CN116836570A - 一种有机硅纳米线接枝黏土矿物的制备方法及其应用 - Google Patents

一种有机硅纳米线接枝黏土矿物的制备方法及其应用 Download PDF

Info

Publication number
CN116836570A
CN116836570A CN202310832098.6A CN202310832098A CN116836570A CN 116836570 A CN116836570 A CN 116836570A CN 202310832098 A CN202310832098 A CN 202310832098A CN 116836570 A CN116836570 A CN 116836570A
Authority
CN
China
Prior art keywords
organosilicon
clay mineral
nanowire
grafted
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310832098.6A
Other languages
English (en)
Inventor
张俊平
王万凯
杨燕飞
李凌霄
李步成
魏晋飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202310832098.6A priority Critical patent/CN116836570A/zh
Publication of CN116836570A publication Critical patent/CN116836570A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开一种有机硅纳米线接枝黏土矿物的制备方法。首先,取一定量解离的黏土矿物将其超声分散于有机溶剂中;其次,在上述溶液中加入氯硅烷,经氯硅烷的水解缩合,在黏土矿物表面的羟基位点原位生长有机硅纳米线;最后,经离心、洗涤、干燥获得有机硅纳米线接枝黏土矿物。本发明制备的有机硅纳米线接枝黏土矿物具有多维度微观结构,能有效改善聚合物复合材料的机械性能和离子传递等理化性能。本发明方法简单高效、成本低廉,可促进黏土矿物高值化利用。

Description

一种有机硅纳米线接枝黏土矿物的制备方法及其应用
技术领域
本发明涉及纳米复合材料制备技术领域,尤其涉及一种有机硅纳米线接枝黏土矿物的制备方法。
背景技术
黏土矿物广泛存在于自然界中,是一种重要的矿物原料,其化学成分主要由SiO2、Al2O3、Fe2O3、MgO及少量的K2O、Na2O、CaO和水组成。根据黏土矿物的晶体结构,可分为1:1型和2:1型黏土矿物,1:1型是指一个硅氧四面体片与一个铝氧八面体片结合而成,2:1型是一个铝氧八面体片夹在两个硅氧四面体片之间构成。黏土矿物具有丰富的微观形貌,如棒状的凹凸棒石、管状的埃洛石、片状的蒙脱石以及多孔状的硅藻土等。黏土矿物因具有丰富的活性位点、易化学修饰、且具备储量丰富、环境友好和价格低廉等优点,已被应用于储能、吸附等领域,特别是在改善聚合物复合材料的离子传递和机械性能方面得到了深入的研究。例如,黏土矿物可以有效提高聚合物复合材料的离子电导率、阻燃性、机械稳定性等(CN201611109450.X、CN201811346058.6、CN115954541.A)。
尽管黏土矿物在构筑聚合物复合材料方面展现出了巨大的应用前景,但是黏土矿物在聚合物基体中的团聚效应始终困扰着黏土矿物在聚合物复合材料领域中的商业化应用。因此,对黏土矿物进行修饰改变其表面化学性质,增强黏土矿物与聚合物的相容性,改进黏土矿物在聚合物基体中的分散性,是实现黏土矿物/聚合物复合材料商业化应用的关键。例如:专利CN201010293065.1采用季鏻盐离子液体改性蒙脱石,改性之后的蒙脱石具备更加稳定的化学性质,与聚合物之间的相容性也得到了极大的改善,大大拓宽了蒙脱石的应用范围;专利CN201810635476.0在蒙脱石纳米片层间引入石墨烯,从而制得在聚合物中能够均匀分散的石墨烯改性蒙脱石;专利CN202210733227.1采用有机酸与三聚氰胺水溶液改性高岭石,改性后的高岭石可明显提高聚合物力学性能及阻燃效率;专利CN109888382.A采用黏土矿物为添加剂,增大了聚偏氟乙烯复合材料的孔隙率,提高了该聚合物复合材料的离子电导率。除上述技术开发外,Raluca Ianchis 和Tao Tang分别利用正硅酸乙酯的水解缩合反应制得二氧化硅纳米线改性钠基-蒙脱石(Appl. Clay Sci. 2014,95, 232-242;Nanotechnology 2007, 18, 115620)。
上述技术和研究主要聚焦于黏土矿物表面化学性质的改变,解决其在聚合物复合材料中的相容性等问题。但由于黏土矿物与聚合物之间有限的接触界面,仍然限制了聚合物复合材料的理化性能。为此,本申请开发了一种有机硅纳米线接枝黏土矿物提高聚合物复合材料机械性能和离子传递性能的方法。不同于常规的黏土矿物材料,本发明的有机硅纳米线接枝黏土矿物不仅能有效解决黏土矿物在聚合物中的团聚问题,增加聚合物复合材料的机械强度,而且还可以与聚合物形成大量长程连续的界面,改善聚合物复合材料的离子传递等理化性能。
发明内容
本发明目的在于提供一种有机硅纳米线接枝黏土矿物的制备方法,通过黏土矿物的表界面修饰,制备具有多尺度微观结构的有机硅纳米线接枝黏土矿物。
一、有机硅纳米线接枝黏土矿物的制备
一种有机硅纳米线接枝黏土矿物的制备方法,是通过超声、均质等手段将解离(解离的目的在于提高有机硅纳米线的接枝率)后的黏土矿物纳米材料添加到有机溶剂中,经搅拌、超声处理得到均匀悬浊液;随后采用水含量为100-300ppm的氮气气流调控反应体系中的水分含量,并添加氯硅烷,经氯硅烷的水解缩合,在黏土矿物表面的羟基位点原位生长有机硅纳米线;最后经离心、洗涤、干燥得到有机硅纳米线接枝黏土矿物。
所述黏土矿物为高岭石、蛭石、锂皂石、蒙脱石、凹凸棒石中的一种,黏土矿物在反应体系中浓度为1~60mg/mL。
所述有机溶剂为正己烷、甲苯、乙腈、乙醇、丙酮中的至少一种。
所述反应体系中水分含量控制在10~800ppm。
所述氯硅烷为二乙基二氯硅烷、乙基三氯硅烷、甲基乙烯基二氯硅烷、甲基三氯硅烷、乙烯基三氯硅烷中的至少一种,氯硅烷在反应体系中的浓度为0.01~30 mg/mL。
所述水解缩合反应条件是在20~50℃条件下震荡3~72h。
所述有机硅纳米线长径比为3~50:1。
本发明的合成机理:基于黏土矿物含有丰富的羟基官能团,以羟基为引发点,通过氯硅烷的水解缩合反应,在黏土矿物表面原位生长有机硅纳米线制得有机硅纳米线接枝黏土矿物。
二、有机硅纳米线接枝黏土矿物的微观形貌
图1和图2分别为对比例、实施例3发明的有机硅纳米线接枝黏土矿物微观形貌的对比分析。实验结果表明本发明制备的有机硅纳米线接枝黏土矿物表面的有机硅纳米线长度可达200~1000 nm,直径约为20~60 nm。
三、有机硅纳米线接枝黏土矿物的应用
为体现本发明的有机硅纳米线接枝黏土矿物的优异性能,以本发明的有机硅纳米线接枝黏土矿物作为填料,将其分散于N-甲基吡咯烷酮溶液中,进行超声处理使其分散均匀,随后加入聚偏氟乙烯或聚氧化乙烯,经超声、均质等处理后制得均匀浆液;最后,采用溶液浇筑法制得聚合物复合材料。
以聚偏氟乙烯为例,有机硅纳米线接枝黏土矿物和聚偏氟乙烯的质量比为1:5,溶剂为N-甲基吡咯烷酮,浆液中固含量为10 wt%。同时,以对比例中的蒙脱石作为填料,制得聚偏氟乙烯复合材料作为对比。
机械强度:如图4所示,以实施例3发明的有机硅纳米线接枝黏土矿物制备的聚合物复合材料,其拉伸强度为3.7MPa,断裂伸长率为88.5%;与采用对比例中蒙脱石为填料制备的聚合物复合材料相比,其拉伸强度和断裂伸长率分别提高了1.3和2.3倍。
离子传递:如图3所示,实验结果表明以实施例3发明的有机硅纳米线接枝黏土矿物为添加剂制得的聚合物复合材料,其离子电导率在30 ℃下高达0.5×10−3S cm−1,比以对比例中蒙脱石为添加剂制备的聚合物复合材料的离子电导率提高了3倍。
综上所述,本发明涉及的有机硅纳米线接枝黏土矿物具有多尺度微观结构,可有效增加聚合物复合材料的机械强度,而且还可以与聚合物形成大量长程连续的界面,改善聚合物复合材料的离子传递等理化性能。
附图说明
图1为对比例中黏土矿物的微观形貌。
图2为实施例3中有机硅纳米线接枝黏土矿物的微观形貌。
图3为分别以对比例、实施例1和3制备的有机硅纳米线接枝黏土矿物为添加剂制备的黏土矿物/聚合物复合材料纳米复合材在不同温度下的离子电导率的对比图。
图4为分别以对比例、实施例3发明的有机硅纳米线接枝黏土矿物为添加剂制备的黏土矿物/聚合物复合材料的应力-应变图。
具体实施方式
下面结合具体实施例对本发明做进一步的解释说明。
对比例
蒙脱石纳米片,其片层厚度约为 1 nm,平均直径约为1 μm。
应用及性能:采用蒙脱石纳米片为添加剂制备聚合物复合材料,制备方法同实施例1(蒙脱石纳米片和聚偏氟乙烯的质量比为1:5,浆液中固含量为10 wt%),30 ℃下离子电导率为0.26×10−3S cm−1,拉伸强度为2.9 MPa,断裂伸长率为38.3%。
实施例1
有机硅纳米线接枝高岭石的制备:取120 mL甲醇溶液,加入0.4 g高岭石,密封后进行超声,调节溶液中水分含量至120 ppm,加入250 μL甲基三氯硅烷,25 ℃条件下在恒温摇床中震荡12 h,使其充分反应后,使用甲醇溶液进行冲洗,离心收集沉淀,干燥后备用。
采用有机硅纳米线接枝高岭石为添加剂制备的聚合物复合材料:以有机硅纳米线接枝高岭石作为填料,将其分散于N-甲基吡咯烷酮溶液中,进行超声处理使其分散均匀,随后加入聚偏氟乙烯,经超声、均质等处理后制得均匀浆液;最后,采用溶液浇筑法制得聚合物复合材料。其中,有机硅纳米线接枝高岭石和聚偏氟乙烯的质量比为1:5,浆液中固含量为10 wt%;
性能:30 ℃下离子电导率为0.38×10−3S cm−1,拉伸强度为3.1 MPa, 断裂伸长率为53.8%。
实施例2
有机硅纳米线接枝锂皂石的制备:取60 mL甲苯溶液,加入0.3 g锂皂石,密封后进行超声,调节溶液中水分含量至250 ppm,加入150 μL甲基乙烯基二氯硅烷,35 ℃条件在恒温摇床中震荡6 h,使其充分反应后,使用甲苯溶液进行冲洗,离心收集沉淀,干燥后备用。
应用及性能:采用有机硅纳米线接枝锂皂石为添加剂制备的聚合物复合材料,方法同实施例1(有机硅纳米线接枝锂皂石和聚偏氟乙烯的质量比为1:5,浆液中固含量为10wt%),30 ℃下离子电导率为0.40×10−3S cm−1,拉伸强度为3.3 MPa, 断裂伸长率为62.8%。
实施例3
有机硅纳米线接枝蒙脱石的制备:取80 mL乙腈溶液,加入0.2 g蒙脱石,密封后进行超声,调节溶液中水分含量至400 ppm,加入600 μL二乙基二氯硅烷,40 ℃条件在恒温摇床中震荡48 h,使其充分反应后,使用乙腈溶液进行冲洗,离心收集沉淀,干燥后备用。
应用及性能:采用有机硅纳米线接枝蒙脱石为添加剂制备的聚合物复合材料,方法同实施例1(有机硅纳米线接枝蒙脱石和聚偏氟乙烯的质量比为1:5,浆液中固含量为10wt%),30 ℃下离子电导率为0.50×10−3S cm−1,拉伸强度为3.7 MPa, 断裂伸长率为88.5%。
实施例4
有机硅纳米线接枝蛭石的制备:取180 mL丙酮溶液,加入0.5g蛭石,密封后进行超声,调节溶液中水分含量至300 ppm,加入300 μL甲基乙烯基二氯硅烷,45 ℃条件在恒温摇床中震荡24 h,使其充分反应后,使用丙酮溶液进行冲洗,离心收集沉淀,干燥后备用。
应用及性能:采用有机硅纳米线接枝蛭石为添加剂制备的聚合物复合材料,方法同实施例1(有机硅纳米线接枝蛭石和聚偏氟乙烯的质量比为1:5,浆液中固含量为10wt%),30 ℃下离子电导率为0.33×10−3S cm−1,拉伸强度为3.0 MPa, 断裂伸长率为63.3%。
实施例5
有机硅纳米线接枝凹凸棒石的制备:取150 mL乙醇溶液,加入0.2 g凹凸棒石,密封后进行超声,调节溶液中水分含量至600 ppm,加入150 μL乙烯基三氯硅烷,30 ℃条件在恒温摇床中震荡18 h,使其充分反应后,使用乙醇溶液冲洗,离心收集沉淀,干燥后备用。
应用及性能:采用有机硅纳米线接枝凹凸棒石为添加剂制备的聚合物复合材料,方法同实施例1(有机硅纳米线接枝凹凸棒石和聚氧化乙烯的质量比为1:5,浆液中固含量为10 wt%),30 ℃下离子电导率为0.48×10−3S cm−1,拉伸强度为1.8 MPa, 断裂伸长率为53.6%。

Claims (10)

1.一种有机硅纳米线接枝黏土矿物的制备方法,是将解离的黏土矿物添加到有机溶剂中,经搅拌、超声处理得到均匀悬浊液;随后调节反应体系中的水分含量,并添加氯硅烷,经氯硅烷的水解缩合,在黏土矿物表面的羟基位点原位生长有机硅纳米线;最后经离心、洗涤、干燥得到有机硅纳米线接枝黏土矿物纳米复合材料。
2.根据权利要求1所述一种有机硅纳米线接枝黏土矿物的制备方法,其特征在于:所述黏土矿物为高岭石、蛭石、锂皂石、蒙脱石、凹凸棒石中的一种,黏土矿物在反应体系中浓度为1~60 mg/mL。
3.根据权利要求1所述一种有机硅纳米线接枝黏土矿物的制备方法,其特征在于:有机溶剂为正己烷、甲苯、乙腈、乙醇、丙酮中的至少一种。
4.根据权利要求1所述一种有机硅纳米线接枝黏土矿物的制备方法,其特征在于:反应体系中水分含量控制在10~800 ppm。
5.根据权利要求1所述一种有机硅纳米线接枝黏土矿物的制备方法,其特征在于:氯硅烷为二乙基二氯硅烷、乙基三氯硅烷、甲基乙烯基二氯硅烷、甲基三氯硅烷、乙烯基三氯硅烷中的至少一种,氯硅烷在反应体系中的浓度为0.01~30 mg/mL。
6.根据权利要求1所述一种有机硅纳米线接枝黏土矿物的制备方法,其特征在于:水解缩合反应条件是在20~50℃条件下震荡3~72 h。
7.根据权利要求1所述一种有机硅纳米线接枝黏土矿物的制备方法,其特征在于:所述原位生长的有机硅纳米线长径比为3~50:1。
8.一种如权利要求1所述方法制备的有机硅纳米线接枝黏土矿物在提升聚合物复合材料机械性能和离子传递性能方面的应用。
9.根据权利要求8所述一种有机硅纳米线接枝黏土矿物纳米复合材料在提升聚合物复合材料机械性能和离子传递性能方面的应用,其特征在于:以有机硅纳米线接枝黏土矿物作为填料,将其超声分散于溶剂中,随后加入聚合物,经超声、均质处理后制得均匀浆液;最后,采用溶液浇筑法制得聚合物复合材料。
10.根据权利要求9所述一种有机硅纳米线接枝黏土矿物纳米复合材料在提升聚合物复合材料机械性能和离子传递性能方面的应用,其特征在于:所述有机硅纳米线接枝黏土矿物与聚合物的质量比为1:5,溶剂为N-甲基吡咯烷酮,聚合物为聚偏氟乙烯或聚氧化乙烯。
CN202310832098.6A 2023-07-07 2023-07-07 一种有机硅纳米线接枝黏土矿物的制备方法及其应用 Pending CN116836570A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310832098.6A CN116836570A (zh) 2023-07-07 2023-07-07 一种有机硅纳米线接枝黏土矿物的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310832098.6A CN116836570A (zh) 2023-07-07 2023-07-07 一种有机硅纳米线接枝黏土矿物的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116836570A true CN116836570A (zh) 2023-10-03

Family

ID=88161351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310832098.6A Pending CN116836570A (zh) 2023-07-07 2023-07-07 一种有机硅纳米线接枝黏土矿物的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116836570A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117263527A (zh) * 2023-11-21 2023-12-22 西南石油大学 一种改性玄武岩纤维并提升环氧树脂界面性能的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117263527A (zh) * 2023-11-21 2023-12-22 西南石油大学 一种改性玄武岩纤维并提升环氧树脂界面性能的方法
CN117263527B (zh) * 2023-11-21 2024-01-23 西南石油大学 一种改性玄武岩纤维并提升环氧树脂界面性能的方法

Similar Documents

Publication Publication Date Title
Ramezani et al. Carbon nanotube reinforced cementitious composites: A comprehensive review
Chen et al. Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation
Ke et al. Polymer-layered silicate and silica nanocomposites
JP5775603B2 (ja) グラフェン誘導体−カーボンナノチューブ複合材料と、その作製方法
CN106752119B (zh) 一种炭黑纳米材料的制备方法
Krishna et al. The role of graphene and its derivatives in modifying different phases of geopolymer composites: A review
Yuan et al. Synthesis and characterization of poly (ethylene terephthalate)/attapulgite nanocomposites
CN101633779A (zh) 导电聚苯胺复合电极材料及其制备方法
CN116836570A (zh) 一种有机硅纳米线接枝黏土矿物的制备方法及其应用
CN101032756A (zh) 原位合成碳纳米管/镍/铝增强增韧氧化铝基复合材料制备方法
Tang et al. Agglomeration mechanism and restraint measures of SiO2 nanoparticles in meta-aramid fibers doping modification via molecular dynamics simulations
KR20080098054A (ko) 탄소 나노구조를 조합한 중합체 재료 및 그 제조방법
WO2011109421A1 (en) Novel nanocomposite for sustainability of infrastructure
JP2009534284A (ja) 変性オルガノクレー
CN101492166A (zh) 一种结构可控的粘土气凝胶的制备方法
CN1778682A (zh) 微结构可控纳米氧化铜的制备方法
Wang et al. The electrorheological properties of polyaniline nanofiber/kaolinite hybrid nanocomposite
He et al. Hydrothermal synthesis of boehmite nanorods from alumina sols
WO2007127906A1 (en) Nano-filler for composites
Litina et al. Nanocomposites of polystyrene-b-polyisoprene copolymer with layered silicates and carbon nanotubes
Hu et al. Functionalized graphene nanosheets with fewer defects prepared via sodium alginate assisted direct exfoliation of graphite in aqueous media for lithium-ion batteries
Shan et al. Electrochemical preparation of hydroxylated boron nitride nanosheets for solid–state flexible supercapacitors using deep eutectic solvent and water mixture as electrolytes
Shamsaei et al. Graphene oxide-based mesoporous calcium silicate hydrate sandwich-like structure: synthesis and application for thermal energy storage
Zeng et al. Cationic polyelectrolyte-assisted synthesis of silica nanochains for enhancing mechanical properties of sodium alginate composite films
Wang et al. Synthesis and characterization of clay/polyaniline nanofiber hybrids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination