CN116832768B - 一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用 - Google Patents

一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用 Download PDF

Info

Publication number
CN116832768B
CN116832768B CN202310922303.8A CN202310922303A CN116832768B CN 116832768 B CN116832768 B CN 116832768B CN 202310922303 A CN202310922303 A CN 202310922303A CN 116832768 B CN116832768 B CN 116832768B
Authority
CN
China
Prior art keywords
sio
adsorbent
spherical
casio
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310922303.8A
Other languages
English (en)
Other versions
CN116832768A (zh
Inventor
胡迎超
付瑞诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202310922303.8A priority Critical patent/CN116832768B/zh
Publication of CN116832768A publication Critical patent/CN116832768A/zh
Application granted granted Critical
Publication of CN116832768B publication Critical patent/CN116832768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明公开了一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用。该制备方法包括以下步骤:首先,选用特定的锂源和硅源合成Li4SiO4粉末;然后,将Li4SiO4粉末与海藻酸钠溶液混合搅拌成粘稠浆液;接着,将浆液滴入由氯化钙、乙酸锂、乳酸锂和去离子水配制成的接收液中,液滴与接收液接触瞬间自动固化成球体颗粒,静置后捞出冲洗、干燥;最后,将干燥样品煅烧,获得Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂。本发明制备过程简单,操作便捷,制备的吸附剂颗粒球形度较好、粒径分布均匀,且循环吸附CO2的能力突出,为Li4SiO4基吸附剂的工业化应用提供了良好的前景。

Description

一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其 应用
技术领域
本发明涉及新型吸附剂开发技术领域,更具体地,涉及一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用。
背景技术
近年来,全球变暖是人类所面临的一个重大难题,根据专家和学者的研究已基本确定,以CO2为首的温室气体是导致“温室效应”的主要元凶,而随着工业、农业的迅猛发展,人类对能源的需求逐年攀升,在化石燃料依旧占据能源市场主要份额的当下,碳氢化合物(化石燃料的主要成分)的大量燃烧致使大气中CO2的浓度正以惊人的速度飙升。面临如此严峻的实际情况,其中一种可行方案是开发低成本、高效率的大规模碳捕集与封存(CCS)技术。
人们普遍认为,CCS技术在实现气候变化目标、提供低碳热能和电力、实现工业脱碳,以及促进大气中CO2净排放方面发挥着关键作用。它主要包括三个步骤:首先将从烟气中捕获的CO2压缩到高压容器中;其次,捕获的CO2通过管道或容器运送到地质适宜的储存地点;最后,永久地将二氧化碳蒸汽从大气中分离出来并进行封存。其中,CO2捕集通常是指将CO2通过各种吸附剂固化,是确定CCS技术可行性和成本的最重要环节。因此,开发高效的CO2吸附剂具有重大现实意义。
Li4SiO4是一种高温固体吸附剂材料,其具备吸附速率快、理论吸附量高、吸附温度范围广等诸多应用优势,是一种理想的CO2吸附剂材料,并在近年来受到了世界范围内的广泛关注。基于Li4SiO4基吸附剂的CO2捕集系统最主要的实现途径之一是采用循环流化床(CFB)技术,通过吸附剂在CFB中的循环流化,可实现系统对工业尾气中CO2的持续脱除。然而,针对Li4SiO4基吸附剂在CFB中面临的高温烧结、粉体淘析以及自激活时间长的应用瓶颈,需对Li4SiO4基吸附剂进行改性,如添加惰性载体缓解烧结现象、粉体造粒成型减少吸附剂浪费与环境污染以及酸化改性改善吸附剂微观结构等。因此,对Li4SiO4基吸附剂的改性与成型是实现Li4SiO4基吸附剂大规模高效利用的必要前提,亦是实现碳中和战略目标的关键一步。
发明内容
针对当下工业应用对高温固体CO2吸附剂的技术需求,本发明的目的在于开发一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂,并提供其制备方法,该方法可单步实现Li4SiO4基吸附剂的改性与成型,并制备出一种全新的高温固体CO2吸附剂产品;其原理是利用海藻酸根离子与钙离子反应生成海藻酸钙包裹住Li4SiO4液滴进而“固化”成球,随后经煅烧处理使海藻酸钙转化为Li2CaSiO4,最终获得Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂颗粒。
为实现上述目的,本发明提供了一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的制备方法,包括以下步骤:
(1)以锂源和硅源为原料,通过浸渍沉淀法合成Li4SiO4粉末;
(2)将Li4SiO4粉末与海藻酸钠溶液混合制成均匀浆液;
(3)将浆液滴入接收液中,液滴自动固化使得钙离子与海藻酸根离子反应生成的海藻酸钙球壳包裹住含有Li4SiO4的液滴获得球形颗粒,静置一段时间后固液分离出颗粒,洗涤、干燥;其中,所述接收液是由氯化钙、乙酸锂、乳酸锂和去离子水混合配制得到;
(4)将干燥后的球形颗粒在空气气氛中煅烧,获得Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂。
优选的,步骤(1)中,所述锂源包括乙酸锂、草酸锂、酒石酸锂,硅源为硅溶胶,采用浸渍沉淀法制备Li4SiO4粉末。
优选的,步骤(2)中,海藻酸钠的浓度为1wt%~2wt%;进一步优选的,海藻酸钠的浓度为1.4wt%。
优选的,步骤(2)中,固液质量比为1:2~1:3;进一步优选的,固液质量比为3:7。
优选的,步骤(3)中,接收液中氯化钙、乙酸锂、乳酸锂的质量分数分别为5%、15-29%、5-10%。接收液中加入锂盐是为了防止球形颗粒在接收液中脱锂,而单独加入乙酸锂球形颗粒依表面旧存在较明显的凹陷,在同时加入乳酸锂后球形颗粒能够在接收液中维持较高的球形度且不发生塌陷。
优选的,步骤(3)中,通过滴定装置将浆液滴入接收液中,浆液滴入的速度为1-10ml/min,静置时间为0.5-1.5h。采用无水乙醇冲洗,采用加热干燥,干燥温度为50-100℃,进一步优选的,干燥温度为60℃。
优选的,步骤(4)中,煅烧温度为750℃~900℃,煅烧时间为60min~180min。进一步优选的,煅烧温度为850℃,煅烧时间为120min。
本发明还提供一种上述制备方法制得的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂。优选的,球形Li4SiO4基二氧化碳吸附剂的粒径在2.5~3.5mm之间。
进一步的,本发明还提供上述Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的应用,其在吸附炉和脱附炉之间循环流化使用。
总体而言,通过本发明的技术方案与现有技术相比,具有以下优点:
1、由于Li4SiO4的成型是借助海藻酸钙球壳的包裹而实现,因此当液滴与接收液接触的瞬间即可实现成型,且颗粒具备可观的机械强度,不易发生变形,此外,在后续高温煅烧过程中,成型颗粒保持住了原有形貌。
2、经验证,获得的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂颗粒形貌完整、粒径均一,机械强度优秀,更适于在吸附炉和脱附炉之间循环流化使用。
3、本发明获得的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂颗粒中Li2CaSiO4起到辅助离子迁移的作用,能对吸附剂的吸附性能产生一定的促进作用,具体表现为CO2吸附量大,循环稳定性强。
附图说明
图1是本发明制备流程示意图。
图2是实施例1、2、3所制备的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的X射线衍射图谱。
图3是实施例1所制备的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的TEM晶格图像。
图4是所制备的球形颗粒的宏观实物图,其中图4a实施例1步骤(4)中接收液中的球形吸附剂的实物图,图4b是实施例1步骤(4)中捞出干燥后的球形吸附剂的实物图,图4c为实施例1最终制备的吸附剂颗粒的实物图。
图5是实施例1、2、3所制备的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的吸附量随循环次数的变化,其中图5a、5b、5c分别为实施例1、实施例2、实施例3的循环曲线图。
图6a是实施例1所制备的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的N2等温吸附/脱附曲线,图6b是其对应的孔径分布曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种球形Li4SiO4基CO2吸附剂的制备方法,包括以下步骤:
(1)选用不同的锂源为原料合成Li4SiO4粉末;
(2)配制接收液溶液,其中氯化钙、乙酸锂、乳酸锂的质量分数分别为5wt.%、20wt.%、10wt.%;
(3)配制一定浓度的海藻酸钠溶液,并按照一定固液比与Li4SiO4粉末混合成均匀粘稠的浆液;
(4)通过滴管将浆液滴入接收液中形成球形颗粒,静置后捞出,随后捞出洗涤、干燥;
(5)将球形颗粒高温煅烧,使海藻酸钙转化成Li2CaSiO4,获得Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂颗粒。
其中,步骤(1)中,Li4SiO4粉末的制备方法为浸渍沉淀法,锂源分别选用碳酸锂、乙酸锂、草酸锂、酒石酸锂,硅源为硅溶胶,该方法往往能够制备出微观结构复杂的吸附剂颗粒,对其CO2吸附性能有促进作用。
步骤(2)中,添加适量的乙酸锂和乳酸锂可防止后续静置过程中颗粒脱锂。
步骤(3)中,海藻酸钠溶液的浓度和固液比直接影响液滴的粘稠度,固液比过高会导致浆液无法通过滴管滴出;固液比过低则会导致Li4SiO4含量过低而影响其CO2吸附性能。
步骤(4)中,静置的目的是利用使颗粒进一步固化成型。
步骤(5)中,煅烧的目的是将海藻酸钙转化为Li2CaSiO4
实施例1
(1)乙酸锂和硅溶胶作为锂源和硅源,采用浸渍沉淀法合成Li4SiO4粉末;
(2)配制接收液溶液,其中氯化钙、乙酸锂、乳酸锂的质量分数分别为5wt.%、20wt.%、10wt.%;
(3)配制1.4wt%浓度的海藻酸钠溶液,并按照固液质量比3:7与Li4SiO4粉末混合成均匀粘稠的浆液;
(4)通过滴管将浆液以10ml/min的速度滴接收液中形成球形颗粒,静置1h后捞出,随后捞出洗涤、干燥;
(5)将球形颗粒在850℃下煅烧120min,使海藻酸钙转化成Li2CaSiO4,获得Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂颗粒。
(6)将获得的球形颗粒在850℃空气气氛下煅烧30min,即可获得所需球形Li4SiO4基CO2吸附剂。
此外,实施例2-实施例7的参数具体如表1所示,表中未列的参数均与实施例1相同。
表1.实施例参数明细
实验结果分析
通过X射线衍射(XRD)对实施例1、2、3的样品进行表征,结果如图2所示,可以发现样品中检测到了较强的Li2CaSiO4衍射峰和Li4SiO4衍射峰,因此可知吸附剂颗粒的主要成分为Li2CaSiO4与Li4SiO4,且对CO2具有吸附能力。
通过透射电子显微镜(TEM)对实施例1中的样品进行了分析,并获得了其微观晶格形貌,测得了其晶格间距,即D=0.264nm间距对应Li4SiO4的(021)晶面,D=0.215nm间距对应Li2CaSiO4的(2 1 1)晶面,因此可进一步确认样品中Li4SiO4与Li2CaSiO4的存在。
图4a是实施例1步骤(4)中接收液中的球形吸附剂的实物图,可以看出颗粒的大小均一,且球形度良好,未出现明显塌陷与变形的现象。图4b为实施例1步骤(4)中捞出干燥后的球形吸附剂的实物图,可观察到洗涤干燥后颗粒表面光滑有光泽,且成型度高,依旧未观察到塌陷与破损现象。图4c为实施例1最终制备的吸附剂颗粒的实物图,可观察到,颗粒的直径集中分布于2.5mm~3.5mm之间,且表面形貌完整。
通过双控温固定床反应器测试实施例1、2、3制备的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂颗粒的循环CO2吸附性能。吸附工况为:600℃,30min,纯CO2气氛;脱附工况为:750℃,10min,纯N2气氛。循环测试次数为10次,通过每次循环前后吸附剂质量差,求得吸附剂小球的CO2吸附量(即单位质量的吸附剂吸附的CO2质量)关于循环次数的变化情况,结果分别如图5a、5b、5c所示,横坐标为循环次数,纵坐标为CO2吸附量。可观察到,实施例1所制备的吸附剂在10个循环中的CO2吸附量基本维持在0.2g/g左右,峰值可达0.24g/g,且稳定性良好,实施例2与实施例3制备的球形Li4SiO4吸附剂展现出相似的吸附量变化趋势,但两者的吸附量整体低于实施例1中的吸附剂,其吸附量变化区间分别为0.18g/g-0.21g/g与0.10g/g-0.13g/g,但三种实施例中的吸附剂均具备良好的循环稳定性,即均未出现明显的性能衰减现象。
对实施例1所制备的吸附剂的机械强度进行测试,结果如表2所示。
表2.机械性能测试
在抗磨损测试中,300转的跌落测试中,吸附剂的破碎度在3%以内,即使在2400次跌落测试中,球形吸附剂的破碎度也在9%以内,表明本发明所提供的Li4SiO4粉末成型方法具有不错机械强度的球形Li4SiO4吸附剂。
对实施例1所制备的吸附剂进行了BET测试,其所得的N2等温吸附/脱附曲线与孔径分布曲线分别如图6a和6b所示。由图6a可观察到N2等温吸附/脱附曲线可以划分为低(p/p0<0.3)、中(0.3<p/p0<0.8)、高(p/p0>0.8)三个相对压力区,在低压力区上,等温线向上凸,第一层吸附基本完成;在中压力区上,等温线水平过渡,第二层吸附开始形成;在高压力区上,吸附容积急剧增加,在饱和蒸汽压时实现吸附层数无限大,这符合II型曲线的基本特征,并在p/p0=0.6与1之间产生了H3型滞后环。此外,根据图6b中的孔径分布曲线可知,在实施例1样品中,大孔(孔径高于50nm)数量要高于介孔数量。以上结果表明实施例1样品具有非孔性表面。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂,其特征在于,所述Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的制备方法包括以下步骤:
(1)以锂源和硅源为原料,通过浸渍沉淀法合成Li4SiO4粉末;
(2)将Li4SiO4粉末与海藻酸钠溶液混合制成均匀浆液;
(3)将浆液滴入接收液中,液滴自动固化使得钙离子与海藻酸根离子反应生成的海藻酸钙球壳包裹住含有Li4SiO4的液滴获得球形颗粒,静置一段时间后固液分离出颗粒,洗涤,干燥;其中,所述接收液是由氯化钙、乙酸锂、乳酸锂和去离子水混合配制得到;
(4)将干燥后的球形颗粒在空气气氛中煅烧,获得所述Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂;
步骤(2)中,海藻酸钠溶液的浓度为1-2wt%,Li4SiO4粉末与海藻酸钠溶液的固液质量比为1:2-1:3;
步骤(3)中,接收液中氯化钙、乙酸锂和乳酸锂的质量分数分别为5%、15%-29%和5-10%;通过滴管或者注射器将浆液滴入接收液中,浆液滴入的速度为1mL/min -10mL/min;静置时间为0.5-1.5小时,使用无水乙醇进行洗涤,干燥温度为50℃-100℃;
步骤(4)中,煅烧温度为750℃-900℃,煅烧时间为60min-180 min。
2.如权利要求1所述的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂,其特征在于,步骤(1)中,所述锂源选自乙酸锂、草酸锂或酒石酸锂中的一种或两种,硅源选用硅溶胶。
3.如权利要求1所述的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂,其特征在于,所述Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的粒径在2.5-3.5mm之间。
4.一种如权利要求1-3任一项所述的Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂的应用,其特征在于,用作CO2吸附剂在吸附炉和脱附炉之间循环流化使用。
CN202310922303.8A 2023-07-26 2023-07-26 一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用 Active CN116832768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310922303.8A CN116832768B (zh) 2023-07-26 2023-07-26 一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310922303.8A CN116832768B (zh) 2023-07-26 2023-07-26 一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN116832768A CN116832768A (zh) 2023-10-03
CN116832768B true CN116832768B (zh) 2024-01-16

Family

ID=88160039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310922303.8A Active CN116832768B (zh) 2023-07-26 2023-07-26 一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116832768B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406071A (zh) * 2015-12-30 2016-03-16 马鞍山宇驰新能源材料有限公司 一种高倍率磷酸钒锂正极材料及其制备方法和应用
CN106000301A (zh) * 2016-05-30 2016-10-12 华中科技大学 一种球状钙基co2吸附剂的制备方法
KR101973990B1 (ko) * 2018-01-16 2019-04-30 주식회사 임금님명품침대가구 게르마늄이 함유된 브래지어용 패드의 제조방법 및 이에 의해 제조된 브래지어용 패드
CN110394145A (zh) * 2019-08-06 2019-11-01 中南大学 一种球形Li4SiO4基CO2吸附剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406071A (zh) * 2015-12-30 2016-03-16 马鞍山宇驰新能源材料有限公司 一种高倍率磷酸钒锂正极材料及其制备方法和应用
CN106000301A (zh) * 2016-05-30 2016-10-12 华中科技大学 一种球状钙基co2吸附剂的制备方法
KR101973990B1 (ko) * 2018-01-16 2019-04-30 주식회사 임금님명품침대가구 게르마늄이 함유된 브래지어용 패드의 제조방법 및 이에 의해 제조된 브래지어용 패드
CN110394145A (zh) * 2019-08-06 2019-11-01 中南大学 一种球形Li4SiO4基CO2吸附剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents;Xiaoxiang Chen,et al.;《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》;第41卷(第30期);第13077-13085页 *
Novel low cost Li4SiO4-based sorbent with naturally occurring wollastonite as Si-source for cyclic CO2 capture;Yang, YD,et al.;《CHEMICAL ENGINEERING JOURNAL》;第328-337页 *
燃煤烟气CO2吸附剂造粒成型技术研究进展;于戈等;《煤炭科学技术》;第96-105页 *

Also Published As

Publication number Publication date
CN116832768A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
Yang et al. Preparation of novel Li4SiO4 sorbents with superior performance at low CO2 concentration
CN107661748B (zh) 有机胺功能化大孔容二氧化硅co2吸附剂及其制备方法
Wang et al. Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture
CN101537339B (zh) 表面包覆CaTiO3的氧化钙基CO2吸附剂的制备
CN101618869B (zh) 一种小尺寸介孔空心碳球的制备方法
Zhang et al. Fly ash-derived solid amine sorbents for CO2 capture from flue gas
Zeng et al. High-performance CO 2 capture on amine-functionalized hierarchically porous silica nanoparticles prepared by a simple template-free method
Xie et al. Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas
Wang et al. CaO-based meshed hollow spheres for CO2 capture
CN107321296A (zh) 一种高性能复合MgO基CO2中温吸附剂及其制备方法
CN1762572A (zh) 含硅纳米氧化钙高温二氧化碳吸附剂和该吸附剂的制备方法以及在制氢工艺中的应用
Kasikamphaiboon et al. CO2 adsorption from biogas using amine-functionalized MgO
Shen et al. A green synthesis of PEI@ nano-SiO 2 adsorbent from coal fly ash: selective and efficient CO 2 adsorption from biogas
CN110394145B (zh) 一种球形Li4SiO4基CO2吸附剂的制备方法
Cao et al. Preparation of potassium intercalated carbons by in-situ activation and speciation for CO2 capture from flue gas
Yang et al. Novel synthesis of tailored Li4SiO4-based microspheres for ultrafast CO2 adsorption
Puccini et al. Removal of CO2 from flue gas at high temperature using novel porous solids
CN116832768B (zh) 一种Li2CaSiO4修饰型Li4SiO4基球形CO2吸附剂、制备方法及其应用
Shao et al. Sustainable preparation of hierarchical porous carbon from discarded shells of crustaceans for efficient CO2 capture
CN113600135A (zh) 一种三维多孔石墨烯气凝胶材料及其制备方法与应用
CN110496589B (zh) 一种水滑石及其制备方法和水滑石在吸附水体里pfos污染物中的应用
CN109264713B (zh) 一种二氧化碳物理吸附用生物质焦油基高比表面积多孔碳的制备方法
Mei et al. CO2 adsorption properties of mixed-amine functionalized mesoporous molecular sieve KIT-6
CN115414922B (zh) 一种球形Li4SiO4基CO2吸附剂的制备方法
CN112354512B (zh) 双功能碱金属硝酸盐修饰CdO-MgCO3材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant