡沫浸入步骤(2)所述的镀镍液中,加入次磷酸钠水溶液,50-60℃水浴加热、搅拌1-10min得到镀镍三聚氰胺泡沫;所述镀镍液与次磷酸钠的质量比为10:0.5-1.5。
(4)在模具中均匀铺设石墨材料,经1-10MPa第一次预压得到底层石墨板,再将步骤(3)所述的镀镍三聚氰胺泡沫铺设在底层石墨板上,在其上表面上均匀铺设石墨材料,经1-20MPa冷压成型得带流道的双极板;
(5)将步骤(4)所述带流道的双极板放入真空浸渍罐中,用1-2个大气压抽真空并保持0.5-2h,然后吸入热固性树脂并加压0.01-0.5MPa浸渍1-20h,冲洗干净后在烘箱中100-180℃固化1-5h,制得燃料电池复合双极板。
进一步地,步骤(1)所述的活化溶液为1-2wt%氯化锌和0.5-1wt%的浓盐酸溶液。
进一步地,步骤(4)所述底层石墨板厚度为0.5-1.5mm。
进一步地,步骤(4)所述的石墨材料为膨胀石墨、炭黑、碳纳米纤维、鳞片石墨粉、微晶石墨粉、石墨片中一种或几种组合。
进一步地,步骤(5)所述的热固性树脂为环氧树脂、聚酯树脂、氰酸酯、酚醛树脂中的一种或几种组合。
本发明的有益效果:
(1)本发明采用的三聚氰胺泡沫表面光洁度高、空隙大,经活化处理后化学镀,在空隙内均匀负载金属颗粒,提高了导电性,同时降低了复合双极板的重量;
(2)本发明的复合双极板为三明治式的结构,复合双极电导率达300S/cm以上、弯曲强度达56MP、气密性达2.16×10-9cm3cm2s-1 ,铺设预压的上、下石墨材料层压出气体流通通道,消除了内部气泡;镀镍的三聚氰胺泡沫中间夹层形成多条导电通道,提高了导电性能;经真空浸渍,在三聚氰胺泡沫空隙增加机薄膜,提高了其抗弯强度和气密性;
(3)本发明协调了导电性、抗弯强度、气密性三者的关系,在维持平面内高电导率和面积比电阻的同时提高了抗弯曲强度和气密性,提高了其综合性能,真空浸渍的有机薄膜缩短了干燥时间提高了生产效率。
附图说明
图1为本发明化学镀三聚氰胺泡沫的电镜结构图;
图2为本发明实施例1复合双极板的电镜截面图。
实施方式
列举实施例和比较例对本发明进行更具体的说明,但本发明在不超出其主旨的范围内并不受这些实施例的限制。
实施例
一种燃料电池复合双极板的制备方法,包括下述步骤:
(1)将三聚氰胺泡沫裁剪成尺寸为10×20×2mm,用去离子水冲洗2次,加入到100mL活化溶液(2wt%氯化锌和0.5wt%浓盐酸的水溶液)中,超声处理20min,然后用蒸馏水冲洗后,烘箱50℃烘干,得到活化的三聚氰胺泡沫;
(2)将2g氯化镍,1g柠檬酸钠和5mL氨水混合,溶于90mL去离子水中,机械搅拌5min,得到镀镍液;
(3)将活化的三聚氰胺泡沫浸入镀镍液中,60℃水浴加热搅2min,加入10mL还原剂(40wt%次磷酸钠水溶液)机械搅拌5min,如图1所示,金属镍均匀紧密地包覆在三聚氰胺泡沫空隙;
(4)将2g石墨粉末均匀铺设在模具中,用2MPa的压力完成石墨的第一次预压得到底层石墨板,然后将镀镍的三聚氰胺泡沫铺设到底层石墨板上,再次添加2g石墨粉末,用4MPa的压力冷压成型,得到带流道的双极板;
(5)将步骤(4)的复合板放入真空浸渍罐中,用0.1MPa的压强抽取真空并保持1h,然后吸入环氧树脂,加压0.1MPa浸渍20h,取出后使用水枪将浸渍板的表面冲洗干净,并放到烘箱中120℃固化4h,得到厚度为1mm的燃料电池复合石墨双极板,如图2所示,看到了影响复合双极电导率达320S/cm、弯曲强度达56MPa、气密性达的2.16×10-9cm3cm2s-1的膨胀石墨、镀镍三聚氰胺泡沫与环氧树脂的复合结构。
实施例
(1)将三聚氰胺泡沫裁剪成尺寸为20×40×2mm,用去离子水冲洗3次,然后将其加入到100mL活化溶液(1wt%氯化锌和1wt%浓盐酸的水溶液)中,超声处理40min,然后用蒸馏水冲洗后,烘箱50℃烘干,得到活化的三聚氰胺泡沫;
(2)将2.5g氯化镍,1g柠檬酸钠和5mL氨水混合,溶于90mL去离子水中,机械搅拌4min得到镀镍液;
(3)将活化的三聚氰胺泡沫浸入镀镍液中,50℃水浴加热搅拌10min,加入10mL还原剂(40wt%次磷酸钠水溶液)机械搅拌5min;
(4)将2g石墨添加到模具,用10MPa压力进行石墨的第一次预压成底层石墨板,然后将镀镍的三聚氰胺泡沫铺设到底层石墨板上,再次添加2g石墨粉末,用20MPa的压力冷压成型得到带流道的双极板;
(5)将步骤(4)的复合板放入真空浸渍罐中,用2MPa的压强抽取真空并保持2h,然后吸入环氧树脂,加压0.5MPa浸渍20h取出后用水枪将浸渍板的表面冲洗干净,在烘箱中180℃固化5h,得到厚度为1mm的燃料电池复合石墨双极板。
制备燃料电池复合石墨双极板:
在模具中铺设2克膨胀石墨粉末用2MPa压强的压力进行石墨的第一次预压,获得底层石墨板,然后均匀铺设2克膨胀石墨粉末,用4MPa压强的压力冷压成型得到带流道的双极板;
将石墨双极板放入真空浸渍罐中,用0.1MPa抽取真空并保持1h,然后吸入环氧树脂,加压0.1MPa浸渍20h,使用水枪将浸渍板的表面冲洗干净,并放到烘箱中120℃固化4h,制备得到燃料电池复合石墨双极板。
(1)在模具中铺设2克膨胀石墨,在10MPa的压力进行膨胀石墨的第一次预压得到底层石墨板,然后将三聚氰胺泡沫铺设到底层石墨板上,在上表层铺设2克膨胀石墨,用20MPa压强的压力冷压成型,得到带流道的双极板。
(2)将双极板放入真空浸渍罐中,用0.1MPa抽取真空并保持1h,吸入环氧树脂,加压0.5MPa浸渍20h,然后使用水枪将浸渍板的表面冲洗干净,并放到烘箱中180℃固化5h得到燃料电池复合石墨双极板。
上述实施例1-2、对比例1-2中所得到的双极板性能测试见表1:
双极板抗弯强度测试:(1)采用WD-10D电子万能试验机,三点弯曲法对双极板抗弯强度进行测试,本次测试采用测试样品的长度是厚度的20倍提高准确性,抗弯强度测试的样品统一长度为80mm,宽为10mm, 厚为1mm;
(2)面积比电阻用自制的测试系统进行测试样品以在其两侧的燃料电池扩散层用炭纸作为支撑物,放置在两块镀金铜电极之间。在铜电极两侧施加一定的压力,记录1.5MPa压力下的电流和电压值,得到此压力下复合双极板的面积比电阻值。支撑层采用燃料电池扩散层用的炭纸;电极采用镀金金属电极,一般为镀金电极;
(3)电导率采用晶格ST2258C四探针体电阻率测试仪进行测试;
(4)气体渗透性用氦气质谱仪测试。
表1 实施例1-2、对比例1-2的复合双极板各性能测试
弯曲强度(MPa) 电导率(S/cm) 面积比电阻(mΩ·cm2 气体渗透性(cm3·cm-2s-1
对比例1 31 320 7 3.62×10-4
对比例2 40 280 14 1.42×10-6
实施例1 42 300 8.25 1.40×10-6
实施例2 56 320 9 2.16×10-9
由表1可见,对比例1未镀镍的三聚氰胺泡沫导电泡沫,经真空浸渍后弯曲强度和气体渗透性处于明显劣势;对比例2,采用了未镀镍的三聚氰胺泡沫,抗弯强度和气体渗透性有了提高,验证了泡沫夹层对浸渍效果的大幅度提升,但电导率下降;实施例1,制备了尺寸为10×20mm的镀镍三聚氰胺泡沫的复合石墨双极板,与未采用镀镍的三聚氰胺泡沫和添加镀镍的三聚氰胺泡沫相比,电导率和面积比电阻在内的电学性能都有了明显提升;实施例2中,采用尺寸为20×40mm的镀镍三聚氰胺泡沫的复合石墨双极板,复合双极板的电导率、弯曲强度和气体渗透性综合指标明显提高。本发明的制备方法简单,制备的复合双极板综合性能优异。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但是应当认识到上述的描述不应被认为是对本发明的限制。

Claims (6)

1.一种燃料电池复合双极板,其特征在于,采用三聚氰胺泡沫化学镀负载金属后上、下表层预压石墨再经真空浸渍制得。
2.根据权利要求1所述一种燃料电池复合双极板,其特征在于,所述三聚氰胺泡沫经活化处理后化学镀负载金属镍。
3.根据权利要求1或2所述一种燃料电池复合双极板的制备方法,其特征在于,包括下述步骤:
(1)将三聚氰胺泡沫用去离子水冲洗2-3次,在活化溶液中超声处理20-40min后用蒸馏水冲洗,在烘箱中40-50℃烘干,取出备用;
(2)将氯化镍0.3-6%、柠檬酸钠 0.2-4%、氨水0.5-10 %、去离子水80-95 %混合搅拌1-5min,得到镀镍液;
(3)将步骤(1)经活化处理的三聚氰胺泡沫浸入步骤(2)所述的镀镍液中,加入次磷酸钠水溶液,50-60℃水浴加热搅拌1-10min得到镀镍三聚氰胺泡沫;所述镀镍液与次磷酸钠的质量比为10:0.5-1.5;
(4)在模具中均匀铺设石墨材料,经1-10MPa第一次预压得到底层石墨板,再将步骤(3)所述的镀镍三聚氰胺泡沫铺设在底层石墨板上,在其上表面上均匀铺设石墨材料,经1-20MPa冷压成型得带流道的双极板;
(5)将步骤(4)所述带流道的双极板放入真空浸渍罐中,用0.01-0.5MPa抽真空0.5-2h,吸入热固性树脂并加压0.01-0.5MPa浸渍1-20h,冲洗干净后在烘箱中100-180℃固化1-5h,制得燃料电池复合双极板。
4.根据权利要求3所述的一种燃料电池复合双极板的制备方法,其特征在于,步骤(1)所述的活化溶液为1-2wt%氯化锌和0.5-1wt%的浓盐酸溶液。
5.根据权利要求3所述的一种燃料电池复合双极板的制备方法,其特征在于,步骤(4)所述的石墨材料为膨胀石墨、炭黑、碳纳米纤维、鳞片石墨粉、微晶石墨粉、石墨片中一种或几种组合。
6.根据权利要求3所述的一种燃料电池复合双极板的制备方法,其特征在于,步骤(5)所述的热固性树脂为环氧树脂、聚酯树脂、氰酸酯、酚醛树脂中的一种或几种组合。
CN202310047128.2A 2023-01-31 2023-01-31 一种燃料电池复合双极板及其制备方法 Pending CN116995259A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310047128.2A CN116995259A (zh) 2023-01-31 2023-01-31 一种燃料电池复合双极板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310047128.2A CN116995259A (zh) 2023-01-31 2023-01-31 一种燃料电池复合双极板及其制备方法

Publications (1)

Publication Number Publication Date
CN116995259A true CN116995259A (zh) 2023-11-03

Family

ID=88525411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310047128.2A Pending CN116995259A (zh) 2023-01-31 2023-01-31 一种燃料电池复合双极板及其制备方法

Country Status (1)

Country Link
CN (1) CN116995259A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497792A (zh) * 2023-12-27 2024-02-02 寰泰储能科技股份有限公司 双极板及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497792A (zh) * 2023-12-27 2024-02-02 寰泰储能科技股份有限公司 双极板及其制备方法
CN117497792B (zh) * 2023-12-27 2024-03-08 寰泰储能科技股份有限公司 双极板及其制备方法

Similar Documents

Publication Publication Date Title
CN113517449B (zh) 一种膜电极组件及制备方法
CN113270605B (zh) 一种冷压复合双极板的制备方法
CN103746122A (zh) 一种新型燃料电池复合材料双极板的制备方法
CN110336053A (zh) 一种含流道燃料电池双极板的制备方法
CN1330026C (zh) 一种质子交换膜燃料电池双极板制备工艺
CN113224339B (zh) 柔性超薄石墨双极板及其制备方法
CN107369838B (zh) 一种用于直接甲醇燃料电池的免热压复合电极及其制备方法
CN101552342B (zh) 质子交换膜燃料电池双极板与膜电极组件复合制造方法
CN116995259A (zh) 一种燃料电池复合双极板及其制备方法
CN102569834A (zh) 一种高强度柔性石墨双极板及其制备方法
CN110993982A (zh) 一种高导电性的柔性石墨双极板及其制备方法
CN1177385C (zh) 高分子电解质型燃料电池
CN105576255A (zh) 一种高功率密度pemfc电堆专用极板制造方法
WO2007089860A2 (en) Method of making membrane electrode assemblies
CN110416581A (zh) 一种阳极液流均相催化燃料电池及其制备方法
CN113571726A (zh) 一种高导电性复合双极板及其制备方法和应用
CN111883793A (zh) 一种分层式超薄碳基双极板及其制备方法
CN111082069A (zh) 一种植入式梯度复合电极、生产方法及其用途
US20030194594A1 (en) Fuel cell separator. production method, and solid polymer fuel cells
CN116377469A (zh) 一种pem水电解阳极氧板制备方法
CN114976086A (zh) 一种燃料电池用复合石墨双极板及制备方法
CN212676306U (zh) 分层式超薄碳基双极板
CN105428670A (zh) 一种高功率密度pemfc电堆专用极板及其制备方法
CN114976094B (zh) 一种碳纤维复合双极板及其制备方法和应用
CN110698081B (zh) 一种改性纤维、复合双极板及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination