CN116760412A - An ANN-based time-interleaved ADC calibrator - Google Patents
An ANN-based time-interleaved ADC calibrator Download PDFInfo
- Publication number
- CN116760412A CN116760412A CN202310826613.XA CN202310826613A CN116760412A CN 116760412 A CN116760412 A CN 116760412A CN 202310826613 A CN202310826613 A CN 202310826613A CN 116760412 A CN116760412 A CN 116760412A
- Authority
- CN
- China
- Prior art keywords
- calibration
- module
- output
- mismatch
- calibration module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 claims description 52
- 239000013598 vector Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 12
- 210000002569 neuron Anatomy 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000012549 training Methods 0.000 abstract description 3
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000013507 mapping Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000013434 data augmentation Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域Technical field
本发明属于集成电路技术领域,具体涉及一种基于ANN的时间交织ADC校准器。The invention belongs to the technical field of integrated circuits, and specifically relates to an ANN-based time interleaved ADC calibrator.
背景技术Background technique
时间交织模数转换器(Time-Interleaved ADC,简称TI ADC)的原理如图1所示,将N个子ADC组合到一个ADC系统中交错输出,从而成N倍地提高ADC系统的采样率。然而,时间交织ADC很容易受到非线性和通道间失配的影响,这在输出频谱中带来了尖刺和谐波,从而降低了ADC的整体性能。因此,对于时间交织ADC中各类误差的校准是必不可少的。The principle of a time-interleaved analog-to-digital converter (Time-Interleaved ADC, referred to as TI ADC) is shown in Figure 1. N sub-ADCs are combined into an ADC system to interleave output, thereby increasing the sampling rate of the ADC system by N times. However, time-interleaved ADCs are susceptible to nonlinearity and channel-to-channel mismatch, which introduce spikes and harmonics in the output spectrum, thereby degrading the overall performance of the ADC. Therefore, calibration of various errors in time-interleaved ADCs is essential.
尽管现在对时间交织ADC的校准技术进行了广泛的研究,但基于数字模型的现有方法仍然存在对输入信号的限制、额外的电路设计或高精度参考等问题。此外,对不同误差的校准可能会相互影响,且ADC和各种校准模块之间的复杂交互使校准过程的设计和控制变得繁琐。鉴于这些限制,本文提出了一种基于人工神经网络(Artificial NeuralNetwork,简称ANN)的时间交织ADC校准器,该校准器可以高精度地校准通道间的非线性和时序失配,并且在抑制杂散和谐波的能力上优于以前的工作。此外,基于ANN的校准器也被证明在校准随机信号和宽频信号方面具有良好效果。Although calibration techniques for time-interleaved ADCs are now extensively studied, existing methods based on digital models still suffer from issues such as limitations on input signals, additional circuit design, or high-precision references. In addition, calibrations for different errors may affect each other, and the complex interactions between the ADC and various calibration modules make the design and control of the calibration process cumbersome. In view of these limitations, this paper proposes a time-interleaved ADC calibrator based on Artificial Neural Network (ANN), which can calibrate inter-channel nonlinearity and timing mismatch with high accuracy and suppress spurs. and harmonic capabilities superior to previous work. In addition, ANN-based calibrators have also proven to be effective in calibrating random and broadband signals.
ANN是一种受到人类神经系统启发的计算模型,用于解决复杂的机器学习和人工智能任务。ANN由大量的人工神经元(也称为节点或单元)组成,这些神经元通过连接来模拟神经系统中的神经元之间的相互作用。ANN广泛应用于许多领域,包括图像和语音识别、自然语言处理、预测分析、模式识别等。它具有良好的非线性建模能力和适应性,并能从大量数据中学习和提取特征。随着人工智能技术的进步,ANN有可能用于ADC的误差校准,以提高性能并简化模拟前端的设计复杂性。此外,已知ANN在训练阶段受益于噪声和其他随机误差的数据增强,这有助于在ADC校准的背景下增强鲁棒性。ANN is a computational model inspired by the human nervous system and is used to solve complex machine learning and artificial intelligence tasks. ANN consists of a large number of artificial neurons (also called nodes or units) that are connected to simulate the interactions between neurons in the nervous system. ANN is widely used in many fields, including image and speech recognition, natural language processing, predictive analysis, pattern recognition, etc. It has good nonlinear modeling capabilities and adaptability, and can learn and extract features from large amounts of data. With the advancement of artificial intelligence technology, ANN has the potential to be used for error calibration of ADCs to improve performance and simplify the design complexity of the analog front-end. Furthermore, ANNs are known to benefit from data augmentation with noise and other random errors during the training phase, which contributes to increased robustness in the context of ADC calibration.
发明内容Contents of the invention
本发明提出了一种基于ANN的ADC校准机制,并在此基础上提出了一种基于ANN的TI ADC校准器。The present invention proposes an ANN-based ADC calibration mechanism, and on this basis, proposes an ANN-based TI ADC calibrator.
所提出的ADC校准机制如图2所示,其思路是通过ANN实现非线性的向量映射,从而重构ADC的输入信号,抑制ADC内部产生的谐波与杂散。将ADC的模拟输入(也是预期的理想输出)视为时域中的向量(序列[x1,x2,...,xL],其中xk表示一个输入样本,L表示向量长度),将实际输出视为向量/>(序列[y1,y2,...,yL],其中yk表示一个输出样本),VRM校准从ADC的输出/>恢复向量/> The proposed ADC calibration mechanism is shown in Figure 2. The idea is to realize nonlinear vector mapping through ANN, thereby reconstructing the input signal of the ADC and suppressing the harmonics and spurious generated inside the ADC. Treat the analog input of the ADC (also the expected ideal output) as a vector in the time domain (Sequence [x 1 ,x 2 ,...,x L ], where x k represents an input sample and L represents the vector length), treat the actual output as a vector/> (Sequence [y 1 , y 2 ,..., y L ], where y k represents an output sample), VRM calibrates the output from the ADC/> Recovery vector/>
注意ANN实现的映射需要是双射(bijective),从而保证校准器的输入与输出是一一对应的。为保证ANN实现双射的向量恢复映射,本发明提出了两种方法:维度扩展法和长度增加法,维度扩展法的思路是通过增加额外的参数来扩大的维度,表示为:Note that the mapping implemented by ANN needs to be bijective to ensure that the input and output of the calibrator are in one-to-one correspondence. In order to ensure that the ANN achieves bijective vector recovery mapping, the present invention proposes two methods: the dimension expansion method and the length increase method. The idea of the dimension expansion method is to expand the ANN by adding additional parameters. The dimensions of , expressed as:
其中αk和βk是与误差相关的参数,如用于校准与频率有关的误差(如TI ADC中的时序失配误差)的信号导数值,用于校准与编码有关的误差(如流水线式ADC中的级间增益误差)的每个阶段的编码等。通过扩展输入向量的维度,引入了更多的信息,使ANN更有可能实现双射。此外,更多的维度为ANN提供了更多的自由度,以更好地表示复杂的ADC输入-输出关系,从而实现双射。Among them, α k and β k are error-related parameters, such as signal derivative values used to calibrate frequency-related errors (such as timing mismatch errors in TI ADC), and used to calibrate encoding-related errors (such as pipelined inter-stage gain error in the ADC) encoding of each stage, etc. By expanding the input vector dimensions, introducing more information, making the ANN more likely to achieve bijection. In addition, more dimensions provide ANN with more degrees of freedom to better represent complex ADC input-output relationships, thereby achieving bijection.
长度增加法是指增加ANN的输入向量的长度L。随着L的增加,向量/>携带了更多的信号信息,这使通过ANN的映射趋于双射。此外,较长的输入向量允许对映射的输入空间进行更精细的划分,这有助于减少映射中的碰撞(collisions)和模糊(ambiguities),提高ANN的准确性和鲁棒性。因此,具有较大L的ANN更有可能完成偏向映射并恢复预期信号。The length increasing method refers to increasing the input vector of the ANN The length L. As L increases, the vector/> It carries more signal information, which makes the mapping through ANN tend to be bijective. In addition, longer input vectors allow for a finer partitioning of the mapped input space, which helps reduce collisions and ambiguities in the map and improves the accuracy and robustness of the ANN. Therefore, ANNs with larger L are more likely to complete bias mapping and recover the expected signal.
在以上理论的基础上,本发明提出一种基于ANN的TI ADC校准器,该校准器框图如图3所示。该校准器中包含两个功能性网络,非线性校准网络(Nonlinearity CalibrationNetwork,NCN)和时序失配校准网络(Timing Mismatch Calibration Network,简称TMCN)。NCN被设计用来抑制TI ADC中每个通道ADC的非线性,从而校准通道间的非线性失配。另一方面,TMCN负责通道间的时序失配的校准。TI ADC的每个通道输出被送入NCN中进行非线性校准,之后通过简单的加法和乘法消除失调失配和增益失配。然后,每个通道被校准的输出被交织合并,并与相应的导数值一起被送到TMCN进行时序失配校准,TMCN的输出是预期的校准结果,也是整个校准器的最终输出。On the basis of the above theory, the present invention proposes a TI ADC calibrator based on ANN. The block diagram of the calibrator is shown in Figure 3. The calibrator contains two functional networks, the Nonlinearity Calibration Network (NCN) and the Timing Mismatch Calibration Network (TMCN). NCN is designed to suppress the nonlinearity of each channel ADC in TI ADC, thereby calibrating the nonlinear mismatch between channels. On the other hand, TMCN is responsible for the calibration of timing mismatch between channels. Each channel output of the TI ADC is fed into the NCN for nonlinear calibration, and then offset mismatch and gain mismatch are eliminated through simple addition and multiplication. Then, the calibrated output of each channel is interleaved and combined, and sent to TMCN together with the corresponding derivative value for timing mismatch calibration. The output of TMCN is the expected calibration result and the final output of the entire calibrator.
NCN和TMCN具体结构分别如下:The specific structures of NCN and TMCN are as follows:
NCN的结构如图4所示,是一个卷积神经网络(convolutional neural network,简称CNN),该网络包含两层,分别是校准层和输出层。校准层包含校准模块和匹配模块,该层用于进行卷积和残差加法处理以获得用于校准的特征(feature)。输出层将特征映射到校准后的输出向量。NCN的误差校准功能主要在校准层中实现,其中校准模块以ReLU(ReLU(x)=max(0,x))为激活函数进行元素卷积以完成一个残差的捷径(short-cut)。通过仿真确定了实现最佳性能NCN的网络参数:特征通道的数量设置为32,在输出层和匹配模块中使用1×1的卷积核,而在校准模块中使用1×3卷积核。The structure of NCN is shown in Figure 4. It is a convolutional neural network (CNN for short). The network contains two layers, namely the calibration layer and the output layer. The calibration layer includes a calibration module and a matching module, which is used to perform convolution and residual addition processing to obtain features for calibration. The output layer maps features to calibrated output vectors. The error calibration function of NCN is mainly implemented in the calibration layer, in which the calibration module uses ReLU (ReLU(x)=max(0,x)) as the activation function to perform element convolution to complete a short-cut of the residual. The network parameters to achieve the best performance NCN were determined through simulation: the number of feature channels was set to 32, a 1×1 convolution kernel was used in the output layer and matching module, and a 1×3 convolution kernel was used in the calibration module.
TMCN是专门为TI ADC中的时序失配校准而设计的,维度扩展法被应用于该网络以实现双射的向量回复映射:TMCN is specifically designed for timing mismatch calibration in TI ADCs. The dimension expansion method is applied to this network to achieve bijective vector reply mapping:
其中yk是TI ADC的一个输出样本,而yk′表示yk对应的一阶导数值,N为通道数。如图5所示,TMCN采用全连接神经网络结构(fully connected neural network,简称FCNN),因为与其他网络相比,它的性能优越,结构简单。设计的网络包含三层,即输入层、隐藏层和输出层,所有这些都是全连接的,并采用ReLU作为激活函数。FCNN各层经过激活后的输出结果表示为:Among them, y k is an output sample of TI ADC, and y k ′ represents the first derivative value corresponding to y k , and N is the number of channels. As shown in Figure 5, TMCN adopts a fully connected neural network structure (fully connected neural network, referred to as FCNN) because it has superior performance and simple structure compared with other networks. The designed network contains three layers, namely input layer, hidden layer and output layer, all of which are fully connected and use ReLU as the activation function. The output results of each layer of FCNN after activation are expressed as:
其中xj是该层的第j个输入,而yi是第i个神经元的输出,wij和bi分别为权重与偏置值。TMCN的输入层包含2N个节点,隐藏层包含2048个节点,输出层包含N个节点。该网络的输入是长度为N的TI ADC输出序列以及对应的导数值,而输出是消除了时序失配的长度为N的校准后的输出向量,也是整个校准器的最终输出。Where x j is the j-th input of the layer, and yi is the output of the i-th neuron, w ij and bi are the weight and bias values respectively. The input layer of TMCN contains 2N nodes, the hidden layer contains 2048 nodes, and the output layer contains N nodes. The input of this network is the TI ADC output sequence of length N and the corresponding derivative value, and the output is the calibrated output vector of length N with the timing mismatch eliminated, which is also the final output of the entire calibrator.
本发明的技术方案为:The technical solution of the present invention is:
一种基于ANN的时间交织ADC校准器,包括非线性校准模块、失配模块、交织模块、带通微分滤波器和时序失配校准模块;An ANN-based time interleaving ADC calibrator, including a nonlinear calibration module, a mismatch module, an interleaving module, a bandpass differential filter and a timing mismatch calibration module;
所述非线性校准模块由N个非线性校准网络单元构成,对应时间交织ADC的N个输出通道,定义时间交织ADC的第k个输出通道的输出码字[b0,b1,b2,…,b(B-1)]k转化为量化值yk,则yk为第k个非线性校准网络单元的输入,k∈N;每个非线性校准网络单元由第一匹配模块、第二匹配模块、第一校准模块、第二校准模块、第三校准模块、第四校准模块和输出层构成,其中输入数据进入非线性校准网络单元后被分别输入第一匹配模块和第一校准模块,第一校准模块的输出数据输入到第二校准模块,第二校准模块的输出数据与第一匹配模块的输出数据合并后分别输入到第二匹配模块和第三校准模块,第三校准模块的输出数据输入到第四校准模块,第四校准模块的输出数据与第二匹配模块的输出数据合并后输入到输出层,输出层输出对应通道非线性校准后的数据;所述第一匹配模块和第二匹配模块为卷积层,第一校准模块、第二校准模块、第三校准模块和第四校准模块以ReLU为激活函数进行元素卷积以完成一个残差的捷径,在第一匹配模块、第二匹配模块和输出层使用1×1的卷积核,而在第一校准模块、第二校准模块、第三校准模块和第四校准模块中使用1×3的卷积核;The nonlinear calibration module is composed of N nonlinear calibration network units, corresponding to the N output channels of the time interleaved ADC, and defines the output codeword [b0, b1, b2,..., b of the kth output channel of the time interleaved ADC (B-1)]k is converted into quantized value y k , then y k is the input of the kth nonlinear calibration network unit, k∈N; each nonlinear calibration network unit consists of the first matching module and the second matching module , the first calibration module, the second calibration module, the third calibration module, the fourth calibration module and the output layer, in which the input data enters the nonlinear calibration network unit and is input into the first matching module and the first calibration module respectively. The first The output data of the calibration module is input to the second calibration module. The output data of the second calibration module is combined with the output data of the first matching module and then input to the second matching module and the third calibration module respectively. The output data of the third calibration module is input To the fourth calibration module, the output data of the fourth calibration module and the output data of the second matching module are combined and input to the output layer, and the output layer outputs the nonlinearly calibrated data of the corresponding channel; the first matching module and the second matching module The module is a convolution layer. The first calibration module, the second calibration module, the third calibration module and the fourth calibration module use ReLU as the activation function to perform element convolution to complete a residual shortcut. In the first matching module, the second calibration module The matching module and the output layer use a 1×1 convolution kernel, while the 1×3 convolution kernel is used in the first calibration module, the second calibration module, the third calibration module and the fourth calibration module;
所述失配模块用于分别对每个非线性校准网络单元输出的非线性校准后的数据进行失调失配和增益失配的补偿,对第k个输出的非线性校准后的数据进行失配补偿后得到向量/> The mismatch module is used to compensate the offset mismatch and gain mismatch for the nonlinear calibration data output by each nonlinear calibration network unit, and to compensate the nonlinear calibration data of the kth output After mismatch compensation, the vector is obtained/>
其中,Δok是失调失配补偿,△gk是增益失配补偿;Among them, Δo k is the offset mismatch compensation, Δg k is the gain mismatch compensation;
所述交织模块用于对得到的所有向量进行交织得到交织后的向量/> The interleaving module is used to perform all the vectors obtained Interleave to obtain the interleaved vector/>
其中m表示单通道转换的轮次;where m represents the round of single-channel conversion;
所述带通微分滤波器用于对进行处理得到对应的一阶导数序列/> The bandpass differential filter is used for Process to obtain the corresponding first-order derivative sequence/>
所述时序失配校准模块根据和/>进行时序失配Δtk的校准,时序失配校准模块是一个全连接神经网络,包括输入层、隐藏层和输出层,采用ReLU作为激活函数,其中输入层包含2N个节点,对应/>和/>输出层包含N个节点。激活后的FCNN各层的计算表示为:The timing mismatch calibration module is based on and/> Calibrate the timing mismatch Δt k . The timing mismatch calibration module is a fully connected neural network, including an input layer, a hidden layer and an output layer. ReLU is used as the activation function. The input layer contains 2N nodes, corresponding to/> and/> The output layer contains N nodes. The calculation of each layer of FCNN after activation is expressed as:
其中xj是该层的第j个输入,yi是该层第i个神经元的输出,wij是神经元的权重,bi该层第i个神经元的偏置。通过将和/>中的每个元素直接输入到FCNN的输入层,FCNN通过神经元间的前向传播即可完成时序失配Δtk的校准,对应完成时序失配补偿后的向量 也是校准器的输出。where x j is the j-th input of the layer, yi is the output of the i-th neuron in the layer, w ij is the weight of the neuron, and b i is the bias of the i-th neuron in the layer. by adding and/> Each element in is directly input to the input layer of FCNN. FCNN can complete the calibration of the timing mismatch Δt k through forward propagation between neurons, corresponding to the vector after completing the timing mismatch compensation. Also the output of the calibrator.
整个校准器的工作流程如图6所示,具体步骤如下:The workflow of the entire calibrator is shown in Figure 6. The specific steps are as follows:
S1、位数为B的时间交织ADC将输入信号量化为数字信号;S1. A time-interleaved ADC with a number of bits B quantizes the input signal into a digital signal;
S2、将第k通道的输出码字[b0,b1,b2,…,b(B-1)]k转化为对应的量化值yk;S2. Convert the output codeword [b 0 , b 1 , b 2 ,..., b (B-1) ] k of the k-th channel into the corresponding quantized value y k ;
S3、NCNk对第k通道的输出进行校准,NCNk的输入为第L长度的k通道ADC输出向量输出为L长度的通道内非线性校准后的序列/> S3, NCN k calibrates the output of the k-th channel. The input of NCN k is the k-channel ADC output vector of length L. The output is a nonlinearly calibrated sequence within a channel of length L/>
S4、对NCNk的输出向量进行传统的失调失配Δok与增益失配Δgk的补偿:通过减去失调失配Δok之后除以(1+Δgk)完成补偿,得到向量/>具体表达为:S4. Output vector of NCN k Compensate the traditional offset mismatch Δok and gain mismatch Δg k : Compensate by subtracting the offset mismatch Δok and then dividing by (1+Δg k ) to obtain the vector/> The specific expression is:
S5、将进行交织得到交织后的向量/>表达为S5, will Interleave to obtain the interleaved vector/> Expressed as
其中N为TI ADC的通道数,k表示为第k通道,m表示单通道转换的轮次;Where N is the number of channels of TI ADC, k represents the kth channel, and m represents the round of single-channel conversion;
S6、将输入到带通微分滤波器得到/>对应的导数序列/>带通微分滤波器的脉冲响应hbd[n]表示为:S6, will Input to bandpass differential filter to get/> Corresponding derivative sequence/> The impulse response h bd [n] of the bandpass differential filter is expressed as:
其中是y[n]对应的希尔伯特变换值,为向下取整函数,kNB表示输入信号在TIADC的第kNB奈奎斯特区。而hd[n]和hH[n]分别为一阶微分器与希尔伯特变换器的脉冲响应,其中L抽头的一阶微分器hd[n]表示为:where is the Hilbert transform value corresponding to y[n], It is a rounding down function, k NB indicates that the input signal is in the k-th NB Nyquist zone of TIADC. And h d [n] and h H [n] are the impulse responses of the first-order differentiator and Hilbert transformer respectively, where the L-tap first-order differentiator h d [n] is expressed as:
而L抽头的希尔伯特变换器hH[n]表示为:And the L-tap Hilbert transformer h H [n] is expressed as:
S7、将和/>输入给TMCN进行时序失配Δtk的校准,TMCN的输入为N长度的TIADC输出以及其对应的导数值序列,输出为N长度的完成时序失配补偿后的向量/>也是整个基于ANN的TI ADC校准器的输出。S7, will and/> Input to TMCN for calibration of timing mismatch Δt k . The input of TMCN is the N-length TIADC output and its corresponding derivative value sequence, and the output is an N-length vector after completion of timing mismatch compensation/> Also the output of the entire ANN-based TI ADC calibrator.
S8、基于ANN的TI ADC校准器完成校准。S8. The TI ADC calibrator based on ANN completes the calibration.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明提出的基于ANN的ADC校准机制是一种通用的具有科学性的理论,为基于ANN的ADC校准提供系统性的理论支撑。本发明提出的基于ANN的TI ADC校准器可以同时校准TI ADC的单通道非线性、通道间非线性失配、失调失配、增益失配与失调失配,提高TIADC的整体性能。由于采用ANN技术,该校准器基于大量数据训练后完成校准功能,具备良好的鲁棒性与通用性。The ANN-based ADC calibration mechanism proposed by the present invention is a universal and scientific theory, which provides systematic theoretical support for the ANN-based ADC calibration. The ANN-based TI ADC calibrator proposed by the present invention can simultaneously calibrate the single-channel nonlinearity, inter-channel nonlinear mismatch, offset mismatch, gain mismatch and offset mismatch of the TI ADC, thereby improving the overall performance of the TIADC. Due to the use of ANN technology, the calibrator completes the calibration function based on a large amount of data training, and has good robustness and versatility.
附图说明Description of the drawings
图1为时间交织ADC原理框图。Figure 1 is a schematic block diagram of a time interleaved ADC.
图2为本发明提出的基于ANN的ADC校准机制框图。Figure 2 is a block diagram of the ANN-based ADC calibration mechanism proposed by the present invention.
图3为本发明提出的基于ANN的TI ADC校准器框图。Figure 3 is a block diagram of the TI ADC calibrator based on ANN proposed by the present invention.
图4为本发明提出的基于ANN的TI ADC校准器中NCN的结构示意图。Figure 4 is a schematic structural diagram of the NCN in the ANN-based TI ADC calibrator proposed by the present invention.
图5为本发明提出的基于ANN的TI ADC校准器中TMCN的结构示意图。Figure 5 is a schematic structural diagram of TMCN in the ANN-based TI ADC calibrator proposed by the present invention.
图6为本发明提出的基于ANN的TI ADC校准器的校准流程图。Figure 6 is a calibration flow chart of the ANN-based TI ADC calibrator proposed by the present invention.
图7为采用本发明的校准器进行仿真验证的效果图。Figure 7 is an effect diagram of simulation verification using the calibrator of the present invention.
图8为采用本发明的校准器进行片上集成校准的测试验证效果图。Figure 8 is a test verification effect diagram of on-chip integrated calibration using the calibrator of the present invention.
图9为采用本发明的校准器进行片外校准的测试验证效果图。Figure 9 is a test verification effect diagram of off-chip calibration using the calibrator of the present invention.
具体实施方式Detailed ways
在发明内容部分已经对本发明的技术方案进行了详细描述,下面以12位四通道的ADC为例,结合附图和仿真、测试示例说明本发明的实用性。The technical solution of the present invention has been described in detail in the content of the invention. The following takes a 12-bit four-channel ADC as an example to illustrate the practicality of the present invention in combination with the drawings and simulation and test examples.
实施例Example
本例为针对12位四通道4GSps的ADC进行的校准性能仿真,N=4,输入信号频率为230.68MHz,幅度为-1dBFS。校准器的具体工作流程如下:This example is a calibration performance simulation for a 12-bit four-channel 4GSps ADC, N=4, the input signal frequency is 230.68MHz, and the amplitude is -1dBFS. The specific workflow of the calibrator is as follows:
S1、时间交织ADC将输入信号量化为数字信号;S1. The time-interleaved ADC quantizes the input signal into a digital signal;
S2、将第k(k=0,1,2,3,4)通道的输出码字[b0,b1,b2,…,b11]k转化为对应的归一化量化值yk:S2. Convert the output codeword [b 0 , b 1 , b 2 ,..., b 11 ] k of the kth (k=0,1,2,3,4) channel into the corresponding normalized quantized value y k :
yk=211b0+210b1+29b2+...+21b10+20b11 (7)y k =2 11 b 0 +2 10 b 1 +2 9 b 2 +...+2 1 b 10 +2 0 b 11 (7)
S3、对于k=1,2,3,4,NCNk对第k通道的输出进行校准,NCNk的输入为长度L=9的k通道ADC输出向量输出为L=9的通道内非线性校准后的序列/> S3. For k=1,2,3,4, NCN k calibrates the output of the k-th channel. The input of NCN k is the k-channel ADC output vector of length L=9. The output is the nonlinearly calibrated sequence in the channel of L=9/>
S4、对于k=1,2,3,4,对NCNk的输出向量进行传统的失调失配Δok与增益失配Δgk的补偿:通过减去失调失配Δok之后除以(1+Δgk)完成补偿,得到向量/>具体表达为:S4. For k=1,2,3,4, the output vector of NCN k Compensate the traditional offset mismatch Δok and gain mismatch Δg k : Compensate by subtracting the offset mismatch Δok and then dividing by (1+Δg k ) to obtain the vector/> The specific expression is:
S5、对于k=1,2,3,4,将进行交织得到交织后的向量/>表达为S5. For k=1,2,3,4, the Interleave to obtain the interleaved vector/> Expressed as
其中N为TI ADC的通道数,k表示为第k通道,m表示单通道转换的轮次;Where N is the number of channels of TI ADC, k represents the kth channel, and m represents the round of single-channel conversion;
S6、将输入到33抽头的一阶带通微分滤波器得到/>对应的导数序列/>由于输入在第一奈奎斯特区,一阶带通微分滤波器中kNB=1,此时的脉冲响应为,S6, will Input to a 33-tap first-order bandpass differential filter to obtain/> Corresponding derivative sequence/> Since the input is in the first Nyquist zone, k NB = 1 in the first-order bandpass differential filter, the impulse response at this time is,
S7、将和/>输入给TMCN进行时序失配Δtk的校准,TMCN的输入为长度为4的TIADC输出以及其对应的导数值序列,输出为长度为4的完成时序失配补偿后的向量也是整个基于ANN的TI ADC校准器的输出。S7, will and/> Input to TMCN for calibration of timing mismatch Δt k . The input of TMCN is the TIADC output with a length of 4 and its corresponding derivative value sequence. The output is a vector with a length of 4 after completing the timing mismatch compensation. Also the output of the entire ANN-based TI ADC calibrator.
S8、基于ANN的TI ADC校准器完成校准。S8. The TI ADC calibrator based on ANN completes the calibration.
本发明所设计的基于ANN的TI ADC校准器被用于一个12位4GSps四通道的TI ADC模型中进行仿真验证,该模型具有单通道级间增益误差、DAC误差、噪声、高阶谐波以及通道间的失调/增益/时序失配。图7展示了采用本发明所设计的基于ANN的TI ADC校准器前后的ADC输出频谱,可以看出本发明将谐波与杂散大幅度抑制,经过校准后ADC的SNDR和SFDR分别从32.20dB和32.76dB提升至65.35dB和87.05dB。The ANN-based TI ADC calibrator designed by this invention is used for simulation verification in a 12-bit 4GSps four-channel TI ADC model. The model has single-channel interstage gain error, DAC error, noise, high-order harmonics and Offset/gain/timing mismatch between channels. Figure 7 shows the ADC output spectrum before and after using the ANN-based TI ADC calibrator designed by the present invention. It can be seen that the present invention greatly suppresses harmonics and spurs. After calibration, the SNDR and SFDR of the ADC are reduced from 32.20dB to 32.20dB respectively. and 32.76dB increased to 65.35dB and 87.05dB.
此外,本发明所设计的基于ANN的TI ADC校准器在两个实际ADC芯片上得到了验证:一个是12位600MSps四通道的ADC原型芯片,带有片上集成的基于ANN的TI ADC校准器。另一个是12位5.4GSps四通道商用ADC芯片,通过片外实现基于ANN的TI ADC校准器。In addition, the ANN-based TI ADC calibrator designed by the present invention has been verified on two actual ADC chips: one is a 12-bit 600MSps four-channel ADC prototype chip with an on-chip integrated ANN-based TI ADC calibrator. The other is a 12-bit 5.4GSps four-channel commercial ADC chip that implements an ANN-based TI ADC calibrator off-chip.
图8展示了片上集成本发明所设计的基于ANN的TI ADC校准器的12位600MSps四通道的ADC原型芯片在单音测试中的校准前后的测试结果,可以看出,本发明的基于ANN的TIADC校准有效抑制了谐波与杂散,分别使ADC的SNDR和SFDR从32.79dB和35.30dB提高到62.45dB和74.21dB。Figure 8 shows the test results before and after calibration of the 12-bit 600MSps four-channel ADC prototype chip integrating the ANN-based TI ADC calibrator designed by the present invention in the single tone test. It can be seen that the ANN-based TI ADC calibrator of the present invention is TIADC calibration effectively suppresses harmonics and spurs, improving the SNDR and SFDR of the ADC from 32.79dB and 35.30dB to 62.45dB and 74.21dB respectively.
图9展示了应用本发明所设计的基于ANN的TI ADC校准器在片外进行校准的12位5.4GSps四通道商用ADC芯片在单音测试中的校准前后的测试结果,可以看出,本发明有效抑制了ADC本身的谐波与杂散。经过基于ANN的TI ADC校准后,ADC的SNDR和SFDR分别从42.38dB和43.17dB提高到53.98dB和78.25dB。Figure 9 shows the test results of the 12-bit 5.4GSps four-channel commercial ADC chip before and after calibration in the single-tone test using the ANN-based TI ADC calibrator designed by the present invention for off-chip calibration. It can be seen that the present invention Effectively suppresses the harmonics and spurs of the ADC itself. After ANN-based TI ADC calibration, the SNDR and SFDR of the ADC improved from 42.38dB and 43.17dB to 53.98dB and 78.25dB respectively.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310826613.XA CN116760412A (en) | 2023-07-06 | 2023-07-06 | An ANN-based time-interleaved ADC calibrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310826613.XA CN116760412A (en) | 2023-07-06 | 2023-07-06 | An ANN-based time-interleaved ADC calibrator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116760412A true CN116760412A (en) | 2023-09-15 |
Family
ID=87949630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310826613.XA Pending CN116760412A (en) | 2023-07-06 | 2023-07-06 | An ANN-based time-interleaved ADC calibrator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116760412A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117408315A (en) * | 2023-10-25 | 2024-01-16 | 合肥工业大学 | A forward inference module for background calibration of pipeline analog-to-digital converters |
CN118764027A (en) * | 2024-09-05 | 2024-10-11 | 中国海洋大学 | A TIADC static-dynamic error joint calibration method and system |
-
2023
- 2023-07-06 CN CN202310826613.XA patent/CN116760412A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117408315A (en) * | 2023-10-25 | 2024-01-16 | 合肥工业大学 | A forward inference module for background calibration of pipeline analog-to-digital converters |
CN118764027A (en) * | 2024-09-05 | 2024-10-11 | 中国海洋大学 | A TIADC static-dynamic error joint calibration method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116760412A (en) | An ANN-based time-interleaved ADC calibrator | |
CN103281083B (en) | Approach by inchmeal fully differential analog-digital converter with figure adjustment and processing method thereof | |
CN109347477B (en) | Successive approximation type analog-to-digital converter weight calibration method | |
WO2016127824A1 (en) | Binary capacitor array applied to single-terminal sar adc and redundancy calibrating method therefor | |
CN109361392B (en) | Successive approximation type analog-to-digital converter and weight calibration method thereof | |
CN108809310B (en) | Passive time-interleaved SAR ADC-based band-pass Delta-Sigma modulator | |
CN111654285A (en) | A Digital Background Calibration Method for Capacitance Mismatch and Gain Error of Pipelined SAR ADCs | |
Zhai et al. | High-speed and time-interleaved ADCs using additive-neural-network-based calibration for nonlinear amplitude and phase distortion | |
CN106877869B (en) | Capacitor sorting method capable of improving linearity of resistance-capacitance type successive approximation analog-to-digital converter | |
Du et al. | Capacitor mismatch calibration of a 16-bit SAR ADC using optimized segmentation and shuffling scheme | |
CN116155283A (en) | TI-ADC mismatch error calibration method based on fully connected neural network | |
CN118764027B (en) | A TIADC static-dynamic error joint calibration method and system | |
CN118041363A (en) | A neural network calibration method for TI ADC based on signal derivative information | |
CN104363019B (en) | A kind of production line analog-digital converter and its capacitor mismatch error calibration method | |
CN116015292A (en) | A ADC Calibration Method Based on Fully Connected Neural Network | |
CN114553226A (en) | Calibration method and calibration system for analog-to-digital converter | |
CN115776299A (en) | A Low Complexity TIADC Time Mismatch Error Calibration Method | |
Peng et al. | A neural network based calibration technique for TI-ADCs with derivative information | |
CN116915251A (en) | A calibration method for ADC harmonic error based on residual network | |
CN105720982B (en) | A kind of compression sampling analog-digital converter error calibrating method | |
CN115642915B (en) | A pipeline successive approximation ADC bit weight calibration system and method | |
CN112039525B (en) | Data weighted average algorithm module and analog-to-digital conversion circuit | |
CN107786206B (en) | Pipeline SAR-ADC system | |
CN117176168A (en) | Calibration method and successive approximation type analog-to-digital converter | |
CN119788073B (en) | Low-complexity ADC calibration method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |