CN116693324B - 具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法 - Google Patents

具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN116693324B
CN116693324B CN202310979891.9A CN202310979891A CN116693324B CN 116693324 B CN116693324 B CN 116693324B CN 202310979891 A CN202310979891 A CN 202310979891A CN 116693324 B CN116693324 B CN 116693324B
Authority
CN
China
Prior art keywords
aluminum titanate
porous ceramic
starch
mold
titanate porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310979891.9A
Other languages
English (en)
Other versions
CN116693324A (zh
Inventor
刘礼龙
刘津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Nanji Star Insulating Material Co ltd
Original Assignee
Tianjin Nanji Star Insulating Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Nanji Star Insulating Material Co ltd filed Critical Tianjin Nanji Star Insulating Material Co ltd
Priority to CN202310979891.9A priority Critical patent/CN116693324B/zh
Publication of CN116693324A publication Critical patent/CN116693324A/zh
Application granted granted Critical
Publication of CN116693324B publication Critical patent/CN116693324B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于钛酸铝多孔陶瓷领域,公开了一种具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法,将钛酸铝纳米纤维膜分散获得单根钛酸铝纳米纤维;将分散好的单根钛酸铝纳米纤维加入到硅溶胶中,搅拌均匀得悬浮溶液;向所述悬浮溶液中加入淀粉,加热至50~60℃,搅拌直至浆料混合均匀,保证淀粉发生预糊化反应;将所述浆料转移至金属模具中,用聚氯乙烯膜包覆模具,迅速将模具转移至70~90℃的鼓风干燥箱中,保温,淀粉完全糊化,然后取出模具、进行脱模得到钛酸铝多孔陶瓷坯体;将获得的坯体放入箱式炉中,高温煅烧获得钛酸铝多孔陶瓷。本发明制备的钛酸铝多孔陶瓷具有具有两种不同的孔结构,保证了陶瓷具有高气孔率、低热导率。

Description

具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法
技术领域
本发明属于钛酸铝多孔陶瓷领域,尤其涉及一种具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法。
背景技术
多孔陶瓷是一种以多孔立体骨架作为内部结构的新型陶瓷材料,具有高气孔率、高比表面积、低密度、耐高温、耐腐蚀磨损等优异性能,因此在催化剂载体、高温过滤、吸声减震和保温隔热等领域广泛应用。其中,高温隔热是多孔陶瓷的一个重点应用领域和发展方向。随着经济社会和军事科技的发展,在航空航天的热防护系统、石油化工设备以及工业窑炉等领域已经开始迫切需求具有更加优异的隔热性能的多孔陶瓷材料。钛酸铝陶瓷一直以来都以低热膨胀性和优良的抗热震性被人们熟知并利用;钛酸铝的导热系数远低于莫来石、氧化铝等常用的耐火材料,同时具有耐高温、耐腐蚀磨损等优良性能,因此也具备发展成性能优良的高温隔热材料的强大潜力。因此,以钛酸铝材料为骨架结构制备多孔陶瓷,使材料兼具Al2TiO5的固有特性和多孔陶瓷的低密度、高孔隙率等特性,将扩大钛酸铝材料在高温隔热、催化剂载体和颗粒过滤等领域的潜在应用并且具有广阔的发展前景。
目前,常见的钛酸铝多孔陶瓷的制备方法有直接发泡法、淀粉固化成型、挤压成型、乳液模板法和溶胶-凝胶法等。例如,Naboneeta等人以α-Al2O3、TiO2和SiO2为原料,采用直接发泡法制备了堆积密度为1.34~1.71 g/cm3的多孔Al2TiO5-莫来石陶瓷,并研究了莫来石含量对其热性能和机械性能的影响。Lalli等人利用陶瓷悬浮液乳化工艺和两步烧成相结合的方法制备了密度为1.1 g/cm3的多孔Al2TiO5-Al2O3复合陶瓷。可以看出,上述制备方法获得的多孔陶瓷均具有单一的孔结构、较高的密度和较低的气孔率。这种较高的密度并不利于其在高温隔热领域的应用。因此,目前急需研发一种具有高气孔率、低热导率的钛酸铝多孔陶瓷的制备方法。
发明内容
本发明的目的在于克服现有技术的不足,提供了一种具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法,以钛酸铝纳米纤维为基体,硅溶胶为高温粘结剂及相稳定剂,制备过程中加入淀粉,利用淀粉预糊化-糊化工艺,制备得到的钛酸铝多孔陶瓷具有两种不同的孔结构,保证了陶瓷具有高气孔率、低热导率。
本发明是通过如下技术方案予以实现:
一种具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法,包括下述步骤:
(1)将钛酸铝纳米纤维膜分散获得单根钛酸铝纳米纤维;
(2)将分散好的单根钛酸铝纳米纤维加入到硅溶胶中,进一步搅拌均匀,得悬浮溶液;
(3)向所述悬浮溶液中加入淀粉,加热至50~60℃,搅拌直至浆料混合均匀,保证淀粉发生预糊化反应;
(4)将所述浆料趁热快速转移至垫有纱网的金属模具中,利用聚氯乙烯膜包覆模具,然后迅速将模具转移至70~90℃的鼓风干燥箱中,保温5~8h后,淀粉完全糊化,然后取出模具、进行脱模得到钛酸铝多孔陶瓷坯体;
(5)将获得的钛酸铝多孔陶瓷坯体放入箱式炉中,经高温煅烧获得具有多级孔结构的轻质隔热钛酸铝多孔陶瓷。
针对目前钛酸铝多孔陶瓷的密度过高,气孔率过低的问题,本申请提出以钛酸铝纳米纤维为基体,硅溶胶为高温粘结剂和相稳定剂,来制备出具有低密度和低热导率的钛酸铝多孔陶瓷。在成型工艺上面,提出采用淀粉预糊化-糊化工艺来制备钛酸铝多孔陶瓷。其中,淀粉在50~60℃的预糊化可以增加混合溶液的粘度,从而提高钛酸铝纳米纤维、硅溶胶和淀粉的分散悬浮性。一方面分散悬浮性好的钛酸铝纳米纤维可形成均匀的三维网络骨架,从而保证钛酸铝多孔陶瓷内部微孔的均匀性。另一方面,预糊化也可保证淀粉能完全分散在溶液中而不发生沉淀,从而保证后续宏孔的均匀性。随后,淀粉在70~90℃的完全糊化保证淀粉能完全膨胀,推动钛酸铝纳米纤维的排布。在高温烧结阶段,淀粉变成气体排除体外,从而在样品内部形成大量的宏孔。另外一方面,本申请采用硅溶胶作为粘结剂,其在高温下会转变为二氧化硅从而将钛酸铝纳米纤维粘结在一起,进而形成钛酸铝纳米纤维骨架。同时,硅溶胶也可以在一定程度上固溶在钛酸铝纳米纤维内部,从而起到提高钛酸铝多孔陶瓷高温稳定性的作用。
进一步地,所述钛酸铝纳米纤维膜中纤维的直径为300~800nm。
进一步地,所述的分散是将钛酸铝纳米纤维膜剪切为3~10mm2的小块,以无水乙醇为分散剂,以2000~8000r/min速度分散2~5min,分散后烘干获得单根钛酸铝纳米纤维。
进一步地,所述硅溶胶的制备方法为:按照质量比5:2:2:0.3将正硅酸乙酯、蒸馏水、无水乙醇、稀盐酸混合,搅拌均匀获得硅溶胶。
进一步地,所述硅溶胶与钛酸铝纳米纤维的质量比为30~50:1。
进一步地,所述淀粉为玉米淀粉、马铃薯淀粉、木薯淀粉、阳离子淀粉中一种或两种以上。
进一步地,步骤(3)所述淀粉与悬浮溶液的质量比为5~15:85~95。
进一步地,步骤(5)所述高温煅烧温度为1100~1400℃,升温速率为2~10℃/min,保温时间为1~3h。
本发明的优点和积极效果是:
本发明制备的钛酸铝多孔陶瓷具有两种不同的孔结构:一种是由钛酸铝纳米纤维交错搭接形成的微孔;另一种则是由淀粉烧失留下的宏孔,这种多级孔结构保证了钛酸铝多孔陶瓷具有高气孔率和低热导率,在高温隔热领域具有广阔的应用前景。
附图说明
图1为实施例1制备的钛酸铝多孔陶瓷放大500倍的SEM图;
图2为实施例1制备的钛酸铝多孔陶瓷放大1000倍的SEM图;
图3为实施例1制备的钛酸铝多孔陶瓷放大3000倍的SEM图;
图4为实施例2制备的钛酸铝多孔陶瓷放大500倍的SEM图;
图5为实施例2制备的钛酸铝多孔陶瓷放大3000倍的SEM图;
图6为对比例1制备的钛酸铝多孔陶瓷放大500倍的SEM图;
图7为对比例1制备的钛酸铝多孔陶瓷放大3000倍的SEM图。
具体实施方式
为了更好的理解本发明,下面结合附图对本发明进行进一步详述。在不冲突的情况下,案例中的特征可以相互组合。以下实施例中所使用的原料均为市售的分析纯原料。
实施例1
一种具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法,包括下述步骤:
(1)将钛酸铝纳米纤维膜裁剪为8mm2的小块,称取0.2g钛酸铝纳米纤维膜加入到160ml乙醇中,用高速分散机以6000r/min分散5min,分散后烘干得到单根钛酸铝纳米纤维;
(2)称取5g正硅酸乙酯,2g去离子水,2g乙醇和0.3g (0.1mol/L)的稀盐酸,混合后磁力搅拌使溶液澄清透明得到硅溶胶;称取3.5g硅溶胶,并加入0.1g钛酸铝纳米纤维,进一步搅拌均匀,得悬浮溶液;
(3)向所述悬浮溶液加入0.24g玉米淀粉,加热至50℃,搅拌直至浆料混合均匀,保证淀粉发生预糊化反应;
(4)将所述浆料趁热导入带有滤网的模具中,并在模具上方盖上聚氯乙烯膜,然后迅速将模具转移至80℃鼓风干燥箱中,保温6h,淀粉完全糊化,取出模具、进行脱模得到钛酸铝多孔陶瓷坯体;
(5)将获得的钛酸铝多孔陶瓷坯体以2℃/min的速率升温至1300℃高温煅烧,并保温2h,得到钛酸铝多孔陶瓷。
实施例1制备的钛酸铝多孔陶瓷扫描电镜图如图1~图3所示。
实施例2
一种具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法,包括下述步骤:
(1)将钛酸铝纳米纤维膜裁剪为5 mm2的小块,称取0.1g钛酸铝纳米纤维膜加入到70ml乙醇中,用高速分散机以3000r/min分散2min,分散后烘干得到单根钛酸铝纳米纤维;
(2)称取5g正硅酸乙酯,2g去离子水,2g乙醇和0.3g (0.1mol/L)的稀盐酸,混合,磁力搅拌使溶液澄清透明得到硅溶胶;称取4.5g硅溶胶,并加入0.1g钛酸铝纳米纤维,进一步搅拌均匀,得悬浮溶液;
(3)向所述悬浮溶液加入0.37g马铃薯淀粉,加热至55℃,搅拌直至浆料混合均匀,保证淀粉发生预糊化反应;
(4)将所述浆料趁热导入带有滤网的模具中,并在模具上方盖上聚氯乙烯膜,然后迅速将模具转移至85℃鼓风干燥箱中,保温6h后,淀粉完全糊化,取出模具、进行脱模得到钛酸铝多孔陶瓷坯体;
(5)将获得的钛酸铝多孔陶瓷坯体以3℃/min的速率升温至1400℃高温煅烧,并保温2h,得到钛酸铝多孔陶瓷。
实施例2制备的钛酸铝多孔陶瓷扫描电镜图如图4、图5所示。
对比例1
一种具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法,制备方法同实施例1,区别仅在于步骤(3),向所述悬浮溶液中加入0.24g玉米淀粉,并在室温下进行搅拌均匀。
对比例1制备的钛酸铝多孔陶瓷扫描电镜图如图6、图7所示。
评价与表征
图1为实施例1制备的钛酸铝多孔陶瓷放大500倍的SEM图,图2为实施例1制备的钛酸铝多孔陶瓷放大1000倍的SEM图,图3为实施例1制备的钛酸铝多孔陶瓷放大3000倍的SEM图。经测试,制备的钛酸铝多孔陶瓷的密度为0.56g/cm3,气孔率为85.1%,热导率为0.146W·m-1·K-1。图4为实施例2制备的钛酸铝多孔陶瓷放大500倍的SEM图,图5为实施例2制备的钛酸铝多孔陶瓷放大3000倍的SEM图。经测试,制备出的钛酸铝多孔陶瓷的密度为0.47g/cm3,气孔率为87.5%,热导率为0.132W·m-1·K-1。从上述五幅图中都可以看出,整个钛酸铝陶瓷呈现一个典型的多级孔结构,其中大孔主要由淀粉高温挥发生成,而微孔主要由钛酸铝纳米纤维搭接而成。这种多级孔结构赋予了材料较低的密度和热导率。
图6为对比例1制备的钛酸铝多孔陶瓷放大500倍的SEM图,图7为对比例1制备的钛酸铝多孔陶瓷的放大3000倍的SEM图。经测试,制备出的钛酸铝多孔陶瓷的密度为1.21 g/cm3,气孔率为68.5%,热导率为0.323 W·m-1·K-1。与实施例1制备的钛酸铝多孔陶瓷相比,对比例1制备出的钛酸铝多孔陶瓷内部的宏孔数量大幅度减少,由纤维搭接而成的微孔数量也几乎消失,这就导致对比例1制备出的钛酸铝多孔陶瓷的密度过大,气孔率过低。这主要是因为对比例1的步骤(3)没有对淀粉进行预糊化处理,从而导致纤维和淀粉悬浮性差。一方面,很多淀粉会发生沉淀,无法在后续烧结过程中起到造孔剂的作用,从而导致多孔陶瓷内部的宏孔减少,密度增大。另一方面,钛酸铝纳米纤维在制备过程中也会发生沉淀,从而相互纠缠在一起,无法形成微孔。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (4)

1.一种具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法,其特征在于,包括下述步骤:
(1)将钛酸铝纳米纤维膜分散获得单根钛酸铝纳米纤维,直径为300~800nm;
(2)将分散好的单根钛酸铝纳米纤维加入到硅溶胶中,所述硅溶胶与钛酸铝纳米纤维的质量比为30~50:1,进一步搅拌均匀,得悬浮溶液;
(3)向所述悬浮溶液中加入淀粉,淀粉与悬浮溶液的质量比为5~15:85~95,加热至50~60℃,搅拌直至浆料混合均匀,保证淀粉发生预糊化反应;
(4)将所述浆料趁热快速转移至垫有纱网的金属模具中,利用聚氯乙烯膜包覆模具,然后迅速将模具转移至70~90℃的鼓风干燥箱中,保温5~8h后,淀粉完全糊化,然后取出模具、脱模得到钛酸铝多孔陶瓷坯体;
(5)将获得的钛酸铝多孔陶瓷坯体放入箱式炉中,经高温煅烧获得具有多级孔结构的轻质隔热钛酸铝多孔陶瓷,所述高温煅烧温度为1100~1400℃,升温速率为2~10℃/min,保温时间为1~3h。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的分散是将钛酸铝纳米纤维膜剪切为3~10mm2的小块,以无水乙醇为分散剂,以2000~8000r/min速度分散2~5min,分散后烘干获得单根钛酸铝纳米纤维。
3.根据权利要求1所述的制备方法,其特征在于,所述硅溶胶的制备方法为:按照质量比5:2:2:0.3将正硅酸乙酯、蒸馏水、无水乙醇、稀盐酸混合,搅拌均匀获得硅溶胶。
4.根据权利要求1所述的制备方法,其特征在于,所述淀粉为玉米淀粉、马铃薯淀粉、木薯淀粉、阳离子淀粉中一种或两种以上。
CN202310979891.9A 2023-08-07 2023-08-07 具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法 Active CN116693324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310979891.9A CN116693324B (zh) 2023-08-07 2023-08-07 具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310979891.9A CN116693324B (zh) 2023-08-07 2023-08-07 具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN116693324A CN116693324A (zh) 2023-09-05
CN116693324B true CN116693324B (zh) 2023-10-13

Family

ID=87839652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310979891.9A Active CN116693324B (zh) 2023-08-07 2023-08-07 具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116693324B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117303927B (zh) * 2023-11-28 2024-03-01 上海南极星高科技股份有限公司 一种高强隔热的复合氧化铝纤维基多孔陶瓷的制备方法
CN117902896A (zh) * 2024-03-19 2024-04-19 上海南极星高科技股份有限公司 一种轻质隔热氧化锆纤维基多孔陶瓷的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740947A (zh) * 2009-12-21 2012-10-17 美商绩优图科技股份有限公司 经纤维强化的多孔性基材
JP2014227324A (ja) * 2013-05-23 2014-12-08 宮川化成工業株式会社 多孔質セラミックス焼結体およびその製造方法
CN105819851A (zh) * 2016-03-10 2016-08-03 云南菲尔特环保科技股份有限公司 钛酸铝蜂窝陶瓷材料及其制备方法
CN108863351A (zh) * 2018-09-28 2018-11-23 北京科技大学 一种钛酸铝复合多孔陶瓷的制备方法
CN112174688A (zh) * 2020-09-29 2021-01-05 北京科技大学 采用两步法固相烧结工艺制备钛酸铝复合多孔陶瓷的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959704B2 (en) * 2005-11-16 2011-06-14 Geo2 Technologies, Inc. Fibrous aluminum titanate substrates and methods of forming the same
EP2141140A1 (en) * 2008-07-03 2010-01-06 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Ceramic foams with gradient of porosity and gradient of catalytic active(s) phase(s)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740947A (zh) * 2009-12-21 2012-10-17 美商绩优图科技股份有限公司 经纤维强化的多孔性基材
JP2014227324A (ja) * 2013-05-23 2014-12-08 宮川化成工業株式会社 多孔質セラミックス焼結体およびその製造方法
CN105819851A (zh) * 2016-03-10 2016-08-03 云南菲尔特环保科技股份有限公司 钛酸铝蜂窝陶瓷材料及其制备方法
CN108863351A (zh) * 2018-09-28 2018-11-23 北京科技大学 一种钛酸铝复合多孔陶瓷的制备方法
CN112174688A (zh) * 2020-09-29 2021-01-05 北京科技大学 采用两步法固相烧结工艺制备钛酸铝复合多孔陶瓷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hierarchically porous Al2TiO5 ceramics via freeze-gel casting;Lan Li, et al.;《Ceramics International》(第48期);第22343-22351页 *

Also Published As

Publication number Publication date
CN116693324A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN116693324B (zh) 具有多级孔结构的轻质隔热钛酸铝多孔陶瓷的制备方法
US4001028A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
CN111410549B (zh) 一种耐高温低热导率隔热透波材料及其制备方法
CN101765570A (zh) 纤维基陶瓷基底及其制造方法
CN101955371B (zh) 一种闭合气孔泡沫陶瓷的制备方法
WO2006039255A2 (en) Ceramic body based on aluminum titanate and including a glass phase
Yang et al. A novel way to fabricate fibrous mullite ceramic using sol-gel vacuum impregnation
US7858554B2 (en) Cordierite fiber substrate and method for forming the same
CN107892581B (zh) 一种高强抗腐锆刚玉蜂窝陶瓷体及其制备方法
CN103614808B (zh) 带有绒毛状晶须的莫来石纤维及制备方法
JP5036008B2 (ja) コージエライトの形成
CN103833400B (zh) 一种自增强莫来石多孔陶瓷的制备方法
US6770111B2 (en) Pollucite-based ceramic with low CTE
CN112723903A (zh) 钛酸铝-莫来石复合陶瓷及其制备方法、多孔介质燃烧器及陶瓷过滤器
Xu et al. Fabrication and characterization of porous mullite ceramics with ultra-low shrinkage and high porosity via sol-gel and solid state reaction methods
CN112778008A (zh) 钛酸铝多孔陶瓷及其制备方法以及多孔介质燃烧器
CN112645729A (zh) 具有介孔结构的耐高温氧化锆复合隔热材料及其制备方法
CN117303927B (zh) 一种高强隔热的复合氧化铝纤维基多孔陶瓷的制备方法
CN114685149A (zh) 一种功能化氧化铝陶瓷纤维及制备方法
CN114988894A (zh) 一种轻质抗热震莫来石堇青石质旋转管及其制备方法
Chakrabarty et al. Zirconia fibre mats prepared by a sol-gel spinning technique
CN103467078A (zh) 一种堇青石材料制备方法
CN116444290A (zh) 一种稀土改进粉煤灰陶瓷膜及其制备方法
US4434239A (en) Process for manufacturing cordierite compositions
CN114874026A (zh) 一种高强度纤维复合氧化锆泡沫陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant