CN116884664A - 基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法 - Google Patents

基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法 Download PDF

Info

Publication number
CN116884664A
CN116884664A CN202310851783.3A CN202310851783A CN116884664A CN 116884664 A CN116884664 A CN 116884664A CN 202310851783 A CN202310851783 A CN 202310851783A CN 116884664 A CN116884664 A CN 116884664A
Authority
CN
China
Prior art keywords
energy
burnup
technology
subgroup
californium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310851783.3A
Other languages
English (en)
Other versions
CN116884664B (zh
Inventor
潘清泉
赵庆飞
刘晓晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202310851783.3A priority Critical patent/CN116884664B/zh
Publication of CN116884664A publication Critical patent/CN116884664A/zh
Application granted granted Critical
Publication of CN116884664B publication Critical patent/CN116884664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/02Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes in nuclear reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0094Other isotopes not provided for in the groups listed above

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Particle Accelerators (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,基于子群燃耗技术计算辐照生产锎‑252过程中的各个能区相对重要性指标和能区绝对重要性指标,以表征各能区内的核素转化率,进而构建能谱重要性曲线;根据能谱重要性曲线确定积极能区和消极能区,并分别通过单能量燃耗技术提高积极能区的中子通量、通过能谱过滤技术降低消极能区的中子通量,进而实现能谱调制并显著提升核素转化率与锎‑252的生产效率。根据子群燃耗技术确定能谱重要性曲线,进而实现能谱调制,从而显著提高稀缺同位素的辐照生产效率。

Description

基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法
技术领域
本发明涉及的是一种稀缺同位素辐照生产领域的技术,具体是基于子群燃耗技术实现精细化的能谱分析并用于锎-252辐照生产的方法。
背景技术
以锎-252为代表的稀缺同位素在国民经济发展中起着非常重要的作用,广泛应用于工业、农业以及医学等领域。但是,目前稀缺同位素的辐照生产面临着中子学模型不够精细的问题,导致核素转化率低和生产成本高。
发明内容
本发明针对现有技术缺乏精细化中子学模型的问题,提出一种基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,根据子群燃耗技术确定能谱重要性曲线,进而实现能谱调制,从而显著提高稀缺同位素的辐照生产效率。
本发明是通过以下技术方案实现的:
本发明涉及一种基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,基于子群燃耗技术计算辐照生产锎-252过程中的各个能区相对重要性指标和能区绝对重要性指标,以表征各能区内的核素转化率,进而构建能谱重要性曲线;根据能谱重要性曲线确定积极能区和消极能区,并分别通过单能量燃耗技术提高积极能区的中子通量、通过能谱过滤技术降低消极能区的中子通量,进而实现能谱调制并显著提升核素转化率与锎-252的生产效率。
所述的能区相对重要性指标和能区绝对重要性指标,具体通过以下方式计算得到:和/>其中:Y和Yi分别为在第i个能群内通量降低前和降低后的锎-252产量,ΔYi为第i个能群内通量降低前和降低后的锎-252产量的变化量,φi和φi′分别为通量降低前和降低后的群中子通量,下标i为能群的序列号,M为通量降低的比例,可取M=1/8,M=1/4,M=1/2和M=1/1。
所述的通量降低是指:将全能谱划分为238个能群,在燃耗计算中逐一降低238个能群的中子通量,计算得到通量未降低时锎-252的产量和238个能群通量逐一降低时的锎-252产量。
所述的能谱重要性曲线,即以能量为横轴、以238个能群的能区相对重要性指标和能区绝对重要性指标为纵轴得到。
所述的积极能区是指:当中子通量降低时,锎-252的产量相应降低时所对应的能量区间。
所述的消极能区是指:当中子通量降低时,锎-252的产量相应提高时所对应的能量区间。
所述的单能量燃耗技术是指:在燃耗计算中保证总中子通量不变,让所有的中子均处于对应着重要性较大值的能量区间内,从而提高锎-252的产量;优选进一步通过进行蒙卡燃耗计算确定锎-252的产额,从而量化该能量区间内的核素转化率和锎-252的生产效率。
所述的能谱过滤技术是指:采用核数据可视化程序(JANIS)筛选出消极能区内反应截面较高的核素并在靶件内部弥散这些核素,从而增加在这些能量区间内的核反应,降低这些能量区间内的中子通量,提升锎-252的产量;优选进一步通过进行蒙卡燃耗计算确定锎-252的产额,从而量化该能量区间内的核素转化率和锎-252的生产效率。
技术效果
本发明基于精细化的能谱重要性曲线,通过单能量燃耗技术实现积极能区内的中子通量提升,通过能谱过滤技术实现消极能区内的中子通量降低,实现精细化的能谱调制,解决传统方法在稀缺同位素辐照生产中缺乏精细化中子学模型的问题。本发明整体上实现精细化能谱分析和能谱最优化调制,从而有效提升稀缺同位素的辐照生产效率,为中国实现稀缺同位素的自主化辐照生产提供技术支撑。
附图说明
图1为本发明流程图;
图2为实施例的典型高通量堆建模示意图;
图3为典型高通量堆建模正确性的计算结果示意图;
图4为M=1/1时的能谱重要性曲线示意图;
图5为M=1/2时的能谱重要性曲线示意图;
图6为M=1/4时的能谱重要性曲线示意图;
图7为M=1/8时的能谱重要性曲线示意图;
图8为所选过滤核素的总截面曲线示意图。
具体实施方式
本实施例在图2所示的典型高通量反应堆模型中进行实施,该模型通过RMC程序构建得到,如图3所示,为RMC建模正确性的计算结果。RMC计算所得的全堆总中子通量分布和热群中子通量分布与参考解吻合良好,证明RMC建模的正确性。
如图1所示,为本实施例涉及的一种基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,以辐照生产锎-252为例,包括以下步骤:
步骤1)采集子群燃耗技术对生产锎-252过程中的能谱数据,具体包括:
1.1)使用RMC程序进行全堆燃耗计算,燃耗期为90天,通过关注锎-252的核素密度量化当前辐照方案下的锎-252产量,该产量记为Y。将全能区分为238个能群,计算在238个能群内的中子通量φi
1.2)使用RMC程序进行子群燃耗分析,逐一降低238个能群的中子通量,依次计算在238次能群通量降低的情况下的锎-252产量Yi,依次计算在238次能群通量降低的情况下的能群内中子通量φiˊ,其中:i为能群的序号,可取1到238。通量降低的比例M,可取M=1/1,M=1/2,M=1/4和M=1/8。
步骤2)计算第i个能群的相对重要性指标以及第i个能群的绝对重要性指标/>并将238个能区的相对重要性指标和绝对重要性指标作图,得到全能谱的相对能谱重要性曲线和绝对能谱重要性曲线。因为M有4种取值,且有相对重要性和绝对重要性这两种重要性计算式,所以一共可以得到8条能谱重要性曲线,以M的取值作为分类标准,一共得到4张能谱重要性曲线图,其中:图4为M=1/1时的能谱重要性曲线;图5为M=1/2时的能谱重要性曲线;图6为M=1/4时的能谱重要性曲线;图7为M=1/8时的能谱重要性曲线。
如图4-图7所示,不论M取值多少,这8条能谱重要性曲线的整体趋势一致,证明基于子群燃耗技术的精细化能谱分析方法具有普适性。同时可以看出,I2整体上比I1大,这是因为在计算I2时需要除以中子通量的绝对值,但是群中子通量存在着量级上的差别,所以导致I2在不同能群区间内也存在着量级上的差别。
步骤3)基于步骤2得到的能谱重要性曲线的较大值和较小值确定对应的积极能区和消极能区,如表1所示。
表1积极能区与消极能区的能量范围和重要性数值。
从表1中可以看出,[7.00×10-6,7.15×10-6],[7.15×10-6,8.10×10-6],[2.50×10-5,2.75×10-5],[3.46×10-5,3.55×10-5],[7.20×10-5,7.60×10-5],[7.60×10-5,8.00×10-5],[9.00×10-5,1.00×10-4]这7个能量区间为积极能区,[4.00×10-6,4.70×10-6],[1.60×10-5,1.70×10-5],[1.70×10-5,1.85×10-5]这3个能量区间为消极能区,其中:根据以往的物理基础,已知积极能区内的中子对生产有利,通过提高该能区内的中子通量可以提高锎-252的产量,消极能区内的中子对生产有害,通过降低该能区内的中子通量可以提高锎-252的产量。
步骤4)采用单能量燃耗技术依次提高积极能区内的中子通量,具体为:燃耗计算中保证总中子通量不变,让所有的中子均处于对应着重要性较大值的能量区间内,从而提高锎-252的产量,进行燃耗计算确定在采用单能量燃耗技术后的锎-252产量,通过对比采用单能量燃耗技术前后的锎-252产量量化单能量燃耗技术的有效性,以[7.00×10-6,7.15×10-6],[7.15×10-6,8.10×10-6],[2.50×10-5,2.75×10-5],[7.20×10-5,7.60×10-5],[7.60×10-5,8.00×10-5]这5个能量区间为例,计算结果如表2所示。
表2.采用单能量燃耗技术前后的锎-252产量。
从表2中可以看出,采用单能量燃耗技术可以显著提高锎-252的产量。
步骤5)采用能谱过滤技术依次降低消极能区内的中子通量,具体为:采用核数据可视化程序(JANIS)筛选出在消极能区内反应截面较高的核素,分别采用105Rh降低[4.00×10-6,4.70×10-6]能量区间内的中子通量,采用127I降低[1.60×10-5,1.70×10-5]能量区间内的中子通量,采用153Sm降低[1.70×10-5,1.85×10-5]内的中子通量,采用152Eu同时降低这3个能量区间内的中子通量。105Rh,127I,153Sm和152Eu的总截面见图8。
从图8中可以看出,105Rh的总截面在[4.00×10-6,4.70×10-6]能量区间内具有峰值,预期可以降低在该能量区间内的中子通量。127I的总截面在[1.60×10-5,1.70×10-5]能量区间内具有峰值,预期可以降低在该能量区间内的中子通量。153Sm的总截面在[1.70×10-5,1.85×10-5]能量区间内具有峰值,预期可以降低在该能量区间内的中子通量。152Eu的总截面在这3个能量区间内均具有峰值,预期可以同时降低这3个能量区间内的中子通量。
通过燃耗计算确定在采用能谱过滤技术后的锎-252产量,通过对比采用能谱过滤技术前后的锎-252产量量化能谱过滤技术的有效性,如表3所示。
表3采用能谱过滤技术的效果对比图
从表3所示,能谱过滤技术可以有效降低在特定能量区间内的中子通量,其中[4.00×10-6,4.70×10-6]能量区间内的中子通量最高降低75.84%,[1.60×10-5,1.70×10-5]能量区间内的中子通量最高降低3.56%,[1.70×10-5,1.85×10-5]能量区间内的中子通量最高降低14.00%。所以,能谱过滤技术可以有效实现能谱调制。同时,在采用能谱过滤技术以后,锎-252的产量明显提升,特别是采用105Rh时,产量提升率达到161.60%。所以,能谱过滤技术可以有效降低消极能区的中子通量,有效提升锎-252的产量,有助于稀缺同位素的生产过程。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (9)

1.一种基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征在于,基于子群燃耗技术计算辐照生产锎-252过程中的各个能区相对重要性指标和能区绝对重要性指标,以表征各能区内的核素转化率,进而构建能谱重要性曲线;根据能谱重要性曲线确定积极能区和消极能区,并分别通过单能量燃耗技术提高积极能区的中子通量、通过能谱过滤技术降低消极能区的中子通量,进而实现能谱调制并显著提升核素转化率与锎-252的生产效率。
2.根据权利要求1所述的基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征是,所述的能区相对重要性指标和能区绝对重要性指标,具体通过以下方式计算得到:和/>其中:Y和Yi分别为在第i个能群内通量降低前和降低后的锎-252产量,ΔYi为第i个能群内通量降低前和降低后的锎-252产量的变化量,φi和φi′分别为通量降低前和降低后的群中子通量,下标i为能群的序列号,M为通量降低的比例。
3.根据权利要求2所述的基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征是,所述的通量降低是指:将全能谱划分为238个能群,在燃耗计算中逐一降低238个能群的中子通量,计算得到通量未降低时锎-252的产量和238个能群通量逐一降低时的锎-252产量。
4.根据权利要求1所述的基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征是,所述的能谱重要性曲线,即以能量为横轴、以238个能群的能区相对重要性指标和能区绝对重要性指标为纵轴得到。
5.根据权利要求1所述的基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征是,所述的积极能区是指:当中子通量降低时,锎-252的产量相应降低时所对应的能量区间;所述的消极能区是指:当中子通量降低时,锎-252的产量相应提高时所对应的能量区间。
6.根据权利要求1所述的基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征是,所述的单能量燃耗技术是指:在燃耗计算中保证总中子通量不变,让所有的中子均处于对应着重要性较大值的能量区间内,从而提高锎-252的产量。
7.根据权利要求6所述的基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征是,进一步通过进行蒙卡燃耗计算确定锎-252的产额,从而量化该能量区间内的核素转化率和锎-252的生产效率。
8.根据权利要求1所述的基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征是,所述的能谱过滤技术是指:采用核数据可视化程序(JANIS)筛选出消极能区内反应截面较高的核素并在靶件内部弥散这些核素,从而增加在这些能量区间内的核反应,降低这些能量区间内的中子通量,提升锎-252的产量。
9.根据权利要求8所述的基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法,其特征是,进一步通过进行蒙卡燃耗计算确定锎-252的产额,从而量化该能量区间内的核素转化率和锎-252的生产效率。
CN202310851783.3A 2023-07-12 2023-07-12 基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法 Active CN116884664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310851783.3A CN116884664B (zh) 2023-07-12 2023-07-12 基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310851783.3A CN116884664B (zh) 2023-07-12 2023-07-12 基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法

Publications (2)

Publication Number Publication Date
CN116884664A true CN116884664A (zh) 2023-10-13
CN116884664B CN116884664B (zh) 2024-03-01

Family

ID=88269312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310851783.3A Active CN116884664B (zh) 2023-07-12 2023-07-12 基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法

Country Status (1)

Country Link
CN (1) CN116884664B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA691102A (en) * 1964-07-21 A. Thomas Harold Ion chamber
JPS5433994A (en) * 1977-08-15 1979-03-13 Westinghouse Electric Corp Thermal breeder
FR2856837A1 (fr) * 2003-06-30 2004-12-31 Commissariat Energie Atomique Procede d'amelioration de la surete des systemes nucleaires hybrides couples, et dispositif mettant en oeuvre ce procede
US20050029471A1 (en) * 2003-05-26 2005-02-10 Gerhard Kraft Energy filter device
JP2010127825A (ja) * 2008-11-28 2010-06-10 Japan Atomic Energy Agency ラジオアイソトープシートの製造方法、該製造方法により製造されるラジオアイソトープシート及びラジオアイソトープ装置
RU2444074C1 (ru) * 2010-12-28 2012-02-27 Открытое акционерное общество "Научно-исследовательский институт технической физики и автоматизации" (ОАО "НИИТФА") СПОСОБ ПОЛУЧЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ НА ОСНОВЕ РАДИОНУКЛИДА 74Se ДЛЯ ГАММА-ДЕФЕКТОСКОПИИ
CA2892365A1 (en) * 2012-11-23 2014-05-30 Peter Teleki Combined moderator/target for neutron activation process
WO2016085335A1 (en) * 2014-11-25 2016-06-02 Technische Universiteit Delft Flexible irradiation facility
CN108806816A (zh) * 2018-04-18 2018-11-13 中国科学院合肥物质科学研究院 一种中子能谱精准调控技术及装置
WO2018219406A1 (de) * 2017-05-31 2018-12-06 Aachen Institute For Nuclear Training Gmbh Verfahren und vorrichtung zur multielementanalyse basierend auf neutronenaktivierung sowie verwendung
CN109767854A (zh) * 2019-01-21 2019-05-17 中国科学院合肥物质科学研究院 一种基于堆外测量数据的反应堆内中子三维分布测量系统
CN110580967A (zh) * 2018-10-16 2019-12-17 中广核研究院有限公司 可控210Po-Be同位素中子源的生产方法及可控210Po-Be同位素中子源
KR20210059194A (ko) * 2019-11-15 2021-05-25 울산과학기술원 확률론적 방법을 이용한 다군 군정수 생성방법 및 생성장치
CN113299420A (zh) * 2021-05-14 2021-08-24 中国核动力研究设计院 高通量试验堆辐照靶件及辐照镅生产252Cf的方法
CN114496314A (zh) * 2022-02-17 2022-05-13 中国核动力研究设计院 一种快中子热中子同心圆式分区的超高通量反应堆堆芯
CN115171924A (zh) * 2022-07-08 2022-10-11 上海交通大学 铅铋冷却固体反应堆堆芯系统
CN115565617A (zh) * 2022-09-16 2023-01-03 上海交通大学 基于能谱环境的超钚同位素生产效率快速评估方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA691102A (en) * 1964-07-21 A. Thomas Harold Ion chamber
JPS5433994A (en) * 1977-08-15 1979-03-13 Westinghouse Electric Corp Thermal breeder
US20050029471A1 (en) * 2003-05-26 2005-02-10 Gerhard Kraft Energy filter device
FR2856837A1 (fr) * 2003-06-30 2004-12-31 Commissariat Energie Atomique Procede d'amelioration de la surete des systemes nucleaires hybrides couples, et dispositif mettant en oeuvre ce procede
JP2010127825A (ja) * 2008-11-28 2010-06-10 Japan Atomic Energy Agency ラジオアイソトープシートの製造方法、該製造方法により製造されるラジオアイソトープシート及びラジオアイソトープ装置
RU2444074C1 (ru) * 2010-12-28 2012-02-27 Открытое акционерное общество "Научно-исследовательский институт технической физики и автоматизации" (ОАО "НИИТФА") СПОСОБ ПОЛУЧЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ НА ОСНОВЕ РАДИОНУКЛИДА 74Se ДЛЯ ГАММА-ДЕФЕКТОСКОПИИ
CA2892365A1 (en) * 2012-11-23 2014-05-30 Peter Teleki Combined moderator/target for neutron activation process
WO2016085335A1 (en) * 2014-11-25 2016-06-02 Technische Universiteit Delft Flexible irradiation facility
WO2018219406A1 (de) * 2017-05-31 2018-12-06 Aachen Institute For Nuclear Training Gmbh Verfahren und vorrichtung zur multielementanalyse basierend auf neutronenaktivierung sowie verwendung
CN108806816A (zh) * 2018-04-18 2018-11-13 中国科学院合肥物质科学研究院 一种中子能谱精准调控技术及装置
CN110580967A (zh) * 2018-10-16 2019-12-17 中广核研究院有限公司 可控210Po-Be同位素中子源的生产方法及可控210Po-Be同位素中子源
CN109767854A (zh) * 2019-01-21 2019-05-17 中国科学院合肥物质科学研究院 一种基于堆外测量数据的反应堆内中子三维分布测量系统
KR20210059194A (ko) * 2019-11-15 2021-05-25 울산과학기술원 확률론적 방법을 이용한 다군 군정수 생성방법 및 생성장치
CN113299420A (zh) * 2021-05-14 2021-08-24 中国核动力研究设计院 高通量试验堆辐照靶件及辐照镅生产252Cf的方法
CN114496314A (zh) * 2022-02-17 2022-05-13 中国核动力研究设计院 一种快中子热中子同心圆式分区的超高通量反应堆堆芯
CN115171924A (zh) * 2022-07-08 2022-10-11 上海交通大学 铅铋冷却固体反应堆堆芯系统
CN115565617A (zh) * 2022-09-16 2023-01-03 上海交通大学 基于能谱环境的超钚同位素生产效率快速评估方法

Also Published As

Publication number Publication date
CN116884664B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN107273582B (zh) 一种用于快中子反应堆中子输运燃耗耦合分析的计算方法
CN104598565B (zh) 一种基于随机梯度下降算法的k均值大规模数据聚类方法
CN115565617B (zh) 基于能谱环境的超钚同位素生产效率快速评估方法
CN116884664B (zh) 基于子群燃耗技术的稀缺同位素精细化能谱辐照生产方法
CN114564866A (zh) 一种热仿真网格划分方法
CN114491908B (zh) 基于白边界的Tone’s方法与超细群结合的共振算法
Liu et al. On-the-fly treatment of temperature dependent cross sections in the unresolved resonance region in RMC code
Lu et al. Zr/Nb isobar separation experiment for future 93Zr AMS measurement
CN114491907B (zh) 基于真空边界的最优有理多项式与超细群结合的共振算法
CN113671556A (zh) 一种铀裂变电离室铀靶铀同位素原子核数量定值方法
CN114491903B (zh) 基于白边界的最优有理多项式与超细群结合的共振算法
CN116844665B (zh) 超钚同位素生产中的能谱过滤系统
CN114491902B (zh) 基于真空边界的Tone’s方法与超细群结合的共振算法
Kim et al. Development of a multi-group neutron cross section library generation system for PWR
CN117524335A (zh) 一种基于极值燃耗分析方法的钚-238高效辐照生产方法
Leppänen On the use of the continuous-energy Monte Carlo method for lattice physics applications
Calloo et al. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation
Chang et al. ATR PDQ and MCWO fuel burnup analysis codes evaluation
Jeonga et al. Hybrid Depletion Method for Monte Carlo Analysis of PWRs
Kim et al. Revisit of the Dancoff-Based Wigner-Seitz Approximation for Pointwise and Multigroup Resonance Self-Shielding Calculations in SCALE
Westlund Monte Carlo Simulations of Bowing Effects Using Realistic Fuel Data in Nuclear Fuel Assemblies
CN116092609A (zh) 一种评估熵增对催化材料oer性能影响规律的方法
Aguilera-Navarro et al. Some calculations for/sup 12/C in the. cap alpha.-particle model
Croft et al. A New Neutron Multiplicity Deadtime Scheme
Dunn Production of probability tables for the unresolved-resonance region using the ampx cross-section processing system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant