CN116724686A - 材料沉积方法及用其获得的微系统 - Google Patents

材料沉积方法及用其获得的微系统 Download PDF

Info

Publication number
CN116724686A
CN116724686A CN202280010107.7A CN202280010107A CN116724686A CN 116724686 A CN116724686 A CN 116724686A CN 202280010107 A CN202280010107 A CN 202280010107A CN 116724686 A CN116724686 A CN 116724686A
Authority
CN
China
Prior art keywords
substrate
hfo
deposition
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280010107.7A
Other languages
English (en)
Inventor
N·阿鲁查米
T·格兰佐
E·德费
S·格林塞克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luxembourg Institute of Science and Technology LIST
Original Assignee
Luxembourg Institute of Science and Technology LIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luxembourg Institute of Science and Technology LIST filed Critical Luxembourg Institute of Science and Technology LIST
Publication of CN116724686A publication Critical patent/CN116724686A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及材料沉积方法,包括:提供基底(2);通过化学溶液沉积CSD在基底(2)上形成HfO2膜(4);在HfO2膜(4)上沉积PbTiO3的溶液;在籽晶层(6)上沉积Pb(Zrx,Ti1‑x)O3层(8),其中0≤x≤1;和在Pb(Zrx,Ti1‑x)O3层(8)上形成叉指式电极(10)。本发明还涉及通过这种沉积方法获得的铁电微系统(1)。实验表明,这种微系统的抗疲劳性能有所提高。

Description

材料沉积方法及用其获得的微系统
技术领域
本发明涉及微系统制造领域,并且尤其涉及通过在基底上沉积部件而获得的电活性(热电或压电或铁电或反铁电或电致伸缩或介电)器件的制造。
特别地,本发明涉及铁电场效应晶体管。
背景技术
硅基底上的铁电电容器通常制造成MIM结构:金属底部电极、绝缘层和金属顶部电极。
底部电极的材料(Pt或AgPd)必须选择成能够承受由绝缘层的沉积过程引起的高温。
绝缘层可为Pb(ZrxTi1-x)O3膜(PZT)。
为了确保这种电容器在长期运行中保持其性能(耐疲劳性),可使用导电氧化物电极代替金属电极。与金属电极相比,这些电极具有较低的导电性,并且它们限制了对于切换这种电容器可用的频率范围。
因此,用于底部电极的材料的选择非常受限。
不同的已知结构由平面电极(PE)构成。这种结构通常不用于开关器件。然而,PE结构不具有需要耐受高温的电极材料的限制。
为了设想将PE结构用于开关应用,需要确保PE结构能够支持数百万次循环。
文献没有提供任何技术解决方案来确保PE结构的这种性能。
用于开关器件的PE结构还需要使任何导电基底与PZT膜电绝缘和化学绝缘。
因此,存在阻碍将PE用于开关器件的技术空白。
发明内容
技术问题
本发明解决上述缺陷并且旨在填补上述技术空白,提供铁电系统和制造方法,其中该系统具有PE结构并且由于其较高的抗疲劳性而能可靠地用于开关应用。
技术方案
上述技术问题通过包括以下的材料沉积方法来解决:提供基底;通过化学溶液沉积在所述基底上形成HfO2膜;在所述HfO2膜上沉积PbTiO3的溶液;在籽晶层(晶种层)上沉积Pb(Zrx,Ti1-x)O3层,其中0≤x≤1;和在Pb(Zrx,Ti1-x)O3层上形成叉指式电极。
如将在下文中更详细地解释的,发明人已经表明,使用作为溶液沉积的HfO2层(化学溶液沉积,CSD)提高了具有平面电极的微系统的抗疲劳性。CSD的柱状微观结构和平面电极的组合产生显示有利于抗疲劳性的协同作用。
所述微系统具有与MIM结构化的微系统类似的铁电用途,但具有经济优势(制造方法和在更宽范围的材料中选择的自由度)。
根据优选的实施方式,HfO2膜通过沉积至少两个层形成,每个层具有约15nm的厚度并通过旋涂沉积。根据优选的实施方案,旋涂操作以介于2000rpm和4000rpm之间的速度,优选地以3000rpm进行,并且持续时间介于20和40秒之间、优选地在30秒期间。这些参数能够实现良好的抗疲劳性、HfO2层在基底上的良好粘附性并且对PZT的晶体(100)取向没有负面影响。
根据优选的实施方式,在形成每一层之后,进行在215℃下干燥5分钟的操作。
根据优选的实施方式,在HfO2膜沉积后,将其在700℃的炉中退火90秒。
根据优选的实施方式,HfO2的化学溶液是在丙酸中的0.25M乙酰丙酮铪溶液。
根据优选的实施方式,通过旋涂使用2-甲氧基乙醇或1-甲氧基-2-丙醇作为溶剂和任选地乙酰丙酮作为改性剂制备的PbTiO3的前体溶液来沉积籽晶层。
根据优选的实施方式,x=0.53,因此Pb(Zrx,Ti1-x)O3为Pb(Zr0.53,Ti0.47)O3
根据优选的实施方式,基底为熔融二氧化硅基底。
根据优选的实施方式,基底为具有SiO2夹层的硅基底。
根据优选的实施方式,基底为蓝宝石基底。蓝宝石倾向于在PZT膜上产生较低的压缩应力,这使得能够随着裂纹风险的降低而构建较厚的PZT膜。蓝宝石也更稳定并且具有较低的导电性,使其更适合于基于非FET的FE-RAM。
本发明还涉及至少部分通过上述方法获得的微系统。如下所示例的,分析表明,该微系统在物理上与用其他材料或其他沉积方法获得的微系统不同。
进一步的技术优势
HfO2层还使微系统的厚度及其电容更大,这对于一些特定的应用可为有利的(例如用于电能存储、射频调谐等的微电容器)。
籽晶层改善PZT的择优(100)取向(preferential orientation)。
附图说明
图1是微系统器件的截面图;
图2和图3显示已知器件和本发明的器件之间的疲劳实验的比较。
具体实施方式
图1显示微系统1的横截面(未按比例)。微系统1包括在基底2上叠加的膜。
HfO2膜4(直接地)沉积在基底2上。PbTiO3籽晶层6(直接地)沉积在HfO2膜4上。PZT层8构建在籽晶层6上。电极10形成在PZT层8上。层2、4、6、8中没有一个包含电极或插入有电极。
基底2可为来自Siegert wafer GmbH的500nm厚的Si晶片。
HfO2钝化膜可由使用0.25M HfO2溶液(在丙酸中的乙酰丙酮铪)通过CSD沉积的至少两个层制成。基底2可在热板上在350℃下加热以进行表面活化。然后,HfO2溶液可在3000rpm下旋涂30秒,随后在215℃下干燥5分钟。该操作可重复至少一次以获得30nm的HfO2膜的厚度。然后,膜可在700℃的快速热退火炉中退火90秒。
PbTiO3(PT)籽晶层6可如卢森堡专利申请LU101884中广泛讨论的那样来制备,即,用2-甲氧基乙醇或1-甲氧基-2-丙醇作为溶剂并且任选地用乙酰丙酮作为改性剂。
PZT膜可沉积在籽晶层6上,优选Pb(Zr0.53,Ti0.47)O3。PZT膜通过旋涂沉积在籽晶层上。备选地,沉积可通过喷墨印刷、溅射、脉冲激光沉积、MOCVD等进行。再次,专利申请LU101884提供了PZT膜的制备和沉积的示例性细节。
乙酸铅(ll)三水合物(99.5%,Sigma-Aldrich,USA)、异丙醇钛(IV)(97%,SigmaAldrich,US)和丙醇锆(IV)(70%在丙醇中,Sigma-Aldrich,USA)可以化学计量比用作前体与作为溶剂的2-甲氧基乙醇来制备PT和PZT溶液。PT溶液可在3000rpm下旋涂到HfO2层上30秒,随后分别在130℃和350℃下在热板上干燥和热解。最终的结晶可在空气中以50℃/秒的加热速率在快速热退火炉(AS-Master,Annealsys,France)中在700℃下进行60秒。然后按照相同的沉积步骤对PZT溶液进行旋涂、干燥和热解。在随后的几次(例如四次)沉积-干燥-热解循环之后,结晶可以50℃/秒的加热速率在700℃下在空气中进行300秒,从而形成~170nm厚的PZT膜。上述PZT沉积步骤可重复三次以获得500nm的膜厚度。这种工艺也可适用于制造最高达1.2μm的较厚的PZT层。
在PZT层之上形成平面电极。特别地,可形成叉指式电极(IDE),其具有宽度为10μm的指状物和约10μm的指状物间距。通过使用直接激光写入的剥离光刻法(MLA,HeidelbergInstruments)对IDE进行图案化。然后可在室温下对100nm的铂电极进行DC溅射。IDE几何结构仅在图1中示意性地示出。设计的确切几何形状(单个指状物的宽度、指状物之间的间隙宽度、指形物的数量、每一端的接触垫的尺寸)将根据微系统的预期应用(特别是取决于所需的循环速度)来选择。
本发明的微系统构成了对已知系统的实质性改进。图2和图3突出显示了这一改进。向电容器结构施加循环变化的外部电场以改变电极化。在本实施例中,分别在150kV/mm和200kV/mm的场振幅下施加了100Hz的频率。进一步的实验证实,足以引起极化切换的振幅导致相同的结论(即,等于或大于75kV/cm的振幅)。
图2显示在新条件下和100万次循环后(虚线)在已知的MIM结构上测量的铁电电滞回线的发展。
图3显示根据本发明的具有HfO2(CSD)层的IDE结构的类似图表(记录)。
图2和图3在最初的几个循环中都显示相当的磁滞特性,表明具有IDE结构的器件的性能可与传统MIM结构的性能相竞争。
在一百万次循环之后,MIM结构显示出显著的劣化。对于铁电应用最重要的参数(零场下的残余极化)在具有MIM结构的系统中几乎消失。相比之下,IDE结构的极化滞后的形状(图3,虚线)仅受到百万次循环的影响,器件保留了基本相同的残余极化。因此,在106个开关循环之后,任何基于具有MIM结构的电容器的器件都是不可用的,而基于具有IDE结构和HfO2(CSD)层的电容器的器件保持功能。
图2和图3的结果在各个求证(solicitation)过程中是一致的(频率、振幅和循环数)。此外,疲劳的改善与PbTiO3籽晶层的存在无关。
通过另一种技术(例如原子层沉积)沉积的HfO2不会导致相同的疲劳改善。
因此,结论为通过CSD技术沉积HfO2是IDE制备的微系统抗疲劳性能改善的原因。
上面呈现的示例性实施方式以及各种数量和数字是为了说明本发明。本领域技术人员将理解,本发明的范围仅受所附权利要求的限制,并且方法的各个步骤的稀释量、温度或持续时间上的变化不脱离本发明的范围。例如,可使用稀释比、步骤的持续时间、旋转器的温度或速度上的约10%至20%的变化。
虽然上面引用的特定应用涉及铁电场效应晶体管,本发明在其他应用,例如非易失性RAM、具有热电读出的存储器、在高振幅电场下使用电循环的压电应用中也提供优势。

Claims (12)

1.材料沉积方法,包括如下步骤:
提供基底(2);
通过化学溶液沉积在所述基底上形成HfO2膜(4);
在所述HfO2膜上沉积PbTiO3的溶液的籽晶层(6);
在所述籽晶层上沉积Pb(Zrx,Ti1-x)O3层(8),其中0≤x≤1;和
在所述Pb(Zrx,Ti1-x)O3层上形成叉指式电极(10)。
2.根据权利要求1所述的方法,特征在于HfO2膜(4)通过沉积至少两个层形成,每个层具有约15nm的厚度并通过旋涂沉积。
3.根据权利要求2所述的方法,特征在于旋涂操作以介于2000rpm和4000rpm之间的速度,优选地以3000rpm进行,并且持续时间介于20和40秒之间,优选地在30秒期间。
4.根据权利要求2或3所述的方法,特征在于在每个层形成后,进行在215℃下干燥5分钟的操作。
5.根据权利要求1至4任一项所述的方法,特征在于在HfO2膜(4)的沉积后,将HfO2膜(4)在700℃的炉中退火90秒。
6.根据前述权利要求任一项所述的方法,特征在于HfO2的化学溶液是在丙酸中的0.25M乙酰丙酮铪溶液。
7.根据前述权利要求任一项所述的方法,特征在于通过旋涂使用2-甲氧基乙醇或1-甲氧基-2-丙醇作为溶剂和任选地乙酰丙酮作为改性剂制备的PbTiO3的前体溶液来沉积所述籽晶层。
8.根据前述权利要求任一项所述的方法,特征在于x=0.53。
9.根据前述权利要求任一项所述的方法,特征在于所述基底是熔融二氧化硅基底。
10.根据权利要求1-8任一项所述的方法,特征在于所述基底为具有SiO2夹层的硅基底。
11.根据权利要求1-8任一项所述的方法,特征在于所述基底是蓝宝石基底。
12.铁电微系统(1),其至少部分地通过权利要求1-11任一项所述的方法获得。
CN202280010107.7A 2021-01-15 2022-01-13 材料沉积方法及用其获得的微系统 Pending CN116724686A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
LU102421A LU102421B1 (en) 2021-01-15 2021-01-15 Material deposition method and microsystem therewith obtained
LULU102421 2021-01-15
PCT/EP2022/050664 WO2022152804A1 (en) 2021-01-15 2022-01-13 Material deposition method and microsystem therewith obtained

Publications (1)

Publication Number Publication Date
CN116724686A true CN116724686A (zh) 2023-09-08

Family

ID=74195040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280010107.7A Pending CN116724686A (zh) 2021-01-15 2022-01-13 材料沉积方法及用其获得的微系统

Country Status (7)

Country Link
US (1) US20240088202A1 (zh)
EP (1) EP4278390A1 (zh)
JP (1) JP2024503618A (zh)
KR (1) KR20230131289A (zh)
CN (1) CN116724686A (zh)
LU (1) LU102421B1 (zh)
WO (1) WO2022152804A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130772A (en) * 1989-12-15 1992-07-14 Samsung Electron Devices Co., Ltd. Thin film transistor with a thin layer of silicon nitride
US20040168627A1 (en) * 2003-02-27 2004-09-02 Sharp Laboratories Of America, Inc. Atomic layer deposition of oxide film
US10160208B2 (en) * 2016-04-11 2018-12-25 Ricoh Company, Ltd. Electromechanical-transducing electronic component, liquid discharge head, liquid discharge device, and liquid discharge apparatus
LU93084B1 (en) * 2016-05-24 2017-12-22 Luxembourg Inst Science & Tech List Transparent piezoelectric device and method for manufacturing the same

Also Published As

Publication number Publication date
KR20230131289A (ko) 2023-09-12
JP2024503618A (ja) 2024-01-26
US20240088202A1 (en) 2024-03-14
LU102421B1 (en) 2022-07-18
EP4278390A1 (en) 2023-11-22
WO2022152804A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
KR100460595B1 (ko) 비휘발성 메모리에 사용되는 지르코늄 산화물 상의 단일 씨-축 납게르마늄산화물 박막과 그 제조방법
US8075795B2 (en) Piezoelectrics, piezoelectric element, and piezoelectric actuator
US7575940B2 (en) Dielectric film, method of manufacturing the same, and semiconductor capacitor having the dielectric film
US11910718B2 (en) Multilayered piezoelectric thin film element
US9331261B2 (en) Piezoelectric element
KR102432431B1 (ko) 투명 압전 디바이스 및 그 제조 방법
US9780295B2 (en) Lead-free piezoelectric material
TWI755445B (zh) 膜構造體及其製造方法
CN116724686A (zh) 材料沉积方法及用其获得的微系统
JP2012169400A (ja) 強誘電体膜の製造方法とそれを用いた強誘電体素子
Thomas et al. Structural, electrical and optical properties of sol–gel processed lead titanate thin films
JP2012018944A (ja) 強誘電体膜の製造方法とそれを用いた強誘電体素子
JPH09102587A (ja) 強誘電体薄膜素子
JPH1056140A (ja) 強誘電体メモリ素子及びその製造方法
JP2006228447A (ja) 強誘電体薄膜の製造方法
JPH08153854A (ja) 強誘電体薄膜キャパシタの製造方法
LU501047B1 (en) Mim actuator with thick pzt film and haptic device with such an actuator
JP2009038169A (ja) 圧電素子の製造方法、誘電体層の製造方法、およびアクチュエータの製造方法
JPH0695443B2 (ja) 強誘電体薄膜の製造方法
CN108550691B (zh) 一种柔性强介电薄膜及其制作方法
Suzuki et al. Effect of Precursors and Stacking Structures on Crystallization of Multi-Layered Lead Zirconate Tit Anate Thin Films by Sol-Gel Method
JP2005217219A (ja) 強誘電体薄膜及びその製造方法
KR101057849B1 (ko) 강유전체박막을 포함하는 커패시터
JPH0682841U (ja) 強誘電体素子
Cabot et al. Electrical Properties of Metal/Ferroelectric/Metal Thin Film Capacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination