CN116936361A - 一种金刚石衬底氮极性氮化镓异质结材料及其制备方法 - Google Patents

一种金刚石衬底氮极性氮化镓异质结材料及其制备方法 Download PDF

Info

Publication number
CN116936361A
CN116936361A CN202311043123.9A CN202311043123A CN116936361A CN 116936361 A CN116936361 A CN 116936361A CN 202311043123 A CN202311043123 A CN 202311043123A CN 116936361 A CN116936361 A CN 116936361A
Authority
CN
China
Prior art keywords
gallium nitride
nitride
layer
nitrogen
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311043123.9A
Other languages
English (en)
Inventor
张东国
李忠辉
杨乾坤
李传皓
彭大青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN202311043123.9A priority Critical patent/CN116936361A/zh
Publication of CN116936361A publication Critical patent/CN116936361A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种金刚石衬底氮极性氮化镓异质结材料及其制备方法。本发明在镓极性氮化镓上采用沉积或者键合的方式与金刚石结合,再将镓极性氮化镓衬底载片及氮化物缓冲层去除,形成适于氮极性氮化镓外延生长用的具有一定偏角的金刚石衬底氮化镓模板,采用图形化氮化硼二维缓冲材料释放氮化物二次高温生长时薄膜应力,从而实现高质量的低应力金刚石衬底氮极性氮化镓异质结材料制备。本发明制备方法提高金刚石衬底氮极性氮化镓异质结材料的表面薄膜质量及抑制薄膜开裂的目的,有利于改善氮极性氮化镓异质结材料的散热能力,提高器件的工作寿命,适用于大功率微波功率器件。

Description

一种金刚石衬底氮极性氮化镓异质结材料及其制备方法
技术领域
本发明涉及一种金刚石衬底氮极性氮化镓异质结材料及其制备方法,属于半导体外延材料技术领域。
背景技术
氮极性氮化镓异质结材料与传统的氮化镓异质结材料相比,在高频大功率微波晶体管应用中以低接触电阻及高二维电子气(2DEG)限阈性等优势日益受到重视,且在频率及功率特性方面已逐渐可以和镓极性HEMT器件性能相比拟。由于氮极性HEMT具有较低的欧姆接触电阻和较强的沟道电子量子限制,氮极性GaN可以产生更大的输出功率以及高达94GHz频率的突破性效率,具有现代射频电子和未来功率转换系统的GaN基电子器件的持续发展的能力。
高频大功率的氮极性GaN微波射频器件热流密度不断增加,对随之带来的热管理能力提出了极大的挑战。金刚石是目前导热率最高的材料,作为衬底或热沉,可以降低器件的自加热效应,并有望解决随总功率增加、频率提高出现的功率密度迅速下降的问题,促进未来射频功率器件和相关系统的小型化、集成化以及高功率应用,对商用基站、卫星通信和雷达等高功率射频应用极具吸引力。
然而,采用金刚石衬底直接外延氮极性氮化镓异质结材料难度极大,需要解决其极性难控导致表面形貌差、大失配下应力大导致薄膜开裂的问题。目前,一般采用镓极性氮化镓材料外延后倒置形成氮极性的方法来控制极性,但在解决其应力问题方面尚无报道。近年来石墨烯等二维材料研究兴起,基于二维材料弱耦合的新型外延技术(范德华外延、远程外延等)应运而生,为研制低热阻的金刚石衬底氮极性氮化镓材料研制注入新的活力。
近年来,金刚石衬底与氮化镓材料结合技术研究成为热点,但金刚石基氮化镓异质结材料专利主要集中在镓极性氮化镓方面,在金刚石衬底氮极性氮化镓材料制备方面专利仍然较少。其中CN108538723A公开了一种基于金刚石的氮面极性氮化镓器件制造方法,在衬底上依次生长氮化镓层、介质层后于金刚石层键合形成晶体结构,倒置该结构后去除衬底,在氮化镓层上依次生长势垒层和沟道层。该方法无需采用载体晶圆,不仅降低了制造工艺的难度,而且提高了器件的性能。然而,该方法仅给出了金刚石衬底氮极性氮化镓极性控制方法,但在后续氮极性氮化物二次高温生长时,仍然面临金刚石与氮化镓的热失配导致外延薄膜应力过大甚至开裂的问题。
CN113314598A公开了一种金刚石基氮极性面氮化镓高电子迁移率晶体管及其制作方法,在自支撑氮化镓外延片上生长完整镓极性氮化镓异质结结构后,正面键合或沉积金刚石,倒置后通过去除自支撑氮化镓外延片、成核层和形成缓冲层后金刚石基氮极性面氮化镓异质结材料。该方法避免了氮极性氮化物二次高温生长中的问题,但对氮极性GaN表面刻蚀损伤修复提出了较高的要求,且电性能难以维持,对器件性能造成影响。
CN113078207A公开了一种多晶金刚石衬底上的氮化铝/氮化镓异质结及其制备方法,采用氮化硼与磁控溅射氮化铝作为缓冲层,为氮化镓生长提供成核位点,提高外延层的晶体质量。该方法在采用磁控溅射氮化铝,解决二维缓冲层表面不易成核的问题,然而磁控溅射方法采用低温工艺,淀积的氮化铝具有强金属极性,无法应用于氮极性氮化镓材料制备。
发明内容
针对金刚石衬底氮极性氮化镓异质结材料极性难控、表面形貌差以及大失配下应力大导致薄膜开裂的问题,本发明提出了一种金刚石衬底氮极性氮化镓异质结材料及其制备方法。在镓极性氮化镓上采用沉积或者键合的方式与金刚石结合,再将镓极性氮化镓衬底载片及氮化物缓冲层去除,形成适于氮极性氮化镓外延生长用的具有一定偏角的金刚石衬底氮化镓模板,采用图形化氮化硼二维缓冲材料释放氮化物二次高温生长时薄膜应力,从而实现高质量的低应力金刚石衬底氮极性氮化镓异质结材料制备。
为解决现有技术问题,本发明采取的技术方案为:
一种金刚石衬底氮极性氮化镓异质结材料的制备方法,包括以下步骤:
步骤一:选取硅衬底,置于高温化学气相沉积设备反应室内的基座上;
步骤二:设置反应室的压力为100~300mbar,通入氢气,反应室升温至1000~1100℃,在氢气气氛下烘烤衬底5~15分钟,去除表面氧化物和沾污;
步骤三:维持氢气流量不变,设置反应室的压力为50~150 mbar,反应室温度设置在1000~1150℃,通入氨气等反应源,依次生长厚度50nm~300nm的氮化铝成核层、100nm~500nm的氮化铝/氮化镓超晶格缓冲层、300nm~1000nm的氮化镓外延层、3nm~30nm的氮化硅介质层;氮化硅介质层为原位高温生长,结晶更加致密,且耐高温刻蚀,对下层氮化镓具有更好的保护作用
步骤四:采用化学气相淀积设备在氮化硅表面沉积多晶金刚石或薄膜贴合设备在氮化硅表面键合金刚石作为金刚石衬底;其中,采用键合方式与多晶金刚石或热阻更低的单晶金刚石结合,也可以采用化学气相沉积方式在高质量氮化硅表面生长多晶金刚石,化学气相沉积的方法可以进一步减小界面热阻;
步骤五:将其倒置后,采用化学腐蚀或机械抛光的方法去除硅衬底,采用干法刻蚀及机械抛光的方法去除氮化铝成核层和氮化铝/氮化镓超晶格缓冲层;
步骤六:处理氮化镓外延层,使其表面晶向与正晶向形成0~4°偏角,形成金刚石衬底氮化镓模板;
步骤七:采用金化学气相沉积设备在金刚石衬底氮化镓模板上生长2~5nm的氮化硼二维缓冲层,并对其表面进行图形化处理;图形化处理后,即可以利用裸露区域氮化镓引导后续氮化物生长极性,同时氮化硼二维材料特性可以有效释放氮极性氮化镓薄膜的生长应力;
步骤八:将其置于金属有机化学气相沉积设备中,在氢气与氨气保护下升温至1000~1100℃,通入反应源,依次生长厚度300nm~1000nm的氮极性氮化镓缓冲层、3nm~30nm的氮极性氮化铝势垒层和5nm~30nm的氮化镓沟道层。
步骤九:外延生长完成之后,关闭生长源,在NH3气氛中降温,最后取出金刚石衬底氮极性氮化镓异质结材料。
作为改进的是,步骤三中所述氮化铝/氮化镓超晶格缓冲层还包括金属镓,形成氮化铝镓/氮化镓超晶格缓冲层。
作为改进的是,步骤六中采用精抛或可控干法刻蚀的方法处理氮化镓外延层,使其表面晶向与正晶向形成0~4°偏角,以此形成的模板更利于抑制氮极性氮化镓生长中六角缺陷的形成。
作为改进的是,步骤八中所述氮极性氮化铝势垒层还包括金属铟、金属钪或金属镓。
进一步改进的是,步骤八中所述氮极性氮化铝势垒层与氮化镓沟道层之间设有氮化铝隔离层,所述氮化铝隔离层的厚度不超过1nm。
基于上述方法制备得到的金刚石衬底氮极性氮化镓异质结材料,由下而上依次包括金刚石衬底、氮化硅介质层、氮化镓外延层、氮化镓缓冲层、氮化硼二维缓冲层、氮极性氮化镓缓冲层氮化镓、氮极性氮化铝势垒层和氮化镓沟道层。
有益效果
与现有技术相比,本发明一种金刚石衬底氮极性氮化镓异质结材料及其制备方法,具有如下优势:
1、本发明采用镓极性氮化镓倒置实现氮极性材料生长的方式,控制金刚石衬底氮化镓生长极性。在镓极性氮化镓上采用沉积或者键合的方式与金刚石结合,再将镓极性氮化镓衬底载片及氮化物缓冲层去除,形成适于氮极性氮化镓外延生长用的金刚石衬底氮化镓模板;另外,采用硅作为镓极性氮化镓生长衬底,成本较低,且衬底去除工艺成熟,具有一定的实用价值。
2、本发明在金属有机气相沉积设备中原位高温生长氮化硅介质层,避免了下层氮化镓在升降温时表面沾污及损伤,且高温生长的氮化硅结晶更加致密、更耐高温刻蚀,可以满足化学气相沉积金刚石要求。
3、本发明采用偏角氮化镓与图形化氮化硼作为缓冲层,更利于提高金刚石衬底氮极性氮化镓异质结材料的结晶质量及表面形貌,从而提高异质结电学性能。采用精抛或可控干法刻蚀的方法处理氮化镓外延层,使其表面晶向与正晶向形成0~4°偏角,以此形成的模板更利于抑制氮极性氮化镓生长中六角缺陷的形成,从而改善表面质量。二维缓冲材料氮化硼图形化处理后,即可以利用裸露区域氮化镓引导后续氮化物生长极性,同时氮化硼二维材料特性可以有效释放氮极性氮化镓薄膜的生长应力。改善表面质量并降低应力,为后续实现异质结材料高质量界面打好基础,防止异质结界面处引入陷阱和界面态,从而降低合金无序散射,提高迁移率等电学特性。
附图说明
图1为镓极性氮化镓外延材料与金刚石结合材料的结构示意图,其中:1-1、硅衬底;1-2、氮化铝成核层;1-3、氮化铝/氮化镓超晶格缓冲层;1-4、氮化镓外延层;1-5、氮化硅介质层;1-6、金刚石衬底。
图2为金刚石衬底氮极性氮化镓异质结材料的结构示意图,其中:2-1、氮化硼二维缓冲层;3-1、氮极性氮化镓缓冲层;3-2、氮极性氮化铝势垒层;3-3、氮化铝隔离层;3-4、氮化镓沟道层。
具体实施方式
下面的实施例可使本专业技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
一种金刚石衬底氮极性氮化镓/氮化钪铝镓异质结材料的制备方法,包括以下步骤:
步骤一:选取2英寸厚度的硅衬底,置于高温化学气相沉积设备反应室内的基座上;
步骤二:设置反应室的压力为200mbar,通入氢气,反应室升温至1080℃,在氢气气氛下烘烤硅衬底8分钟,去除表面氧化物和沾污;
步骤三:维持氢气流量不变,设置反应室的压力为150mbar,反应室温度设置在1100℃,通入氨气与三甲基铝和三甲基镓,依次生长厚度150nm的氮化铝成核层、250nm的氮化铝氮化镓超晶格缓冲层,温度降至1030℃,关闭三甲基铝生长500nm的氮化镓外延层,关闭三甲基镓,通入硅烷生长5nm的氮化硅介质层;
步骤四:采用薄膜贴合设备在氮化硅表面键合2英寸单晶金刚石作为衬底;
步骤五:将其倒置后,采用机械抛光的方法去除硅衬底,采用干法刻蚀的方法去除氮 化铝成核层和氮化铝氮化镓超晶格缓冲层;
步骤六:采用可控干法刻蚀的方法处理氮化镓外延层,使其表面晶向与正晶向形成0°偏角,形成金刚石衬底氮化镓模板;
步骤七:采用金化学气相沉积设备在金刚石衬底氮化镓模板上生长4nm的氮化硼缓冲层,并采用光刻的方法选区腐蚀氮化硼薄膜实现图形化形貌;
步骤八:将其置于金属有机化学气相沉积设备中,在氢气与氨气保护下升温至1030℃,通入三甲基镓、三甲基铝和三甲基钪,依次生长厚度1000nm的氮极性氮化镓缓冲层、15nm的氮极性氮化钪铝镓势垒层、0.7nm的氮化铝隔离层和10nm的氮化镓沟道层。
步骤九:外延生长完成之后,关闭生长源,在NH3气氛中降温,最后取出金刚石衬底氮极性氮化镓异质结材料。
该单晶金刚石衬底氮极性氮化镓/氮化铝镓异质结材料,采用键合方法与热导率更高的单晶金刚石衬底结合,利用图形化氮化硼二维缓冲材料有效释放氮化物二次高温生长降温积聚的薄膜应力,从而实现高质量的低应力金刚石衬底氮极性氮化镓异质结材料制备。
实施例2
一种金刚石衬底氮极性氮化镓/氮化铝镓异质结材料的制备方法,包括以下步骤:
步骤一:选取3英寸厚度的硅衬底,置于高温化学气相沉积设备反应室内的基座上;
步骤二:设置反应室的压力为150mbar,通入氢气,反应室升温至1050℃,在氢气气氛下烘烤硅衬底10分钟,去除表面氧化物和沾污;
步骤三:维持氢气流量不变,设置反应室的压力为100mbar,温度设置在1100℃,通入氨气、三甲基铝和三甲基镓,依次生长厚度100nm的氮化铝成核层、300nm的氮化铝氮化镓超晶格缓冲层,温度降至1050℃,关闭三甲基铝生长700nm的氮化镓外延层,关闭三甲基镓,通入硅烷生长10nm的氮化硅介质层;
步骤四:采用化学气相淀积设备在氮化硅表面沉积300μm多晶金刚石作为衬底;
步骤五:将其倒置后,采用化学腐蚀的方法去除硅衬底,采用机械抛光的方法去除氮化铝成核层和氮化铝/氮化镓超晶格缓冲层;
步骤六:采用精抛的方法处理氮化镓外延层,使其表面晶向与正晶向形成2°偏角,形成金刚石衬底氮化镓模板;
步骤七:采用金化学气相沉积设备在金刚石衬底氮化镓模板上生长3nm的氮化硼缓冲层,并采用等离子轰击的方法破坏氮化硼薄膜实现图形化形貌;
步骤八:将其置于金属有机化学气相沉积设备中,在氢气与氨气保护下升温至1030℃,通入三甲基镓和三甲基铝,依次生长厚度500nm的氮极性氮化镓缓冲层、3nm~30nm的氮极性氮化铝镓势垒层和10nm的氮化镓沟道层。
步骤九:外延生长完成之后,关闭生长源,在NH3气氛中降温,最后取出金刚石衬底氮极性氮化镓异质结材料。
采用该方法生长的多晶金刚石衬底氮极性氮化镓/氮化铝镓异质结材料,通过原位高温生长氮化硅介质层,利用化学气相沉积在金刚石表面淀积多晶金刚石,可以解决金刚石高温生长时氮化镓表面刻蚀导致界面变差的问题,从而达到降低金刚石衬底氮极性氮化镓/氮化铝镓异质结材料界面热阻的目的。
实施例3
一种金刚石衬底氮极性氮化镓/氮化铟铝镓异质结材料的制备方法,包括以下步骤:
步骤一:选取4英寸硅衬底,置于高温化学气相沉积设备反应室内的基座上;
步骤二:设置反应室的压力为100mbar,通入氢气,反应室升温至1100℃,在氢气气氛下烘烤衬底5分钟,去除表面氧化物和沾污;
步骤三:维持氢气流量不变,设置反应室的压力为100mbar,反应室温度设置在1100℃,通入氨气与三甲基铝和三甲基镓,依次生长厚度100nm的氮化铝成核层、400nm的氮化铝氮化镓超晶格缓冲层,温度降至1050℃,关闭三甲基铝生长700nm的氮化镓外延层,关闭三甲基镓,通入硅烷生长20nm的氮化硅介质层;
步骤四:采用薄膜贴合设备在氮化硅表面键合4英寸多晶金刚石作为衬底;
步骤五:将其倒置后,采用化学腐蚀的方法去除硅衬底,采用干法刻蚀的方法去除氮化铝成核层和氮化铝氮化镓超晶格缓冲层;
步骤六:采用可控干法刻蚀的方法处理氮化镓外延层,使其表面晶向与正晶向形成3°偏角,形成金刚石衬底氮化镓模板;
步骤七:采用金化学气相沉积设备在金刚石衬底氮化镓模板上生长2nm的氮化硼缓冲层,并采用光刻的方法选区腐蚀氮化硼薄膜实现图形化形貌;
步骤八:将其置于金属有机化学气相沉积设备中,在氢气与氨气保护下升温至1020℃,通入三甲基镓、三甲基铝和三甲基铟,依次生长厚度600nm的氮极性氮化镓缓冲层、20nm的氮极性氮化铟铝镓势垒层、0.5nm的氮化铝隔离层和5nm的氮化镓沟道层。
步骤九:外延生长完成之后,关闭生长源,在NH3气氛中降温,最后取出金刚石衬底氮极性氮化镓异质结材料。
本发明方法生长的多晶金刚石衬底氮极性氮化镓/氮化铟铝镓异质结材料,采用键合多晶金刚石衬底的方法,可以实现更大尺寸的金刚石衬底氮极性氮化镓异质结材料。采用偏角氮化镓与图形化氮化硼作为缓冲层,更利于提高金刚石衬底氮极性氮化镓异质结材料的结晶质量及表面形貌,从而提高异质结电学性能。

Claims (6)

1.一种金刚石衬底氮极性氮化镓异质结材料的制备方法,其特征在于,包括以下步骤:
步骤一:选取硅衬底,置于高温化学气相沉积设备反应室内的基座上;
步骤二:设置反应室的压力为100~300mbar,通入氢气,反应室升温至1000~1100℃,在氢气气氛下烘烤衬底5~15分钟,去除表面氧化物和沾污;
步骤三:维持氢气流量不变,设置反应室的压力为50~150 mbar,反应室温度设置在1000~1150℃,通入氨气等反应源,依次生长厚度50nm~300nm的氮化铝成核层、100nm~500nm的氮化铝/氮化镓超晶格缓冲层、300nm~1000nm的氮化镓外延层、3nm~30nm的氮化硅介质层;氮化硅介质层为原位高温生长,结晶更加致密,且耐高温刻蚀,对下层氮化镓具有更好的保护作用
步骤四:采用化学气相淀积设备在氮化硅表面沉积多晶金刚石或薄膜贴合设备在氮化硅表面键合金刚石作为金刚石衬底;其中,采用键合方式与多晶金刚石或热阻更低的单晶金刚石结合,也可以采用化学气相沉积方式在高质量氮化硅表面生长多晶金刚石,化学气相沉积的方法可以进一步减小界面热阻;
步骤五:将其倒置后,采用化学腐蚀或机械抛光的方法去除硅衬底,采用干法刻蚀及机械抛光的方法去除氮化铝成核层和氮化铝/氮化镓超晶格缓冲层;
步骤六:处理氮化镓外延层,使其表面晶向与正晶向形成0~4°偏角,形成金刚石衬底氮化镓模板;
步骤七:采用金化学气相沉积设备在金刚石衬底氮化镓模板上生长2~5nm的氮化硼二维缓冲层,并对其表面进行图形化处理;图形化处理后,即可以利用裸露区域氮化镓引导后续氮化物生长极性,同时氮化硼二维材料特性可以有效释放氮极性氮化镓薄膜的生长应力;
步骤八:将其置于金属有机化学气相沉积设备中,在氢气与氨气保护下升温至1000~1100℃,通入反应源,依次生长厚度300nm~1000nm的氮极性氮化镓缓冲层、3nm~30nm的氮极性氮化铝势垒层和5nm~30nm的氮化镓沟道层;
步骤九:外延生长完成之后,关闭生长源,在NH3气氛中降温,最后取出金刚石衬底氮极性氮化镓异质结材料。
2.根据权利要求1所述的一种金刚石衬底氮极性氮化镓异质结材料的制备方法,其特征在于,步骤三中所述氮化铝/氮化镓超晶格缓冲层还包括金属镓,形成氮化铝镓/氮化镓超晶格缓冲层。
3.根据权利要求1所述的一种金刚石衬底氮极性氮化镓异质结材料的制备方法,其特征在于,步骤六中采用精抛或可控干法刻蚀的方法处理氮化镓外延层,使其表面晶向与正晶向形成0~4°偏角,以此形成的模板更利于抑制氮极性氮化镓生长中六角缺陷的形成。
4.根据权利要求1所述的一种金刚石衬底氮极性氮化镓异质结材料的制备方法,其特征在于,步骤八中所述氮极性氮化铝势垒层还包括金属铟、金属钪或金属镓。
5.根据权利要求4所述的一种金刚石衬底氮极性氮化镓异质结材料的制备方法,其特征在于,步骤八中所述氮极性氮化铝势垒层与氮化镓沟道层之间设有氮化铝隔离层,所述氮化铝隔离层的厚度不超过1nm。
6.基于权利要求1所述制备方法制备得到的金刚石衬底氮极性氮化镓异质结材料,由下而上依次包括金刚石衬底、氮化硅介质层、氮化镓外延层、氮化镓缓冲层、氮化硼二维缓冲层、氮极性氮化镓缓冲层氮化镓、氮极性氮化铝势垒层和氮化镓沟道层。
CN202311043123.9A 2023-08-18 2023-08-18 一种金刚石衬底氮极性氮化镓异质结材料及其制备方法 Pending CN116936361A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311043123.9A CN116936361A (zh) 2023-08-18 2023-08-18 一种金刚石衬底氮极性氮化镓异质结材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311043123.9A CN116936361A (zh) 2023-08-18 2023-08-18 一种金刚石衬底氮极性氮化镓异质结材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116936361A true CN116936361A (zh) 2023-10-24

Family

ID=88389790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311043123.9A Pending CN116936361A (zh) 2023-08-18 2023-08-18 一种金刚石衬底氮极性氮化镓异质结材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116936361A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117646275A (zh) * 2024-01-30 2024-03-05 北京大学 一种大尺寸高热导率iii族氮化物外延材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117646275A (zh) * 2024-01-30 2024-03-05 北京大学 一种大尺寸高热导率iii族氮化物外延材料的制备方法

Similar Documents

Publication Publication Date Title
CN110211865B (zh) 一种降低氮化镓高电子迁移率场效应管界面热阻的外延生长方法
US11031240B2 (en) Method for growing gallium nitride based on graphene and magnetron sputtered aluminum nitride
CN105655238A (zh) 基于石墨烯与磁控溅射氮化铝的硅基氮化镓生长方法
WO2020015764A1 (zh) 一种基于Si衬底的GaN基射频器件外延结构及其制造方法
CN108417627B (zh) 一种用于制备GaN基高频微波器件的方法
WO2019144915A1 (zh) 具有多量子阱高阻缓冲层的hemt外延结构及制备方法
CN113314590B (zh) 一种氮化物高电子迁移率晶体管及其制作方法
US10347755B2 (en) Group 13 nitride composite substrate semiconductor device, and method for manufacturing group 13 nitride composite substrate
CN109411328B (zh) 一种通过掺杂铁降低结晶温度的氧化镓薄膜制备方法
CN116936361A (zh) 一种金刚石衬底氮极性氮化镓异质结材料及其制备方法
CN114899099A (zh) 一种金刚石衬底上生长氮化镓高电子迁移率晶体管的外延方法
CN113948389B (zh) 一种基于衬底背面SiSn外延层的硅基AlGaN/GaN HEMT及制备方法
CN115084260A (zh) 基于范德华外延的氮化镓高电子迁移率晶体管器件及其制备方法
CN113555431B (zh) 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法
CN113314597B (zh) 一种氮极性面氮化镓高电子迁移率晶体管及其制作方法
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
CN213905295U (zh) 一种大尺寸SiC衬底低应力GaN薄膜
CN110034174A (zh) 高电子迁移率晶体管外延片及其制备方法
CN110828291A (zh) 基于单晶金刚石衬底的GaN/AlGaN异质结材料及其制备方法
CN109461656A (zh) 半导体器件制造方法
CN117080183B (zh) 一种金刚石-单晶AlN-GaN/AlGaN复合晶圆及其制备方法和应用
CN117577748A (zh) 发光二极管外延片及其制备方法、led
CN112687527A (zh) 一种大尺寸SiC衬底低应力GaN薄膜及其外延生长方法
CN110164766A (zh) 一种基于金刚石衬底的氮化镓器件及其制备方法
CN115763533A (zh) 凹槽填充介质隔离漏电的同质外延GaN HEMT器件及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination