CN116891999A - 一种用于质子交换膜燃料电池金属双极板的多层梯度涂层Nb/NbN/(Nb,Ta)2AlC及其制备方法 - Google Patents

一种用于质子交换膜燃料电池金属双极板的多层梯度涂层Nb/NbN/(Nb,Ta)2AlC及其制备方法 Download PDF

Info

Publication number
CN116891999A
CN116891999A CN202310451572.0A CN202310451572A CN116891999A CN 116891999 A CN116891999 A CN 116891999A CN 202310451572 A CN202310451572 A CN 202310451572A CN 116891999 A CN116891999 A CN 116891999A
Authority
CN
China
Prior art keywords
coating
bipolar plate
layer
nbn
alc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310451572.0A
Other languages
English (en)
Inventor
郑莉莉
李希超
戴作强
何田
韦守李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202310451572.0A priority Critical patent/CN116891999A/zh
Publication of CN116891999A publication Critical patent/CN116891999A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于质子交换膜燃料电池领域,具体涉及一种用于质子交换膜燃料电池金属双极板的Nb/NbN/(Nb,Ta)2AlC多层梯度涂层及其制备方法,所述金属双极板包括金属基板,Nb过渡层,NbN连接层和(Nb,Ta)2AlC外层涂层。首先采用具有高效沉积速率的电弧离子镀技术在金属双极板上沉积Nb涂层,提高基体与外层的结合力,然后在沉积Nb过程中升温充入N2气,沉积NbN连接层,改善Nb涂层的微观结构,减少柱状晶,提高涂层的致密性,最后采用磁控溅射技术沉积(Nb,Ta)2AlC涂层,调制多层梯度涂层的结构,获得具有均匀、致密、附着力高的涂层,能够有效的提高金属基板的抗腐蚀能力与腐蚀后导电性能。整体涂层的制备速率快,工艺易控制,能大幅度提高双极板的性能,进而提高燃料电池的服役寿命。

Description

一种用于质子交换膜燃料电池金属双极板的多层梯度涂层 Nb/NbN/(Nb,Ta)2AlC及其制备方法
技术领域
本发明属于质子交换膜燃料电池领域,具体涉及一种用于质子交换膜燃料电池金属双极板的改性,具体为Nb/NbN/(Nb,Ta)2AlC多层梯度涂层及其制备方法。
背景技术
质子交换膜燃料电池具有结构紧凑、体积小、能量密度高、效率高、启动快、低温运行以及零排放的优势,被认为是现阶段理想的清洁发电能源。双极板作为PEMFC最重要的组成部件之一,将单电池串联、并联或是混合联结形成电池堆,起到支撑的作用,还能够隔绝阴极、阳极的反应气体,排出电池堆反应产生的热量和水,对PEMFC电池堆的性能至关重要。目前双极板主要有石墨双极板、金属双极板和复合双极板三种。金属双极板强度高,易加工,超薄双极板容易获得规模化生产,能提升燃料电池的比功率。但是双极板工作环境中具有多种腐蚀性离子,如SO4 2-、F-等,金属双极板材料容易受到腐蚀,形成钝化层,增加双极板与扩散层之间的接触电阻增大,极大影响燃料电池电堆的输出功率与耐久性。因此通过表面涂层改性,降低金属双极板表面接触电阻、提高其导电性和耐腐蚀性是其商业化应用的关键。目前的双极板涂层主要有碳基涂层、贵金属涂层,导电高分子聚合物涂层、疏水涂层、过渡金属陶瓷化合物等。碳基涂层具有优异的耐腐蚀性能,并且导电性、导热性能优良,同时还具有较低的生产成本,已经得到了广泛的研究。但是碳类涂层沉积效率较低,影响其大规模化应用。贵金属涂层具有优异的耐腐蚀性和导电性,但是成本太高。导电高分子聚合物涂层可以对双极板起到很好的防护作用,具有良好的耐腐蚀性和导电性,其中研究较多的就是聚苯胺(PANI)和聚吡咯(PPy),但是涂层与基体的结合力较弱。疏水涂层的疏水性能可以在很大程度上影响双极板的腐蚀速率,但难以保持长久的稳定性。过渡金属陶瓷化合物有极好的物理、化学和力学性能,在双极板工作环境中有优异的耐腐蚀性和稳定性,并且还能保持高导电性,是PEMFC双极板理想的涂层材料之一,有良好的发展前景。但是,目前的过渡金属陶瓷化合物涂层普遍存在制备成本高,效率低,涂层中存在针孔、大颗粒,或柱状晶,严重影响其长期稳定性,涂层结合力差或者长期稳定性差导致的脱落问题会对电堆产生恶劣的影响,加速电堆的老化进程。
发明内容
针对现有技术缺陷,本发明提供一种用于质子交换膜燃料电池金属双极板的多层梯度涂层及其制备方法,获得具有均匀、致密、附着力高的涂层,减少柱状晶、针孔和大颗粒等缺陷,有效提高金属基板的抗腐蚀能力与腐蚀后导电性能。整体涂层的制备速率快,工艺易控制,能大幅度提高双极板的性能,进而提高燃料电池的服役寿命。
为实现上述目的,本发明所采取的技术方案为:
一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,包括金属基板,Nb过渡层,NbN连接层和(Nb,Ta)2AlC外层涂层。其特征在于,所属涂层的材料为Nb/NbN/(Nb,Ta)2AlC多层梯度涂层,Nb层为过渡层,能减少层间热膨胀失配度同时提高各层的元素相容性,提高涂层的结合力。
进一步地,上述用于质子交换膜燃料电池金属双极板的多层梯度涂层及其制备方法,其特征在于,所属涂层的材料为Nb/NbN/(Nb,Ta)2AlC多层梯度涂层中,NbN层连接层,能有效改善Nb涂层的微观结构,减少柱状晶,提高涂层的致密性。
进一步地,所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,所述外层涂层是铌铝碳在Nb位置上固溶掺杂Ta元素,掺杂元素所占比例为0.05~25at.%,掺杂后铌铝碳的耐腐蚀性能以及导电性能显著提高,其腐蚀电流密度下降85~90%,自腐蚀电位提高0.13~0.18V,接触电阻下降83~90%。作为外层主要起到提高基体的耐腐蚀性能以及导电性能,其性能显著优于铌铝碳。
进一步地,所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,所述Nb过渡层的厚度为50~100nm,NbN连接层的厚度为50~150nm,(Nb,Ta)2AlC层的厚度为200~700nm。
进一步地,所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,所用的外层涂层靶材为(Nb,Ta)2AlC单相靶材,制备中原始粉料包括Nb粉、Ta粉、Al粉和石墨粉,采用热压/固液相反应法在热压炉中烧结制备,烧结温度为1600~1950℃,保温40~90分钟,热压压力20~75MPa,以流动的氩气作为保护气体。
进一步地,所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层多层梯度涂层,其特征在于,利用电弧离子镀装置沉积Nb过渡层和NbN连接层,Nb过渡层采用Nb金属靶材,NbN层的获得是在沉积Nb涂层后,升温充入N2气,沉积获得NbN连接层。利用磁控溅射装置在外表面沉积(Nb,Ta)2AlC涂层,沉积涂层时样品悬挂在设备的样品架上,悬挂样品的立柱可自转,同时自转立柱可随旋转台公转,以此获得均匀的镀膜。
进一步地,所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,金属双极板的前处理方法为:首先选用砂纸对金属双极板进行打磨抛光,即用400#、600#、800#、1000#、2000#金相砂纸逐级磨光,然后将打磨后的金属双极板样品经过丙酮、酒精和去离子水分别超声清洗10~20min后,在空气中吹干备用。
进一步地,所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,金属基板包括但不限于SS304,316L,Ti板或者SS316L等双极板金属。
进一步地,所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,所述电弧离子镀法沉积Nb过渡层和NbN连接层,涂层制备之前,将真空室预抽真空至背底真空为4×10-3Pa后,在基体上施加500V负脉冲偏压对基体进行反溅清洗5~12min,去除基体表面的污染物和氧化层。然后打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.4Pa左右,腔室加热温度为100~150℃。打开Nb靶材直流电源,弧电流为50~90A,偏压-200~-400V,溅射时间为2~15min。然后停止溅射,降温。然后将真空室预抽真空至背底真空为4×10-3Pa后,打开N2气流量阀,N2气流量30ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为150~250℃,保温15分钟后。然后再次打开Nb靶材直流电源,弧电流为60~95A,偏压-200~-500V,溅射时间为5~15min。然后停止溅射,降温。
进一步地,所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,所述磁控溅射方法沉积(Nb,Ta)2AlC外层涂层,将真空室预抽真空至背底真空为4×10-3Pa后,打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为250~450℃,保温15min。然后打开(Nb,Ta)2AlC靶材直流电源,溅射功率为0.12~3.0kW,溅射时间为20min~1h。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。
本发明的有效效益:本发明金属双极板的Nb/NbN/(Nb,Ta)2AlC多层梯度涂层具有均匀、致密、附着力高的优点。采用具有高效沉积速率的电弧离子镀技术在金属双极板上沉积Nb过渡层和NbN连接层,沉积过程中Nb过渡层和NbN连接层可使用同一块靶材通过在腔体内通入不同气体获得,效率高,成本低,且操作方便。同时在内层沉积Nb过渡层,能减少层间热膨胀失配度,提高涂层的结合力。Nb过渡层上沉积NbN连接层,能有效改善Nb涂层的微观结构,减少柱状晶,减少涂层中的针孔结构,提高涂层的致密性。外层涂层是铌铝碳在Nb位置上固溶掺杂Ta元素,掺杂元素所占比例为0.05~15at.%,掺杂后铌铝碳的耐腐蚀性能以及导电性能显著提高,其腐蚀电流密度下降85~90%,自腐蚀电位提高0.13~0.18V,接触电阻下降83~90%。同时该涂层的制备方法易控高效,可以获得致密、平整与成分结构均一的梯度涂层,能大幅度提高双极板的性能,进而提高燃料电池的服役寿命,易于得到工业化的推广。
附图说明
为了更清楚地说明本发明实施例,对实施例中的图进行简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员或者研究人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中制备得到的涂层的扫描电镜表面图;
图2为实施例2中制备得到的涂层的扫描电镜表面图。
具体实施方式
下面结合具体实施例及附图对本发明做进一步详细说明,但不以任何方式限制本发明。
以下实施例用的金属基材为金属双极板。沉积所用的(Nb,Ta)2AlC靶材制备方法采用热压/固液相反应法在热压炉中烧结制备,制备中原始粉料包括Nb粉、Ta粉、Al粉和石墨粉,所用的比例由Ta的掺杂含量确定,(Nb1-xTax)2AlC中,Nb:Nb:Al:C的比例按照2(1-x):2x:1:1的配比配置原料粉末,用湿混法在球磨机上湿混12~48小时,后取出自然风干,后过筛备用。烧结温度为1600~1950℃,保温40~90分钟,热压压力20~75MPa,以流动的氩气作为保护气体。
对比例
对比例在金属双极板SS316L上制备Nb2AlC涂层的样品。
首先准备制备Nb2AlC块体靶材,并准备SS316L金属双极板样品。即用400#、600#、800#、1000#、2000#金相砂纸逐级磨光,然后将打磨后的金属双极板样品经过丙酮、酒精和去离子水分别超声清洗15min后,在空气中吹干备用。
然后采用磁控溅射方法沉积Nb2AlC外层涂层,首先调节腔室温度到300℃,保温15min,然后打开Nb2AlC靶材直流电源,溅射功率为1kW,溅射时间为30min。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。
实验后用扫描电镜观察沉积涂层的表面与截面微观形貌,发现所得涂层平整,与基体结合良好。在燃料电池模拟环境中,即H2SO4浓度为0.5mol/L和2ppm HF溶液中,温度80℃中进行动电位测试,腐蚀电流密度为3.45μA/cm2[自腐蚀电位0.02V(vs.SCE)],在组装力为150N/cm2条件下,接触电阻为18.9mΩ·cm2
实施例1
首先准备制备(Nb0.95Ta0.05)2AlC块体靶材,并准备商用Nb靶材和SS316L不锈钢双极板。即用400#、600#、800#、1000#、2000#金相砂纸逐级磨光,然后将打磨后的金属双极板样品经过丙酮、酒精和去离子水分别超声清洗15min后,在空气中吹干备用。
采用电弧离子镀法沉积Nb和NbN层,涂层制备之前,将真空室预抽真空至背底真空为4×10-3Pa后,在基体上施加500V负脉冲偏压对基体进行反溅清洗8min,去除基体表面的污染物和氧化层。然后打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.4Pa左右,腔室加热温度为120℃。打开Nb靶材直流电源,弧电流为60A,偏压-300V,溅射时间为10min。然后停止溅射,降温。然后将真空室预抽真空至背底真空为4×10-3Pa后,打开N2气流量阀,N2气流量30ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为200℃,保温15分钟后。然后再次打开Nb靶材直流电源,弧电流为75A,偏压-400V,溅射时间为6min。然后停止溅射,降温。
然后采用磁控溅射方法沉积(Nb0.95Ta0.05)2AlC外层涂层,将真空室预抽真空至背底真空为4×10-3Pa后,然后打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为350℃,保温15min,然后打开(Nb0.95Ta0.05)2AlC靶材直流电源,溅射功率为1.5kW,溅射时间为45min。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。
实验后用扫描电镜观察沉积涂层的表面与截面微观形貌,发现所得涂层平整,致密,与基体结合良,各层涂层各处厚度均一,如图1所示。在燃料电池模拟环境中,即H2SO4浓度为0.5mol/L和2ppm HF溶液中,温度80℃中进行动电位测试,腐蚀电流密度为0.52μA/cm2[自腐蚀电位0.18V(vs.SCE)],在组装力为150N/cm2条件下,接触电阻为2.76mΩ·cm2
实施例2
首先准备制备(Nb0.9Ta0.1)2AlC块体靶材,并准备商用Nb靶材和SS316L不锈钢双极板。即用400#、600#、800#、1000#、2000#金相砂纸逐级磨光,然后将打磨后的金属双极板样品经过丙酮、酒精和去离子水分别超声清洗12min后,在空气中吹干备用。
采用电弧离子镀法沉积Nb和NbN层,涂层制备之前,将真空室预抽真空至背底真空为4×10-3Pa后,在基体上施加500V负脉冲偏压对基体进行反溅清洗5min,去除基体表面的污染物和氧化层。然后打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.4Pa左右,腔室加热温度为150℃。打开Nb靶材直流电源,弧电流为70A,偏压-200V,溅射时间为5min。然后停止溅射,降温。然后将真空室预抽真空至背底真空为4×10-3Pa后,打开N2气流量阀,N2气流量30ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为250℃,保温15分钟后。然后再次打开Nb靶材直流电源,弧电流为80A,偏压-300V,溅射时间为8min。然后停止溅射,降温。
然后采用磁控溅射方法沉积(Nb0.9Ta0.1)2AlC外层涂层,将真空室预抽真空至背底真空为4×10-3Pa后,然后打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为400℃,保温15min,然后打开(Nb0.9Ta0.1)2AlC靶材直流电源,溅射功率为2.0kW,溅射时间为30min。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。
实验后用扫描电镜观察沉积涂层的表面与截面微观形貌,发现所得涂层平整,致密,与基体结合良,各层涂层各处厚度均一,如图2所示。在燃料电池模拟环境中,即H2SO4浓度为0.5mol/L和2ppm HF溶液中,温度80℃中进行动电位测试,腐蚀电流密度为0.33μA/cm2[自腐蚀电位0.20V(vs.SCE)],在组装力为150N/cm2条件下,接触电阻为1.98mΩ·cm2
实施例3
首先准备制备(Nb0.8Ta0.2)2AlC块体靶材,并准备商用Nb靶材和SS316L不锈钢双极板。即用400#、600#、800#、1000#、2000#金相砂纸逐级磨光,然后将打磨后的金属双极板样品经过丙酮、酒精和去离子水分别超声清洗20min后,在空气中吹干备用。
采用电弧离子镀法沉积Nb和NbN层,涂层制备之前,将真空室预抽真空至背底真空为4×10-3Pa后,在基体上施加500V负脉冲偏压对基体进行反溅清洗12min,去除基体表面的污染物和氧化层。然后打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.4Pa左右,腔室加热温度为100℃。打开Nb靶材直流电源,弧电流为90A,偏压-400V,溅射时间为15min。然后停止溅射,降温。然后将真空室预抽真空至背底真空为4×10-3Pa后,打开N2气流量阀,N2气流量30ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为150℃,保温15分钟后。然后再次打开Nb靶材直流电源,弧电流为90A,偏压-400V,溅射时间为10min。然后停止溅射,降温。
然后采用磁控溅射方法沉积(Nb0.8Ta0.2)2AlC外层涂层,将真空室预抽真空至背底真空为4×10-3Pa后,然后打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度450℃,保温15min,然后打开(Nb0.8Ta0.2)2AlC靶材直流电源,溅射功率为2.5kW,溅射时间为50min。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。
实验后用扫描电镜观察沉积涂层的表面与截面微观形貌,发现所得涂层平整,致密,与基体结合良,各层涂层各处厚度均一。在燃料电池模拟环境中,即H2SO4浓度为0.5mol/L和2ppm HF溶液中,温度80℃中进行动电位测试,腐蚀电流密度为0.43μA/cm2[自腐蚀电位0.15V(vs.SCE)],在组装力为150N/cm2条件下,接触电阻为3.24mΩ·cm2
当然,上述说明并非是对本发明的限制,本发明也并不限于上述举例,本技术领域的普通技术人员,在本发明的实质范围内,作出的变化、改型、添加或替换,都应属于本发明的保护范围。

Claims (10)

1.一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,包括基底和涂层,其特征在于,所述涂层的材料为Nb/NbN/(Nb,Ta)2AlC多层梯度涂层,其中Nb为过渡层,NbN为连接层,(Nb,Ta)2AlC为三元层状陶瓷铌铝碳的改性优化材料。
2.根据权利要求1所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,所述外层涂层是铌铝碳在Nb位置上固溶掺杂Ta元素,掺杂元素所占比例为0.1~25at.%。
3.根据权利要求1所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,在涂层内层沉积Nb过渡层。
4.根据权利要求3所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,内层沉积Nb过渡层上沉积NbN连接层。
5.根据权利要求1所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层,其特征在于,所述Nb过渡层的厚度为50~100nm,NbN连接层的厚度为50~150nm,(Nb,Ta)2AlC层的厚度为200~700nm。
6.根据权利要求1-4任一所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层的制备方法,其特征在于,包括以下步骤:
利用电弧离子镀装置沉积Nb过渡层和NbN连接层,Nb过渡层采用Nb金属靶材,NbN层的获得是在沉积Nb涂层过程中升温充入N2气,沉积获得NbN连接层。利用磁控溅射装置在外表面沉积(Nb,Ta)2AlC涂层,沉积涂层时样品悬挂在设备的样品架上,悬挂样品的立柱可自转,同时自转立柱可随旋转台公转,以此获得均匀的镀膜。
7.根据权利要求5所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层的制备方法,其特征在于,涂层所用的靶材为(Nb,Ta)2AlC单相靶材,制备中原始粉料包括Nb粉、Ta粉、Al粉和石墨粉,采用热压/固液相反应法在热压炉中烧结制备,烧结温度为1600℃~1950℃,保温40~90分钟,热压压力20~75MPa,以流动的氩气作为保护气体。
8.根据权利要求5所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层的制备方法,其特征在于,金属双极板的前处理方法为:首先选用砂纸对金属双极板进行打磨抛光,即用400#、600#、800#、1000#、2000#金相砂纸逐级磨光,然后将打磨后的金属双极板样品经过丙酮、酒精和去离子水分别超声清洗10~20min后,在空气中吹干备用。
9.根据权利要求5所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层的制备方法,其特征在于,所述电弧离子镀法沉积Nb过渡层和NbN连接层,涂层制备之前,将真空室预抽真空至背底真空为4×10-3Pa后,在基体上施加500V负脉冲偏压对基体进行反溅清洗5~12min,去除基体表面的污染物和氧化层。然后打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.4Pa左右,腔室加热温度为100~150℃。打开Nb靶材直流电源,弧电流为50~90A,偏压-200~-400V,溅射时间为2~15min。然后停止溅射,降温。然后将真空室预抽真空至背底真空为4×10-3Pa后,打开N2气流量阀,N2气流量30ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为150~250℃,保温15分钟后。然后再次打开Nb靶材直流电源,弧电流为60~95A,偏压-200~-500V,溅射时间为5~15min。然后停止溅射,降温。
10.根据权利要求5所述的一种用于质子交换膜燃料电池金属双极板的多层梯度涂层的制备方法,其特征在于,所述磁控溅射方法沉积(Nb,Ta)2AlC外层涂层,将真空室预抽真空至背底真空为4×10-3Pa后,打开Ar流量阀,Ar气流量50ml/min,通过调整分子泵的抽速来控制真空室内的工作气压,使之维持在0.45Pa左右,腔室加热温度为250~450℃,保温15min。然后打开(Nb,Ta)2AlC靶材直流电源,溅射功率为0.12~3.0kW,溅射时间为20min~1h。沉积结束后,在原真空条件下以10℃/min的速率降温到室温,然后停止抽真空、撤压。
CN202310451572.0A 2023-04-25 2023-04-25 一种用于质子交换膜燃料电池金属双极板的多层梯度涂层Nb/NbN/(Nb,Ta)2AlC及其制备方法 Pending CN116891999A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310451572.0A CN116891999A (zh) 2023-04-25 2023-04-25 一种用于质子交换膜燃料电池金属双极板的多层梯度涂层Nb/NbN/(Nb,Ta)2AlC及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310451572.0A CN116891999A (zh) 2023-04-25 2023-04-25 一种用于质子交换膜燃料电池金属双极板的多层梯度涂层Nb/NbN/(Nb,Ta)2AlC及其制备方法

Publications (1)

Publication Number Publication Date
CN116891999A true CN116891999A (zh) 2023-10-17

Family

ID=88313995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310451572.0A Pending CN116891999A (zh) 2023-04-25 2023-04-25 一种用于质子交换膜燃料电池金属双极板的多层梯度涂层Nb/NbN/(Nb,Ta)2AlC及其制备方法

Country Status (1)

Country Link
CN (1) CN116891999A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587357A (zh) * 2024-01-19 2024-02-23 北京开元新能科技有限公司 一种可用于质子交换膜燃料电池的金属双极板及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587357A (zh) * 2024-01-19 2024-02-23 北京开元新能科技有限公司 一种可用于质子交换膜燃料电池的金属双极板及其制备方法和应用
CN117587357B (zh) * 2024-01-19 2024-04-09 北京开元新能科技有限公司 一种可用于质子交换膜燃料电池的金属双极板及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106374116B (zh) 一种燃料电池金属双极板上的高熵合金复合涂层和工艺
CN100595951C (zh) 一种燃料电池用双极板及其表面碳铬薄膜制备方法
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
CN101800318B (zh) 一种质子交换膜燃料电池用金属双极板及其制备方法
CN104766980B (zh) 一种酸性介质燃料电池双极板防护涂层及其制备方法
CN109560289B (zh) 一种金属双极板及其制备方法以及燃料电池
CN113555576A (zh) 一种燃料电池金属连接体涂层
CN116891999A (zh) 一种用于质子交换膜燃料电池金属双极板的多层梯度涂层Nb/NbN/(Nb,Ta)2AlC及其制备方法
WO2023284596A1 (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
CN111244493B (zh) 一种质子交换膜燃料电池薄钛双极板的表面改性方法
CN112993298A (zh) 一种燃料电池金属双极板双功能涂层
CN111218656A (zh) 一种高耐腐蚀高电导率的燃料电池金属双极板保护膜及制备方法
CN114481048A (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
CN106784916B (zh) 一种带有表面钛钼镍碳薄膜的燃料电池长寿命双极板及其制备方法
CN113206267A (zh) 一种燃料电池金属极板涂层制备方法
CN113025980A (zh) 一种燃料电池双极板用耐腐蚀膜层及其制备方法
CN201717318U (zh) 一种质子交换膜燃料电池用金属双极板
CN113549873A (zh) 一种燃料电池金属连接体双层涂层
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN106887599B (zh) 一种带有表面钛钯碳薄膜的燃料电池长寿命双极板及其制备方法
CN116716578A (zh) 一种用于质子交换膜燃料电池金属双极板的多层梯度涂层Cr/CrN/(Cr,Ti)2AlC及其构建方法
CN106887600B (zh) 一种带有表面钛钽碳薄膜的燃料电池高性能双极板及其制备方法
CN116716579A (zh) 一种用于质子交换膜燃料电池金属双极板的多层梯度涂层V/VN/(V,W)2AlC及其制备方法
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法
CN116676562A (zh) 一种用于氢燃料电池金属双极板的多层梯度涂层Ta/TaN/(Ta,Cr)2AlC及其构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination