CN116685397A - 天然气、甲烷积聚用有机金属配位聚合物及其生产方法 - Google Patents

天然气、甲烷积聚用有机金属配位聚合物及其生产方法 Download PDF

Info

Publication number
CN116685397A
CN116685397A CN202280004669.0A CN202280004669A CN116685397A CN 116685397 A CN116685397 A CN 116685397A CN 202280004669 A CN202280004669 A CN 202280004669A CN 116685397 A CN116685397 A CN 116685397A
Authority
CN
China
Prior art keywords
organometallic
heated
gel structure
polymer
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280004669.0A
Other languages
English (en)
Inventor
阿纳托利·阿列克谢耶维奇·福姆金
阿斯兰·尤苏波维奇·齐瓦泽
玛丽娜·康斯坦丁诺芙娜·克尼亚泽娃
奥尔加·维亚切斯拉沃芙娜·索洛夫佐娃
安德烈·维亚切斯拉沃维奇·什科林
伊利亚·叶夫根尼耶维奇·缅希科夫
奥列格·叶夫根涅维奇·阿克休丁
亚历山大·加夫里洛维奇·伊什科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTKRYTOE AKTSIONERNOE OBSHCHESTVO "GAZPROM"
Original Assignee
OTKRYTOE AKTSIONERNOE OBSHCHESTVO "GAZPROM"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2021133260A external-priority patent/RU2782623C1/ru
Application filed by OTKRYTOE AKTSIONERNOE OBSHCHESTVO "GAZPROM" filed Critical OTKRYTOE AKTSIONERNOE OBSHCHESTVO "GAZPROM"
Publication of CN116685397A publication Critical patent/CN116685397A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及生产有机金属配位聚合物的方法和使用所提供的方法获得的材料。根据该方法合成的该有机金属配位聚合物具有凝胶结构,其特征在于具有有效直径为0.75‑0.80nm、比面积为1300‑1700m2/g、微孔体积为0.5‑0.6cm3/g的纳米孔以及提高的热稳定性。合成方法允许通过在合成和活化阶段使用单一溶剂来减少工艺过程中的材料消耗,减少聚合物凝胶的生产时间,聚合物凝胶的特征在于具有活性中孔和微孔,这将使其可以用作包括天然气储存系统的各种吸收工艺中的基质。

Description

天然气、甲烷积聚用有机金属配位聚合物及其生产方法
技术领域
本发明组涉及一种有机金属聚合物、特别是一种基于铝离子与1,3,5-苯三酸配体配位的有机金属聚合物的生产技术,该有机金属聚合物通过溶剂热法合成,并可用于气体的积聚,特别是在天然气、甲烷的储存和运输系统中。
背景技术
有机金属聚合物,也称为有机金属结构,代表一类多孔吸附剂,其由与多有机配体(连接体)配位的离子或金属簇组成。广泛的有机配体与不同的金属阳离子结合,导致潜在多孔材料的巨大变化,具有广泛的多孔表面性质和化学调节结构,这些结构已多次在应用变体方面进行了严格评估,包括气体的储存和分离。专利(US NO.7202385,IPC C07C41/03;C07C43/11;C08G18/28;C08G65/26;C08G 65/28)公开了文献中描述的大多数结构,其说明了已经存在的有机金属聚合物的多样性。
有机金属聚合物具有独特的结构和能量特征,包括规则的晶体结构、高比表面积(高达10000m2/g)和高微孔体积,其通常超过沸石和活性炭的类似特征,并且它们被用作高效吸附剂,例如用于气体的储存和分离[T.A.Makal,J.R.Li,W.Lu,H.C.Zhou甲烷在先进多孔材料中的储存(Methane storage in advanced porous materials)//Chem.Soc.Rev.2012.V.41.P.7761-7779]。
可用于气体储存和运输系统的高性能有机金属聚合物的生产要求它们不仅具有适当的吸附特性,而且具有热稳定性。
最广为人知、最广泛的有机金属聚合物具有储存和分离气体(包括甲烷)的潜力[A.Yu.Tsyvadze,O.Ye.Aksyutin,A.G.Ishkov,A.A.Fomkin,I.Ye.Menshchikov,A.A.Pribylov,V.V.Isayeva,L.M.Kustov,A.V.Shkolin,Ye.M.Strizhenov.超临界温度范围内高压下甲烷在有机金属框架结构MOF-199上的吸附(Adsorption of methane on theorganometallic framework structure MOF-199under high pressures within therange of supercritical temperatures),Physicochemistry of surface and materialprotection.2016.Vol.52No.1.P.24-29]。[Baichuan Sun,Sibnath Kayal,AnutoshChakraborty,HKUST(铜苯-1,3,5-三羧酸盐,Cu BTCMOF)-1金属有机框架对CH4吸附的研究:GCMC(巨正则系综蒙特卡罗)模拟的实验研究(Study of HKUST(Copperbenzene-1,3,5-tricarboxylate,Cu-BTCMOF)-1metalorganic frameworks for CH4 adsorption:Anexperimental Investigation with GCMC(grandcanonical Monte-carlo)simulation),Energy(2014),1-9]是与HKUST-1家族相关的MOF-199,例如,在专利(US 9925516,IPCB01D53/02;B01J20/22;B01J20/28)中公开的。然而,MOF-199结构热稳定不足,这取决于金属和配体键的强度,因为在MOF-199的情况下,使用二价铜阳离子Cu(II)。这个问题可以通过用另一种具有较高化合价的阳离子取代二价铜阳离子来解决。
对于这个问题,最优选的是使用三价铝阳离子Al(III),因为基于铝的有机金属聚合物具有高的热稳定性和机械强度、发展的用于气体积聚的微孔体积以及相对低的生产成本,例如,与具有类似机械性能的基于锆Zr(IV)或钛Ti(IV)的有机金属聚合物相比。
在合成有机金属聚合物的方法中,通常有两种最著名的方法的改进:溶剂热法,例如[RU 2457213 C1,IPC C07F 11/00,发布于2012年7月27日]和使用UHF,例如专利[RU2578599С1,IPC CO8F 293/00,B01J 32/00]。
俄罗斯联邦专利RU 2457213中部分描述的溶剂热法包括在加热时在水溶液中混合碱组分,特别是硝酸铬(III)和对苯二甲酸。在密闭容器中以11.5°/分钟的速率加热至220℃,并进一步保持。
在UHF下生产配位聚合物的方法,例如,在RU 2578599中,包括将AlCl3×6H2O化合物的铝盐与有机2-氨基-1,4-苯二羧酸混合,并分别以1:1/5的重量比加入水和极性有机溶剂的混合物。然后,在大气压和120-130℃的温度下,在200W UHF辐射下加热获得的反应混合物。将沸点超过130℃的溶剂用作极性有机溶剂,所述极性有机溶剂可在UHF辐射下被有效加热,例如二甲基亚砜、N,N’-二甲基甲酰胺或N,N’-二乙基甲酰胺。
所述方法的缺点在于,它们允许获得非活化的有机金属聚合物,其需要劳动密集地选择活化条件以除去溶剂残留物,同时保持用作气体吸收剂的材料结构。
本质上最接近的类似物和获得的结果是方法[US 9878906 В2,IPCС01В 3/00,B01D 53/02,公布于2018年1月30日],该方法包括至少一种金属化合物与至少一种至少双齿有机化合物在不超过2巴压力(绝对压力)下的混合过程中相互作用,至少一种金属化合物与至少一种至少双齿有机化合物可以在选自DMF、DEF和NMP的非水有机溶剂存在下与金属配位,产生多孔有机金属结构,其中金属由Mg、Ca、be、Sr、Ga或Al表示;并且具有至少两个选自氧、硫或氮原子的有机化合物可以通过这些原子与金属配位,其中至少一种双齿有机化合物由二羧酸、三羧酸或四羧酸表示。反应应在没有额外碱的情况下进行,形成的有机金属框架应在不超过250℃的温度下额外煅烧。该发明的实施例13与所获得的结果最接近。其中,用N,N’-二甲基甲酰胺溶剂合成骨架有机金属聚合物如下进行,包括于130℃下将7.8g1,3,5-苯三酸(BTC)和22.9g Al(NO3)3*9H2O溶解在520.5g N,N’-二甲基乙酰胺中,保持4天,同时搅拌所得悬浮液,用100ml N,N’-二甲基乙酰胺洗涤过滤两次,用100ml甲醇洗涤四次。然后,应使用热真空干燥法在200℃的温度下干燥其上沉淀有物质的过滤器16小时。获得的有机金属骨架粉末应在330℃下退火,以便在马弗炉中活化,并以100升/小时的速率进行空气吹扫,持续3天。因此,炉子升温速率为75℃/小时。获得的基于铝的骨架有机金属聚合物具有1791m2/g的比表面积,其根据Langmuir方法测定。
发明内容
本发明组的目的是开发一种有机金属配位聚合物的合成方法,该聚合物具有基于与1,3,5-苯三酸配体配位的铝离子的有机金属凝胶结构,该聚合物具有良好的纳米孔表面和提高的热稳定性,允许将获得的有机金属凝胶用作气体、特别是天然气、甲烷的运输和储存系统中的吸附剂。
本发明组要实现的技术结果是:
-要合成的有机金属配位聚合物的凝胶结构的生产和维持;
-提高其热稳定性;
-通过减少合成时间和在合成和洗涤阶段使用单一溶剂来降低生产的材料和能源成本。
该技术结果是通过以下事实实现的:在用于生产积聚天然气、甲烷的有机金属配位聚合物的方法中,该方法包括合成阶段,该合成阶段包括:在与试剂相关的等摩尔量或过量的沸点超过80℃的非质子极性有机溶剂中溶解的等摩尔量的硝酸铝结晶水合物和1,3,5-苯三酸相互作用;然而,将硝酸铝结晶水合物溶液加热至110℃,将1,3,5-苯三酸溶液加热至80-110℃,在剧烈搅拌下,以每分钟5-15vol.%的速率将加热的1,3,5-苯三酸溶液滴加到加热的硝酸铝溶液中,将溶液混合物以每小时10-15℃的速率加热至140℃,保持直到生成溶胶,然后将溶胶放入高压釜中并在100-150℃下在高压釜中保持2-3天,直到获得具有凝胶结构的有机金属配位聚合物;活化阶段,包括用合成阶段使用的非质子极性有机溶剂洗涤合成的具有凝胶结构的有机金属配位聚合物,并使用压降至少为90kPa的真空产生过滤系统加热至40-60℃,在室温下干燥,在100-150℃的干燥炉中干燥,并在温度为120-300℃、残余压力为0.26kPa的热真空室中处理;活化阶段在具有凝胶结构的有机金属配位聚合物的重量稳定后终止。
用于积聚天然气、甲烷的具有凝胶结构的有机金属配位聚合物,其在至少500℃的温度下热稳定,具有有效内径为0.75-0.80nm、比面积为1300-1700m2/g、微孔体积为0.5-0.6cm3/g、总微孔体积为1.0-1.8cm3/g的孔。
附图说明
本发明组在表和附图中进行了说明:
表1—合成的有机金属凝胶的化学组成,其中:Wt—重量百分比,At—原子百分比;
表2—合成的有机金属凝胶样品的多孔结构参数,其中:V0—比微孔体积,cm3/g;E0—氮吸附特征能,kJ/mol;D—微孔有效内径,nm;E—苯吸附特征能,kJ/mol;SBET—根据BET法的比表面积,m2/g;Vs—总孔体积,cm3/g;Sme—中孔面积,m2/g;Vme—中孔体积,cm3/g。
图1—获得的具有凝胶结构的有机金属配位聚合物样品的电子扫描显微镜照片;
图2—合成的具有凝胶结构的有机金属配位聚合物的红外光谱—实线;基于铝的有机金属聚合物(原型)-虚线。
图3—合成的具有凝胶结构的有机金属配位聚合物的衍射图—顶线;基于铝的有机金属聚合物(原型)—底线。
图4—热图:实线—合成的具有凝胶结构的有机金属配位聚合物的样品;虚线—具有基于铝的凝胶结构的有机金属聚合物(原型)。
图5—样品(1)在77K下氮吸附/解吸的等温曲线。亮标记—吸附。暗标记—解吸。
图6—合成的有机金属配位聚合物碎片的骨架模型,其中D为微孔有效内径。
具体实施方式
提出的本发明组按照如下实施。
实施例1
将1,3,5-苯三酸(1,3,5-苯三甲酸(H3BTC))和硝酸铝结晶水合物Al(NO3)3·9H2O以1:1的摩尔比(每1摩尔溶剂1摩尔酸,每1摩尔溶液1摩尔盐)溶解在有机溶剂N,N’-二甲基甲酰胺中。将所得溶液加热(铝盐溶液加热至110℃,1,3,5-苯三酸溶液加热至80℃)。然后,以5-15vol.%/min的速率将加热的1,3,5-苯三酸溶液滴加至铝盐溶液中,使用磁力搅拌棒进行剧烈搅拌,将反应混合物温度逐渐升高至140℃,并保持至形成溶胶(溶液增稠)。将获得的溶胶置于带有紧密螺纹盖和氟塑料衬里的测定高压釜中,然后将其置于100℃下进行合成的熔炉中,逐渐加热至140℃,并保持两天。活化按如下方式进行:通过热真空过滤(溶剂分子的解吸),特别是通过在真空条件下用溶剂(150ml N,N’-二甲基甲酰胺加热至60℃)在至少90kPa的压降下多次洗涤,将形成的有机金属凝胶(OMG)残留物从母液中分离出来。然后,首先在标准条件下干燥残留物,然后在100℃的干燥炉中干燥,在20小时期间升温至140℃,然后在140℃下再保持4小时。在这种干燥条件下,首先去除表面水分(在100℃下),然后去除间隙未结合水分(100-140℃)以稳定合成的OMG骨架。在200℃的温度和0.26kPa(2mm Hg)的残余压力下,在热真空室中活化获得的OMG样品,以最大限度地去除间隙结合(结晶水合物)水分和溶剂,直到获得恒定重量(约6小时)。
所获得的样品是一种基于与1,3,5-苯三酸配体配位的铝离子的有机金属配位聚合物(OMCP),具有表1中规定的凝胶结构和表面化学组成。其物理和化学性质由下图中所示的分析结果证实:图2-材料的红外光谱吸收特性;图3—衍射图;图4—温谱图;图5—吸附等温曲线。获得的具有凝胶结构的OMCP样品的电子扫描显微镜照片(图1)显示了具有不同尺寸的晶体和它们之间的少量非晶相,这表明与原型相比,由于合成聚合物的时间缩短,所获得的聚合物的摩尔质量分布不均匀。为最大限度地去除游离和结合液相而选择特殊的活化条件有助于保持孔结构,并为OMCP提供可接受的强度和热稳定性(图4)。在天然气积聚器在运行过程中受到高空气动力载荷的影响下,这种特性是优选的,这解释了与具有高结晶度的OMCP结构(是固体的,但很脆)相比,为特定的预期用途而获得的聚合物凝胶结构的优点。
合成的OMCP的红外光谱吸收带,图2,在663-766cm-1的区间内观察到对应于苯原子核内和芳香环平面外的键振动。在827-1153cm-1之间出现的带与对称和非对称变形振动O-C=O有关。在1368、1445和1640cm-1处的强吸收峰分别与COOH基团(1,3,5-苯三酸中)中的C-O键、不对称和对称型的C=O的变形振动有关。这些特征还表明OMCP已形成所要求的化学组成。
图4所示的具有凝胶结构的合成OMCP的热稳定性测定结果使其可以确定其热分解发生在超过500℃的温度下。这是与已知的基于与1,3,5-苯三酸配体配位的铝阳离子的有机金属配位聚合物相比获得的聚合物的热稳定性提高的证据。
通过BET法和微孔体积填充理论,根据标准氮蒸气在-196.15℃(77K)温度下的等温曲线,如图5所示,对合成样品(1)的有机金属凝胶的多孔结构(见表2)的参数进行了分析。吸附等温曲线形式是微介孔吸附剂的特征。图6和7说明了有机金属凝胶(OMG)碎片的框架模型,其示意性地显示了其几何形状和多孔特性。
实施例2
它与实施例1的不同之处在于,将1,3,5-苯三酸溶液加热至110℃,然后在搅拌期间以1ml/min的速率将其添加到硝酸铝结晶水合物的溶液中。合成阶段的温度从100℃升高到120℃,然后在120℃下再保持60小时。干燥炉中的干燥阶段在100℃的温度下进行,逐渐加热至120℃。将其保持在120°的热真空室中。表2中给出了所获得的有机金属凝胶(2)样品的多孔结构测定结果。
实施例3
它与实施例1的不同之处在于,1,3,5-苯三酸和硝酸铝结晶水合物以1:2的摩尔比(每2摩尔溶剂1摩尔酸,每2摩尔溶剂1摩尔盐)溶解在有机溶剂二乙基亚砜中。合成阶段在温度从100℃升高到150℃下进行,然后在150℃下再保持48小时。干燥炉中的干燥阶段在100℃的温度下进行,逐渐加热至130℃。将其保持在250℃的热真空室中。表2中给出了获得的有机金属凝胶(3)样品的多孔结构测定结果。
实施例4
它与实施例1的不同之处在于,使用二乙基甲酰胺作为溶剂,合成阶段在120℃的温度下进行60小时。干燥炉中的干燥阶段在100℃的温度下进行,逐渐加热至120℃。将其保持在300℃的热真空室中。表2中给出了获得的有机金属凝胶(4)样品的多孔结构测定结果。
实施例5
它与实施例1的不同之处在于,合成阶段在130℃的温度下进行,温度升高至140℃,然后在140℃的温度下保持48小时;活化阶段通过用溶剂二甲基亚砜过滤的方法进行,加热至40℃的温度,在干燥炉中在100℃下进行干燥,加热至140℃,并将其保持在160℃的热真空室中。表2中给出了获得的有机金属凝胶(5)样品的多孔结构测定结果。
所提供的发明组允许制备具有凝胶结构的有机金属配位聚合物,其具有由微孔和中孔组成的良好内表面,与类似材料相比,具有更高的热稳定性,其干燥和活化参数有助于最大限度地保持在合成阶段获得的多孔特性,这通常是实现所要求的技术结果的证据。
表1
元素 Wt% At%
碳—C 46.16 55.37
氧—O 43.35 39.03
铝—Al 10.49 5.60
表2

Claims (2)

1.一种用于生产积聚天然气、甲烷的有机金属配位聚合物的方法,所述方法包括合成阶段和活化阶段,所述合成阶段包括:在与试剂相关的等摩尔量或过量的沸点超过80℃的非质子极性有机溶剂中溶解的等摩尔量的硝酸铝结晶水合物和1,3,5-苯三酸相互作用;其中,将硝酸铝结晶水合物溶液加热至110℃,将1,3,5-苯三酸溶液加热至80-110℃,然后在剧烈搅拌下,以每分钟5-15vol.%的速率将加热的1,3,5-苯三酸溶液滴加到加热的硝酸铝溶液中,将溶液混合物加热至140℃,保持直到生成溶胶,然后将溶胶在100-150℃下聚合2-3天,直到获得具有凝胶结构的有机金属配位聚合物;活化阶段包括:用合成阶段使用并在压降至少为90kPa的真空中加热至40-60℃的非质子极性有机溶剂多次洗涤合成的具有凝胶结构的有机金属配位聚合物,首先在标准条件下干燥24小时、然后在100-150℃下干燥24小时,然后在120-300℃的温度和0.26kPa的残余压力下热真空处理高达6小时;活化阶段在具有凝胶结构的有机金属配位聚合物的重量稳定后终止。
2.用于积聚天然气、甲烷的具有凝胶结构的有机金属配位聚合物,其在至少500℃的温度下热稳定,具有有效内径为0.75-0.80nm、比面积为1300-1700m2/g、微孔体积为0.5-0.6cm3/g、总微孔体积为1.0-1.8cm3/g的孔。
CN202280004669.0A 2021-11-15 2022-05-16 天然气、甲烷积聚用有机金属配位聚合物及其生产方法 Pending CN116685397A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2021133260 2021-11-15
RU2021133260A RU2782623C1 (ru) 2021-11-15 Металлоорганический координационный полимер для аккумулирования природного газа, метана, и способ его получения
PCT/RU2022/000158 WO2023085971A1 (en) 2021-11-15 2022-05-16 Organometallic coordination polymer for accumulation of natural gas, methane and the method for production thereof

Publications (1)

Publication Number Publication Date
CN116685397A true CN116685397A (zh) 2023-09-01

Family

ID=82748571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280004669.0A Pending CN116685397A (zh) 2021-11-15 2022-05-16 天然气、甲烷积聚用有机金属配位聚合物及其生产方法

Country Status (5)

Country Link
EP (1) EP4204140A1 (zh)
JP (1) JP2023552506A (zh)
KR (1) KR20230165685A (zh)
CN (1) CN116685397A (zh)
WO (1) WO2023085971A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050004404A1 (en) 2003-07-03 2005-01-06 Basf Akiengesellschaft Process for the alkoxylation of monools in the presence of metallo-organic framework materials
DE102005039654A1 (de) * 2005-08-22 2007-03-01 Basf Ag Mesoporöses metallorganisches Gerüstmaterial
DE102005039623A1 (de) 2005-08-22 2007-03-01 Basf Ag Verfahren zur Herstellung von metallorganischen Gerüstmaterialien Hauptgruppen Metallionen enthaltend
RU2457213C1 (ru) 2011-02-24 2012-07-27 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ получения мезопористого терефталата хрома(iii)
US9925516B2 (en) 2014-12-02 2018-03-27 Numat Technologies, Inc. Formation of high surface area metal-organic frameworks
RU2578599C1 (ru) 2015-04-08 2016-03-27 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КООРДИНАЦИОННОГО ПОЛИМЕРА NH2-MIL-101(Al) И ПОРИСТЫЙ КООРДИНАЦИОННЫЙ ПОЛИМЕР NH2-MIL-101(Al), ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ

Also Published As

Publication number Publication date
KR20230165685A (ko) 2023-12-05
JP2023552506A (ja) 2023-12-18
EP4204140A1 (en) 2023-07-05
WO2023085971A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
Lo et al. Polymorphism/pseudopolymorphism of metal–organic frameworks composed of zinc (II) and 2-methylimidazole: synthesis, stability, and application in gas storage
Ta et al. Preparation of nano‐ZIF‐8 in methanol with high yield
Nordin et al. Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine
Seoane et al. Crystallization in THF: the possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68 (Al)
Reinsch et al. Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid
Mowat et al. Synthesis, characterisation and adsorption properties of microporous scandium carboxylates with rigid and flexible frameworks
KR102267930B1 (ko) 2종 이상의 리간드를 포함하는, 3차원 다공성 구조를 갖는 신규한 알루미늄-기반 금속-유기 골격체, 이의 제조방법 및 용도
US9777029B2 (en) Process for obtaining metal-organic materials with structure type MIL-101 (Cr) and MIL-101-Cr-MX+
WO2010058123A1 (fr) Procede de preparation hydrothermale de carboxylates d'aluminium poreux cristallises de type "metal-organic framework"
Mutyala et al. Enhancement of CO 2 capture and separation of CO 2/N 2 using post-synthetic modified MIL-100 (Fe)
EP3595808A1 (en) Organic - inorganic porous hybrid material, method for obtaining it and use thereof
Reinsch et al. Optimisation of synthesis conditions for UiO-66-CO 2 H towards scale-up and its vapour sorption properties
WO2022099173A1 (en) Ion-based methods for stabilizing and improving porous metal-organic framework (mof) materials for water harvesting from air and related applications
JP6221910B2 (ja) 金属錯体およびその製造方法
JP2013040119A (ja) 水酸基が導入された多孔性配位高分子を用いた水素吸蔵
Grad et al. MOF/Al2O3 composites obtained by immobilization of MIL-53 (Cr) or MIL-101 (Cr) on γ-alumina: preparation and characterization
JP2012520851A (ja) ギ酸マグネシウムを基礎とする多孔質の有機金属骨格材料を無溶媒で製造する方法
RU2578600C1 (ru) Способ получения пористых координационных полимеров mil-53
RU2578599C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КООРДИНАЦИОННОГО ПОЛИМЕРА NH2-MIL-101(Al) И ПОРИСТЫЙ КООРДИНАЦИОННЫЙ ПОЛИМЕР NH2-MIL-101(Al), ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ
Sabo et al. Titanium terephthalate (TT-1) hybrid materials with high specific surface area
CN116685397A (zh) 天然气、甲烷积聚用有机金属配位聚合物及其生产方法
RU2782623C1 (ru) Металлоорганический координационный полимер для аккумулирования природного газа, метана, и способ его получения
JP5759175B2 (ja) ガス吸着材料、その前駆体及びガス吸着材料の製造方法
CN106928466B (zh) 一种Cr-MOFs的制备方法
CN110577649B (zh) 一种咪唑连接的超稳定共价有机框架材料的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination