CN116751077B - 基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法及其产品和应用 - Google Patents

基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法及其产品和应用 Download PDF

Info

Publication number
CN116751077B
CN116751077B CN202310769038.4A CN202310769038A CN116751077B CN 116751077 B CN116751077 B CN 116751077B CN 202310769038 A CN202310769038 A CN 202310769038A CN 116751077 B CN116751077 B CN 116751077B
Authority
CN
China
Prior art keywords
heat treatment
zirconia
nano
alumina
alumina micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310769038.4A
Other languages
English (en)
Other versions
CN116751077A (zh
Inventor
徐刚
卢泽华
冯凡杰
张开程
陈瑶
韩高荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310769038.4A priority Critical patent/CN116751077B/zh
Publication of CN116751077A publication Critical patent/CN116751077A/zh
Application granted granted Critical
Publication of CN116751077B publication Critical patent/CN116751077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种基于二次沉淀‑热处理在氧化锆表面制备氧化铝微纳结构层的方法,包括:(1)将氧化铝分散于氢氧化钠溶液中进行反应,过滤取清液记为前驱体液A;将氧化铝分散于氨水溶液中进行反应,过滤取清液记为前驱体液B;(2)将氧化锆陶瓷置于前驱体液A中,加热前驱体液A至沸腾并保持一段时间后,取出后进行热处理;(3)将步骤(2)处理后的氧化锆陶瓷再置于前驱体液B中,加热前驱体液B至沸腾并保持一段时间后,取出后再进行二次热处理。本发明制备的氧化铝微纳结构层比表面积较高,润湿性好,粗糙度高,与氧化锆表面结合较紧密;同时氧化铝为两性氧化物,化学性质远较氧化锆活泼,可取代氧化锆成为后续修饰改性的基体对象。

Description

基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层 的方法及其产品和应用
技术领域
本发明涉及氧化锆陶瓷表面改性的技术领域,尤其涉及一种基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法及其产品和应用。
背景技术
氧化锆陶瓷ZrO2是一种生物惰性陶瓷,自20世纪70、80年代便开始应用于生物植入体材料领域,用于制造人工骨、人工关节、瓣膜和牙种植体等等。目前最常用的氧化锆陶瓷材料是氧化钇稳定型四方相氧化锆。氧化锆陶瓷具有如下优点:化学惰性耐腐蚀;生物相容性优异,对人体无毒性作用,适用于对金属植入材料过敏的患者;机械性能优越,使用寿命长,可用于制造形状复杂、尺寸精准的植入体。但大量实验研究表明,由于极其化学惰性、难以吸附人体内蛋白促进成骨细胞黏附,氧化锆陶瓷的成骨性能欠佳,这严重限制了它在人体植入物领域的应用与发挥。
通过喷砂、激光处理、酸碱腐蚀、仿生沉积和仿生功能化等方法技术可以改变氧化锆表面的元素、物质和微观结构等等,从而调控表面的化学与物理特性,以获得理想的成骨性能。但限于成本、技术等因素,目前工业生产与临床上的氧化锆表面改性手段仍比较单一,主要采用的改性手法是喷砂、酸碱腐蚀和仿生沉积等等,这些手段技术对氧化锆的改性效果仍相当有限:喷砂会引起氧化锆的相变,造成陶瓷表面结构的损伤,降低其机械性能;酸碱腐蚀对极其化学惰性的氧化锆的影响十分有限;仿生沉积所制备的磷灰石类层与氧化锆的结合能力较弱,容易从氧化锆上剥落下来。
发明内容
针对现有技术的不足,本发明公开了一种基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,制备所得的氧化铝微纳结构层与氧化锆表面结合较紧密,比表面积较高,润湿性好,粗糙度高;同时氧化铝为两性氧化物,化学性质上远较氧化锆活泼,可以取代氧化锆、成为后续进一步修饰改性的基体对象。
具体技术方案如下:
一种基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,包括如下步骤:
(1)将氧化铝分散于氢氧化钠溶液中进行反应,过滤取清液记为前驱体液A;将氧化铝分散于氨水溶液中进行反应,过滤取清液记为前驱体液B;
(2)将氧化锆陶瓷置于所述前驱体液A中,加热前驱体液A至沸腾并保持一段时间后,取出氧化锆陶瓷后进行热处理;
(3)将步骤(2)处理后的氧化锆陶瓷再置于所述前驱体液B中,加热前驱体液B至沸腾并保持一段时间后,取出氧化锆陶瓷再进行二次热处理。
本发明公开的制备方法,原料简单易得,通过两步二次沉淀-热处理工艺就可以在氧化锆陶瓷表面原位生成具有特殊形貌的氧化铝微纳结构层,该结构层由多重堆叠的三角形纳米片组成,三角形纳米片呈规则的等边三角形,且多重堆叠而成的三角形纳米片间彼此独立;该结构层平铺于氧化锆陶瓷表面,与氧化锆陶瓷紧密结合;且单个纳米片和胶黏剂的接触面积更大,而且它在纵向上有一定的深度和复杂性,有利于与牙齿的粘接。
本制备方法中有两个关键参数,其一为步骤(1)中采用的氢氧化钠溶液的浓度;其二为两次热处理的加热方式。
经试验发现,若步骤(1)中采用的氢氧化钠溶液的浓度过低,最终制备得到的氧化铝微纳结构层中堆叠的纳米片层尺寸不均一,且存在明显的黏连;若采用的氢氧化钠溶液的浓度过高,最终制备得到的氧化铝微纳结构层为由纳米颗粒相互黏连形成的板状物,该形貌不仅容易出现裂纹,且易从氧化锆陶瓷表面剥落下来。因此,所述氢氧化钠溶液的浓度优选为1.5~2.5g/L。
经试验还发现,通过对所述氢氧化钠溶液的浓度进行调控,可以调控最终制备的氧化铝微纳结构层中多重堆叠的三角形纳米片的尺寸。
本制备方法中两次热处理均采用先从室温先升温至95~110℃并保温30~60min,再升温至850~950℃并保温10~60min的加热方式。经试验发现,该加热方式是获得本发明特殊形貌的关键;若两次热处理均采用一次性加热至850~950℃,则制备得到的氧化铝微纳结构层倾向于形成玻璃相结构,且随着保温时间的增加,更倾向于形成表面光滑、无明显颗粒和片状结构的玻璃相;该形貌的比表面积较低、粗糙度低、润湿性差,不利于后续进一步的物理或化学改性。
步骤(1)中:
优选的,氧化铝与所述氢氧化钠溶液中氢氧化钠的质量比为4.0~6.5。
优选的,将浓氨水与去离子水混合得到浓度为10~30mL/L的氨水溶液;氧化铝与浓氨水的质量体积比为0.3~1.0g/mL。
所述浓氨水的质量浓度选自25~28wt%。
步骤(2)中:
优选的,沸腾保持时间为10~20min;
优选的,所述热处理的升温速率为10~20℃/min;
进一步优选,所述热处理为从室温先升温至100℃并保温60min,再升温至900℃并保温30min。
步骤(3)中:
优选的,沸腾保持时间为10~20min;
优选的,所述二次热处理的升温速率为10~20℃/min。
进一步优选,所述二次热处理为从室温先升温至100℃并保温60min,再升温至900℃并保温30min。
本发明还公开了根据上述的方法制备的表面覆盖有氧化铝微纳结构层的氧化锆陶瓷。
所述氧化铝微纳结构层由多重堆叠的三角形纳米片组成,所述氧化铝微纳结构层平铺于氧化锆陶瓷表面;
所述三角形纳米片呈等边三角形,边长为300~700nm,堆叠厚度为500~1000nm。
本发明还公开了所述的表面覆盖有氧化铝微纳结构层的氧化锆陶瓷在生物植入体材料领域的应用。
与现有技术相比,本发明具有如下有益效果:
本发明公开了一种在氧化锆表面制备氧化铝微纳结构层的方法,采用简单的原料,通过简单的两步沉淀-热处理工艺,成功在氧化锆表面制备得到具有特殊形貌的氧化铝微纳结构层,该结构层由多重堆叠的三角形纳米片组成,三角形纳米片呈规则的等边三角形,且多重堆叠而成的三角形纳米片间彼此独立;该氧化铝微纳结构层与氧化锆表面结合较紧密,比表面积较高,润湿性好,粗糙度高;同时氧化铝为两性氧化物,化学性质上远较氧化锆活泼,可以取代氧化锆、成为后续进一步修饰改性的基体对象。
附图说明
图1为实施例1中制备的中间产物的SEM图;
图2为实施例1制备的最终产物的SEM图;
图3为实施例2中制备的中间产物的SEM图;
图4为实施例2制备的最终产物的SEM图;
图5为对比例1制备的最终产物的SEM图;
图6为对比例2制备的最终产物的SEM图;
图7为对比例3制备的最终产物的SEM图;
图8为对比例4制备的最终产物的SEM图;
图9为对比例5制备的最终产物的SEM图。
具体实施方式
下面结合实施例和对比例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
1)将一定量的氢氧化钠溶于去离子水中,配置成浓度为1.5g/L的氢氧化钠溶液;将一定量的浓氨水(25wt%)溶于去离子水中,配置成浓度为30mL/L的氨水溶液。
2)将一定量的氧化铝粉末分散于氢氧化钠溶液中,氧化铝粉末与步骤1)中加入的氢氧化钠的质量比为6.5:1,配置得到混合液A,室温静置1h后进行过滤,取过滤后所得清液得到氢氧化钠-氧化铝前驱体液;将一定量的氧化铝粉末分散于氨水溶液中,氧化铝粉末与步骤1)中加入的浓氨水的质量体积比为0.3g/mL,配置得到混合液B,室温静置1h后进行过滤,取过滤后所得清液得到氨水-氢氧化铝前驱体液。
3)将氧化锆陶瓷置于氢氧化钠-氧化铝前驱体液中,加热前驱体液至沸腾并保持10分钟。
4)从氢氧化钠-氧化铝前驱体液中取出氧化锆陶瓷后置于马弗炉中,从室温以15℃/min的速度升温至100℃,保温1小时,再从100℃以15℃/min的速度升温至900℃并在900℃下保温30min,得到覆盖有初次氧化铝层的氧化锆陶瓷。
5)将步骤4)中制备的覆盖有初次氧化铝层的氧化锆陶瓷置于氨水-氧化铝前驱体液中,加热前驱体液至沸腾并保持10分钟。
6)从氨水-氧化铝前驱体液中取出氧化锆陶瓷后置于马弗炉中,从室温以15℃/min的速度升温至100℃,保温1小时,再从100℃以15℃/min的速度升温至900℃并在900℃下保温30min,得到表面覆盖有氧化铝微纳结构层的氧化锆陶瓷。
图1为本实施例步骤4)制备的氧化锆陶瓷表面覆盖的初次氧化铝层的SEM照片,观察发现,初次氧化铝层由形状不规则的纳米片组成,尺寸为1~2μm,厚度为10~20nm,同时纳米片下方存在少量尚未完全转化为大尺寸纳米片的初级纳米颗粒和细小纳米片,粒径和尺寸在100~200nm范围内;由此判断大尺寸纳米片由初级的纳米颗粒和细小纳米片进一步生长发育而形成;大尺寸纳米片之间存在相互交错、重叠的空间关系。
图2为本实施例最终制备的氧化锆陶瓷表面覆盖的氧化铝微纳结构层的SEM照片,观察可以确认,氧化铝微纳结构层平铺于氧化锆陶瓷表面,由多重堆叠的三角形纳米片组成,三角形纳米片呈规则的等边三角形,边长为300~400nm,堆叠厚度为500~700nm,多重堆叠而成的三角形纳米片间彼此独立。
实施例2
制备工艺与实施例1中基本相同,区别仅在于:
将步骤1)中氢氧化钠溶液浓度替换为2.5g/L。
图3为本实施例步骤4)制备的氧化锆陶瓷表面覆盖的初次氧化铝层的SEM照片,观察发现,其形貌与实施例1中的类似,但发现,其纳米片在氧化锆陶瓷表面的覆盖率更高,氧化锆陶瓷大颗粒的裸露面积更小,未完全反应转化为大尺寸纳米片的纳米颗粒和细小纳米片几乎消失。
图4为本实施例制备得到的氧化锆陶瓷表面覆盖的氧化铝微纳结构层的SEM照片,观察发现,其形貌与实施例1中的类似,但,等边三角形纳米片的边长为500~700nm,堆叠厚度为800~1000nm,纳米片的边长和堆叠厚度均有增大,同时形状不规则的纳米片的数量有所减少。
实施例3
制备工艺与实施例1中基本相同,区别仅在于:
将步骤1)中氨水溶液浓度替换为10mL/L。
经测试,本实施例制备的氧化锆陶瓷表面覆盖的氧化铝层的形貌与实施例1中的基本相同。
实施例4
制备工艺与实施例1中基本相同,区别仅在于:
步骤2)中,在配置混合液A时,将加入的氧化铝与步骤1)中加入的氢氧化钠的质量比替换为4.0。
经测试,本实施例制备的氧化锆陶瓷表面覆盖的氧化铝层的形貌与实施例1中的基本相同。
实施例5
制备工艺与实施例1中基本相同,区别仅在于:
将步骤2)中,在配置混合液B时,将加入的氧化铝与步骤1)中加入的氨水的质量体积比替换为1.0g/mL。
经测试,本实施例制备的氧化锆陶瓷表面覆盖的氧化铝层的形貌与实施例1中的基本相同。
对比例1
制备工艺与实施例1中基本相同,区别仅在于:
将步骤1)中氢氧化钠溶液浓度替换为0.5g/L。
图5为本对比例最终制备的氧化锆陶瓷表面覆盖的氧化铝层的SEM照片,观察发现,堆叠纳米片的形状与尺寸不够规整,尺寸范围为200~800nm,尺寸分布相当不均一,各纳米片堆叠体间彼此黏连,组合成2~3μm的堆叠体聚集体。
对比例2
制备工艺与实施例1中基本相同,区别仅在于:
将步骤1)中氢氧化钠溶液浓度替换为3.5g/L。
图6为本对比例最终制备的氧化锆陶瓷表面覆盖的氧化铝层的SEM照片,观察发现,氧化铝层为由纳米颗粒相互黏连形成的板状物;纳米颗粒尺寸约为50nm,颗粒间相互黏连呈现蠕虫状;形成的板状物易出现裂纹、从氧化锆陶瓷表面剥落下来。
对比例3
制备工艺与实施例1中基本相同,区别仅在于:
将步骤4)中的热处理工艺替换为从室温以15℃/min的速度升温至900℃,保温30min;
将步骤6)中的热处理工艺替换为从室温以15℃/min的速度升温至900℃,保温30min。
图7为本对比例制备的氧化锆陶瓷表面覆盖的氧化铝层的SEM照片,观察发现,氧化铝层由下层纳米颗粒的烧结层和上部的纳米片团聚体组成。下层烧结层由粒径100~150nm的纳米颗粒团聚烧结而成,部分烧结完成的区域表面光滑,而尚未完全烧结的区域表面可见粒径100~150nm的初级颗粒。上部的纳米片团聚体零散分布,附着在纳米颗粒的烧结层上,单个纳米片尺寸为200~400nm。这可能是由于采用该热处理过程,初级纳米颗粒更倾向于自行烧结成玻璃相结构,继而导致二次沉淀-热处理生成的纳米片无法与一次沉淀-热处理的氧化铝层融合形成新的结构。
对比例4
制备工艺与对比例3中基本相同,区别仅在于:
步骤4)中,升温至900℃,保温90min;
步骤6)中,升温至900℃,保温90min。
图8为本对比例制备的氧化锆陶瓷表面覆盖的氧化铝层的SEM照片,观察发现,其形貌与对比例3中的类似,但随着热处理时间的延长,20k放大倍数下可见的纳米颗粒和二次沉淀-热处理生成的纳米片消失,这可能是因为保温时间增大,纳米颗粒和纳米片进一步融合烧结,生成大块的表面光滑、无明显颗粒和片状结构的玻璃相。
对比例5
制备工艺与实施例1中基本相同,区别仅在于:
步骤4)中,从室温以15℃/min的速度升温至100℃,保温1h,再从100℃以15℃/min的速度升温至900℃并在900℃下保温2h。
图9为本对比例制备的氧化锆陶瓷表面覆盖的氧化铝层的SEM照片,观察发现,氧化铝层出现大的裂纹将氧化锆陶瓷基底暴露出来,并发现,规整的三角形纳米片的形状被破坏。
上述公布的是较佳的实施例,但本发明的保护范围并不局限于此,本领域的普通技术人员,极易根据上述实施例,领会本发明的精神,并做出不同的引申和变化,但只要不脱离本发明的精神,都在本发明的保护范围内。

Claims (10)

1.一种基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,其特征在于,包括如下步骤:
(1)将氧化铝分散于氢氧化钠溶液中进行反应,过滤取清液记为前驱体液A;将氧化铝分散于氨水溶液中进行反应,过滤取清液记为前驱体液B;
所述氢氧化钠溶液的浓度为1.5~2.5g/L;
(2)将氧化锆陶瓷置于所述前驱体液A中,加热前驱体液A至沸腾并保持一段时间后,取出氧化锆陶瓷后进行热处理;
所述热处理为从室温先升温至95~110℃并保温30~60min,再升温至850~950℃并保温10~60min;
(3)将步骤(2)处理后的氧化锆陶瓷再置于所述前驱体液B中,加热前驱体液B至沸腾并保持一段时间后,取出氧化锆陶瓷再进行二次热处理;
所述二次热处理为从室温先升温至95~110℃并保温30~60min,再升温至850~950℃并保温10~60min。
2.根据权利要求1所述的基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,其特征在于,步骤(1)中,氧化铝与所述氢氧化钠溶液中氢氧化钠的质量比为4.0~6.5。
3.根据权利要求1所述的基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,其特征在于,步骤(1)中:
将浓氨水与去离子水混合得到浓度为10~30mL/L的氨水溶液;
氧化铝与浓氨水的质量体积比为0.3~1.0g/ mL。
4.根据权利要求1所述的基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,其特征在于,步骤(2)中,沸腾保持时间为10~20 min。
5.根据权利要求1所述的基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,其特征在于,步骤(3)中,沸腾保持时间为10~20 min。
6.根据权利要求1所述的基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,其特征在于:
所述热处理的升温速率为10~20℃/min;
所述二次热处理的升温速率为10~20℃/min。
7.根据权利要求1~6任一项所述的基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法,其特征在于:
所述热处理为从室温先升温至100℃并保温60min,再升温至900℃并保温30min;
所述二次热处理为从室温先升温至100℃并保温60min,再升温至900℃并保温30min。
8.一种根据权利要求1~7任一项所述的方法制备的表面覆盖有氧化铝微纳结构层的氧化锆陶瓷。
9.根据权利要求8所述的表面覆盖有氧化铝微纳结构层的氧化锆陶瓷,其特征在于:
所述氧化铝微纳结构层由多重堆叠的三角形纳米片组成,所述氧化铝微纳结构层平铺于氧化锆陶瓷表面;
所述三角形纳米片呈等边三角形,边长为300~700nm,堆叠厚度为500~1000nm。
10.一种根据权利要求8或9所述的表面覆盖有氧化铝微纳结构层的氧化锆陶瓷在生物植入体材料领域的应用。
CN202310769038.4A 2023-06-28 2023-06-28 基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法及其产品和应用 Active CN116751077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310769038.4A CN116751077B (zh) 2023-06-28 2023-06-28 基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310769038.4A CN116751077B (zh) 2023-06-28 2023-06-28 基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法及其产品和应用

Publications (2)

Publication Number Publication Date
CN116751077A CN116751077A (zh) 2023-09-15
CN116751077B true CN116751077B (zh) 2024-05-14

Family

ID=87953033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310769038.4A Active CN116751077B (zh) 2023-06-28 2023-06-28 基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN116751077B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1562879A (zh) * 2004-03-31 2005-01-12 南京工业大学 高强度高韧性氧化锆基陶瓷及其制备方法
CN1562887A (zh) * 2004-03-31 2005-01-12 南京工业大学 高四方相氧化锆-氧化铝复合粉料及其制备方法
EP1621526A1 (en) * 2004-07-02 2006-02-01 Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) A method of preparing nanostructured composite ceramic materials
RU2536593C1 (ru) * 2013-09-10 2014-12-27 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения керамики на основе диоксида циркония для реставрационной стоматологии
CN112605385A (zh) * 2020-12-16 2021-04-06 蚌埠飞宇轴承有限公司 一种降低轴承摩擦损耗的轴承材料的加工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713113B2 (ja) * 2016-06-20 2020-06-24 学校法人同志社 ZrO2−Al2O3系セラミックス焼結体及びその作製法
EP3632881A4 (en) * 2017-05-22 2021-03-03 Hangzhou Erran Technology Co. Ltd. BIOLOGICALLY ACTIVE NANO-OXIDE CERAMIC FILM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1562879A (zh) * 2004-03-31 2005-01-12 南京工业大学 高强度高韧性氧化锆基陶瓷及其制备方法
CN1562887A (zh) * 2004-03-31 2005-01-12 南京工业大学 高四方相氧化锆-氧化铝复合粉料及其制备方法
EP1621526A1 (en) * 2004-07-02 2006-02-01 Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) A method of preparing nanostructured composite ceramic materials
RU2536593C1 (ru) * 2013-09-10 2014-12-27 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения керамики на основе диоксида циркония для реставрационной стоматологии
CN112605385A (zh) * 2020-12-16 2021-04-06 蚌埠飞宇轴承有限公司 一种降低轴承摩擦损耗的轴承材料的加工方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mechanism of Reduced Sintering Temperature of Al2O3-ZrO2 Nanocomposites Obtained by Microwave Hydrothermal Synthesis;Iwona Koltsov et al.;《Materials》;20180517;第11卷(第5期);829 *
生物惰性陶瓷的改性与临床应用研究进展;叶建东等;《中国陶瓷》;20110705;第47卷(第7期);01-05 *

Also Published As

Publication number Publication date
CN116751077A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
Gao et al. Electrochemical surface engineering of titanium-based alloys for biomedical application
Boccaccini et al. Electrophoretic deposition of biomaterials
Alipal et al. Evolution of anodised titanium for implant applications
Huo et al. Fabrication, modification, and biomedical applications of anodized TiO 2 nanotube arrays
Erakovic et al. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition
US20140086962A1 (en) Products of manufacture having tantalum coated nanostructures, and methods of making and using them
CN104674320A (zh) 一种钛或钛合金表面耐磨抑菌生物活性陶瓷膜制备方法和应用
Huang et al. Enhanced SaOS-2 cell adhesion, proliferation and differentiation on Mg-incorporated micro/nano-topographical TiO2 coatings
CN105274603B (zh) 镁或镁合金表面含碳纳米管的复合改性涂层及其制备方法
CN104674321A (zh) 一种钛或钛合金表面含铜抗菌生物陶瓷膜的制备方法和应用
Hu et al. Enhanced antibacterial efficacy of selective laser melting titanium surface with nanophase calcium phosphate embedded to TiO2 nanotubes
SE527610C2 (sv) Förfarande för framställning av syntetiskt, kristallint kalciumfosfat i nanostorlek
CN1974876A (zh) 钛金属表面生物活性膜层及其喷砂-微弧氧化复合工艺
CN102330086A (zh) 医用钛或钛合金表面的二氧化钛-羟基磷灰石梯度涂层及其制备方法
De Riccardis Ceramic coatings obtained by electrophoretic deposition: fundamentals, models, post-deposition processes and applications
CN102978677A (zh) 钛或钛合金表面耐磨抑菌生物活性陶瓷膜制备方法及应用
Song et al. Fabrication of hydroxyapatite and TiO2 nanorods on microarc-oxidized titanium surface using hydrothermal treatment
Wang et al. Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy
CN114560691A (zh) 抗菌型的光固化3d打印生物陶瓷材料及其制备方法与应用
CN116751077B (zh) 基于二次沉淀-热处理在氧化锆表面制备氧化铝微纳结构层的方法及其产品和应用
CN105420786A (zh) 一种钛表面纳米硅钛酸钠/二氧化钛生物涂层的制备方法
CN111286776A (zh) 一种医用镁合金表面纳米级耐蚀和生物相容复合涂层的制备方法
CN116751078B (zh) 一种基于沉淀-热处理的氧化锆表面微纳结构的制备方法、产品和应用
JP2005297435A (ja) 多層膜、複合材料、インプラント及び複合材料の製造方法
Sorrell et al. Hydroxyapatite and other biomedical coatings by electrophoretic deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant