CN116960390A - 一种固体氧化物燃料电池连接体与单电池的封接方法 - Google Patents

一种固体氧化物燃料电池连接体与单电池的封接方法 Download PDF

Info

Publication number
CN116960390A
CN116960390A CN202310721895.7A CN202310721895A CN116960390A CN 116960390 A CN116960390 A CN 116960390A CN 202310721895 A CN202310721895 A CN 202310721895A CN 116960390 A CN116960390 A CN 116960390A
Authority
CN
China
Prior art keywords
sealing
connector
stainless steel
electroplating
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310721895.7A
Other languages
English (en)
Inventor
夏长荣
陈正国
张濒泽
赵泳涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202310721895.7A priority Critical patent/CN116960390A/zh
Publication of CN116960390A publication Critical patent/CN116960390A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Fuel Cell (AREA)

Abstract

一种固体氧化物燃料电池连接体与单电池的封接方法,属于燃料电池领域、电化学领域、化学工程领域。硼硅酸盐玻璃具有软化温度低、化学性质稳定、热膨胀系数适配、润湿性好,适合用作SOFC的高温密封材料。铁素体不锈钢合金(FSS)作为连接体具有导电性和导热性好、优异的可制造性和低成本等优点,但挥发性铬易与硼硅酸盐玻璃反应生成铬酸盐导致电池密封效果下降,使用保护涂层可以显著改善连接体封接性能。本发明使用硼硅酸盐玻璃粉作为封接材料,以镍钴合金作为不锈钢保护镀层,实现了连接体与YSZ电解质的高温密封,在自制的不锈钢连接体模具上测得了较低的漏气率,并且界面稳定无明显元素扩散。

Description

一种固体氧化物燃料电池连接体与单电池的封接方法
技术领域
本发明涉及到电镀、高温密封材料的技术领域,尤其涉及到一种固体氧化物燃料电池连接体的合金涂层及其与单电池的密封方法。
背景技术
固体氧化物燃料电池(SOFC)以其将燃气转化为动力的高效率和对环境的低影响成为最有前景的发电系统之一。但是开发SOFC所面临的主要问题是在高温下燃料气和氧化气如何进行有效的隔绝与封接以及封接材料与连接体的相互作用。由于电池的工作温度高(700~850℃),选择合适的封接材料成为制约平板式SOFC发展的关键。
由于B2O3可以调节玻璃的特征温度、热膨胀系数、析晶温度等,且B2O3的存在可以改善封接时封接玻璃的润湿性,增加玻璃封接强度和密封性能,因此,现有的玻璃封接材料大都有B的加入,硼硅酸盐成为最具潜力的封接玻璃品种。
由于SOFC的工作温度降低到中等范围(600℃-800℃),铁素体不锈钢合金(FSS)连接体因其高导电性和导热性、优异的可制造性和低成本而成为替代传统LaCrO3基陶瓷连接体的可行候选材料。但FSS在SOFC的应用中仍存在着一些问题,例如随着时间的推移,挥发性铬与硼硅酸盐封接材料反应生成铬酸盐,这会导致电池密封效果下降甚至使电池失效。使用保护涂层可以显著改善连接体封接性能并抑制电池退化,目前,镍钴尖晶石涂层具有高导电性和良好的阻止阳离子向外扩散和阴离子向内扩散的效果,在SOFC连接体应用中表现出较优异的性能。
由于目前应用较多的中温SOFC单电池还是以YSZ电解质支撑结构为主,封接材料直接与连接体与YSZ电解质相接触,因此本发明直接以商用YSZ电解质片代替单电池片进行封接。
发明内容
本发明的目的是提供一种用于固体氧化物燃料电池连接体与单电池的封接方法。
本发明提供了一种中低温SOFC封接玻璃,原料组成为SiO2、MgO、CaO、Al2O3、Na2CO3、B2O3,其质量比为40~50:10~15:7~12:6~11:15~20:9~14。
本发明使用以下材料实现不锈钢的电镀:铁素体不锈钢,纯镍阳极板,六水合物硫酸镍,七水合硫酸钴,六水合氯化镍,去离子水,柠檬酸钠,硼酸,糖精钠,十二烷基硫酸钠。
本发明是通过以下技术方案实现的:
一、制备封接玻璃粉
将玻璃原料球磨混合均匀,在铂坩埚中经1300℃熔制2小时,对熔制好的玻璃液进行急冷获得玻璃颗粒,将玻璃颗粒用行星球磨机以400转每分钟球磨破碎24小时,得到玻璃粉末。
二、制备封接材料
将玻璃粉、乙醇、丁酮、三乙醇胺、邻苯二甲酸二乙酯、聚乙烯醇缩丁醛按质量比100:120:80:5:15:15混合均匀,流成1mm厚的流延带,自然风干,然后裁剪成所需形状的胚体,制成玻璃封接材料。
三、连接体保护涂层的制备
将六水合物硫酸镍、七水合硫酸钴、六水合氯化镍、柠檬酸钠、糖精钠、十二烷基硫酸钠、硼酸、去离子水,按质量比160:30:40:30:1.5:0.1:10:1000混合均匀得到电镀液待用;以不锈钢连接体模具作为阴极,纯镍板作为阳极,电镀电流密度为1.43A/dm2,电镀时间为5min,镀件在800℃热处理2h得到镍钴合金涂层。
四、封接测试。
在不锈钢连接体模具上依次叠放封接材料与YSZ电解质,加上0.2MPa外压,在高温炉中经600℃保温2h,800℃保温30min的热处理后完成封接,在700℃恒温测试2h以上;泄露率测试气体为氮气,对封接界面进行微观形貌观察与元素分析。
本方法具有以下创新性:
(1)本发明自主制备了一种硼硅酸盐玻璃,用于中高温SOFC的封接。
(2)本发明自主探究了玻璃粉末与流延浆料的比例,得到了分散均匀、厚度均一的封接材料。
(3)本发明自主探究了电镀液的组成比例与电镀后的热处理制度,在不锈钢连接体上制备了致密均一的合金保护涂层。
(4)本发明使用封接材料在不锈钢连接体模具上封接了YSZ电解质,并得到了可接受的气体泄露率,界面稳定无明显元素扩散。
附图说明
图1为实例一到四的封接玻璃的DSC曲线;
图2为实例四封接玻璃的热膨胀曲线;
图3为连接体与实例四封接玻璃界面的SEM图像和元素分析;
图4为YSZ与实例四封接玻璃界面的SEM图像和元素分析;
图5为实例四实际封接的气体泄漏曲线。
对于实例一到三后续实施步骤相同,结果类似,因此不再赘述。
具体实施方式
1)玻璃粉制备
实例一:
按质量比49:12:9:8:17:5称取原料SiO2、MgO、CaO、Al2O3、Na2CO3、B2O3总共20g放入球磨罐中加乙醇球磨24h混合均匀,之后烘干磨料,放入铂坩埚中在1300℃熔融2h,水淬得到玻璃颗粒;将玻璃颗粒放入球磨罐中加入乙醇球磨破碎24h,烘干得到玻璃粉。
实例二:
按质量比47:12:9:8:17:7称取原料SiO2、MgO、CaO、Al2O3、Na2CO3、B2O3总共20g放入球磨罐中加乙醇球磨24h混合均匀,之后烘干磨料,放入铂坩埚中在1300℃熔融2h,水淬得到玻璃颗粒;将玻璃颗粒放入球磨罐中加入乙醇球磨破碎24h,烘干得到玻璃粉。
实例三:
按质量比45:12:9:8:17:9称取原料SiO2、MgO、CaO、Al2O3、Na2CO3、B2O3总共20g放入球磨罐中加乙醇球磨24h混合均匀,之后烘干磨料,放入铂坩埚中在1300℃熔融2h,水淬得到玻璃颗粒;将玻璃颗粒放入球磨罐中加入乙醇球磨破碎24h,烘干得到玻璃粉。
实例四:
按质量比43:12:9:8:17:11称取原料SiO2、MgO、CaO、Al2O3、Na2CO3、B2O3总共20g放入球磨罐中加乙醇球磨24h混合均匀,之后烘干磨料,放入铂坩埚中在1300℃熔融2h,水淬得到玻璃颗粒;将玻璃颗粒放入球磨罐中加入乙醇球磨破碎24h,烘干得到玻璃粉。
2)封接材料制备
取玻璃粉5g,按玻璃粉、乙醇、丁酮、三乙醇胺、邻苯二甲酸二乙酯、聚乙烯醇缩丁醛质量比100:120:80:5:15:15称取原料,在球磨罐中球磨24h混合均匀,将浆料在聚乙烯薄膜上流成1mm厚的流延带,自然风干,然后裁剪成所需形状的胚体,制成玻璃封接材料。
3)连接体保护涂层的制备
首先配制电镀液,在烧杯中加入500ml去离子水,将六水合物硫酸镍、七水合硫酸钴、六水合氯化镍、柠檬酸钠、糖精钠、十二烷基硫酸钠、硼酸、去离子水,按质量比160:30:40:30:1.5:0.1:10:1000称取原料,加到烧杯中搅拌溶解,得到500ml电镀液并密闭保存。
本发明以430不锈钢模具作为连接体封接实验的材料,为了使被镀合金更好的与镀件表面结合,先使用600目的砂纸对不锈钢模具进行打磨,之后使用丙酮超声清洗以去除杂质油污,最后,使用乙醇对镀件进行清洗并烘干。
将电镀液倒入哈林槽中,在恒流电源的正极上用导线接纯镍阳极板,阳极对称放置,在电源负极上用导线连接待镀件不锈钢模具,控制电镀液稳定流动。将两极浸没至电镀液中,使用电流密度为1.43A/dm2,电镀时间为5分钟,随后将镀件、阳极板依次取出。
电镀完成后,使用去离子水对镀件表面进行冲洗,目的是将表面残余的电镀液洗净。随后,在正式用作连接体涂层前,还需要对表面镍钴合金预先进行热处理,保证其致密度符合抗氧化涂层需求。将镀件干燥后将放置在马弗炉中进行氧化处理,热处理温度为800℃,保温时间为2h。之后得到约2.5μm后的镍钴尖晶石涂层。
4)封接测试
在不锈钢模具上依次叠放封接材料与YSZ电解质,加上0.2MPa的外压,在马弗炉中升温至600℃保温2h以除去封接材料中的有机物,再升温至800℃保温30min,让封接材料充分润湿YSZ与连接体表面,降温至700℃保持恒温测试2h以上。对于实例一到三后续实施步骤相同,结果类似,因此不再赘述。

Claims (1)

1.一种固体氧化物燃料电池连接体与单电池的封接方法,其特征在于,包括如下步骤:
S1、制备封接玻璃粉:将原料SiO2、MgO、CaO、Al2O3、Na2CO3、B2O3按质量比40~50:10~15:7~12:6~11:15~20:9~14混合均匀,总份数为100;在1300℃熔融2h,淬火得到玻璃颗粒,将玻璃颗粒球磨破碎成玻璃粉;
S2、制备封接材料:将玻璃粉、乙醇、丁酮、三乙醇胺、邻苯二甲酸二乙酯、聚乙烯醇缩丁醛按质量比100:120:80:5:15:15混合均匀,流成1mm厚的流延带,自然风干;
S3、配制电镀液:将六水合物硫酸镍、七水合硫酸钴、六水合氯化镍、柠檬酸钠、糖精钠、十二烷基硫酸钠、硼酸、去离子水,按质量比160:30:40:30:1.5:0.1:10:1000混合均匀,密闭保存;
S4、电镀制备不锈钢连接体模具保护涂层:以不锈钢连接体模具作为阴极,纯镍板作为阳极,电镀电流密度为1.43A/dm2,电镀时间为5min,镀件在800℃热处理2h得到镍钴合金涂层;
S5、在不锈钢连接体模具上依次叠放封接材料与YSZ电解质,加上0.2MPa外压,在高温炉中经600℃保温2h,800℃保温30min的热处理完成封接。
CN202310721895.7A 2023-06-15 2023-06-15 一种固体氧化物燃料电池连接体与单电池的封接方法 Pending CN116960390A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310721895.7A CN116960390A (zh) 2023-06-15 2023-06-15 一种固体氧化物燃料电池连接体与单电池的封接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310721895.7A CN116960390A (zh) 2023-06-15 2023-06-15 一种固体氧化物燃料电池连接体与单电池的封接方法

Publications (1)

Publication Number Publication Date
CN116960390A true CN116960390A (zh) 2023-10-27

Family

ID=88452015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310721895.7A Pending CN116960390A (zh) 2023-06-15 2023-06-15 一种固体氧化物燃料电池连接体与单电池的封接方法

Country Status (1)

Country Link
CN (1) CN116960390A (zh)

Similar Documents

Publication Publication Date Title
CN102503136B (zh) 中低温固体氧化物燃料电池用封接材料及其制备方法
CN108172757A (zh) 一种高压热电池负极材料、高压热电池及其制备方法
CN104810545B (zh) 磷酸盐锂快离子导体材料及其制备方法
CN102117907A (zh) 一类用于燃料电池中的固体氧化物燃料电池连接体材料
CN105332029B (zh) 一种导电耐蚀钴锰尖晶石涂层的制备方法
CN100438183C (zh) 平板式固体氧化物燃料电池的中高温封接方法
CN108987776B (zh) 一种中温固体氧化物燃料电池电解质及其制备方法
CN107134584B (zh) 一种中温固体氧化物燃料电池电解质及其制备方法
CN1315223C (zh) 高可靠长寿命固体氧化物燃料电池及制备方法
CN116960390A (zh) 一种固体氧化物燃料电池连接体与单电池的封接方法
CN112467197A (zh) 一种硼氢化锂/癸硼烷固态电解质及其制备方法
CN106207238A (zh) 一种熔融盐类复合型中温固体氧化物燃料电池电解质
CN107651852B (zh) 一种三氧化二钴-氧化镍外掺的封接玻璃及其制备和使用方法
CN113036171A (zh) 一种燃料电池双极板及其成型工艺
CN108134097B (zh) 一种用于低温固体燃料电池的钙钛矿型阴极的制备方法
CN102191512B (zh) 微通道结构的固体氧化物电解池阳极的制备方法
CN114079043A (zh) 一种高镍正极材料和锂离子电池及其制备方法
CN107759091B (zh) 一种氧化铁-三氧化二钴外掺的封接玻璃及其制备和使用方法
CN112952131B (zh) 一种具有纳米晶AlN改性层的Fe-Mn基合金双极板及其制备方法
CN112952130B (zh) 一种表面具有铬氮化物功能涂层的金属双极板及其制备方法
CN110117739A (zh) 一种铝合金配方及其制作方法
CN115959832B (zh) 一种含BaO的固体氧化物燃料电池微晶封接玻璃及其制备和使用方法
CN112614996B (zh) 一种ncf型热电池用三元正极材料及其制备方法
CN115893508B (zh) 一种钙钛矿复合氧化物及其制备方法和应用
CN109638325B (zh) 一种锶掺杂的中温固体氧化物燃料电池电解质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination