CN116682843A - 一种纳米线发光器件及其制备方法 - Google Patents

一种纳米线发光器件及其制备方法 Download PDF

Info

Publication number
CN116682843A
CN116682843A CN202310970945.5A CN202310970945A CN116682843A CN 116682843 A CN116682843 A CN 116682843A CN 202310970945 A CN202310970945 A CN 202310970945A CN 116682843 A CN116682843 A CN 116682843A
Authority
CN
China
Prior art keywords
nanowire
substrate
light emitting
cmos
nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310970945.5A
Other languages
English (en)
Other versions
CN116682843B (zh
Inventor
程志渊
张林君
查超飞
张运炎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310970945.5A priority Critical patent/CN116682843B/zh
Priority to CN202311428075.5A priority patent/CN117276305A/zh
Publication of CN116682843A publication Critical patent/CN116682843A/zh
Application granted granted Critical
Publication of CN116682843B publication Critical patent/CN116682843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明提出一种纳米线发光器件及其制备方法,将至少包含一个发光区的纳米线集成于Si(100)衬底,形成高精度纳米线发光器件,克服了不能自组装形成异质的[100]纳米线的技术偏见,解决硅基集成纳米线发光阵列的技术瓶颈,使得单个芯片就可以实现图像显示。基于本发明形成的纳米线发光器件,无需巨量转移技术,无需额外的引线或焊点进行阵列与电路的连接,突破器件与电路集成问题的同时,还具有超高像素点、亮度高、对比度高、体积小、功耗低、独立驱动、利于便携式使用等优点。

Description

一种纳米线发光器件及其制备方法
技术领域
本发明属于半导体发光器件,尤其涉及一种纳米线发光器件及其制备方法,尤其是一种集成在CMOS器件上的纳米线发光器件。
背景技术
针对显示设备,Micro-LED具有高解析度、低功耗、高亮度、高对比、高色彩饱和度、反应速度快、厚度薄、寿命长等特性,功率消耗量可低至LCD的10%、OLED的50%,是业界期待的下一代显示技术。实现Micro-LED的产业化离不开CMOS硅基集成技术,目前超过90%的集成电路芯片均使用CMOS工艺制程技术。
CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)是把NMOS和PMOS制造在同一个芯片上组成集成电路,CMOS工艺制程技术是利用互补对称电路来配置连接PMOS和NMOS从而形成逻辑电路,达到静态功耗几乎接近为零。CMOS工艺制程技术已经发展了60年,其具备高集成度、强抗干扰能力、高速度、低静态功耗、宽电源电压范围、宽输出电压幅度等优点。由于CMOS工艺制程技术多方面的优越性,使它成为数字电路、模拟电路以及数模混合电路的首选技术,目前超过90%的集成电路芯片均使用CMOS工艺制程技术。而Si(100)衬底是Si集成电路技术的主流衬底,这便说明Si(100)衬底在进行多种功能芯片集成实现设备微缩的方向上具有潜力与价值。
Si(100)衬底是Si集成电路技术,尤其是CMOS的主流衬底,获得Si(100)衬底上外延异质纳米线对于实现硅基集成发光阵列至关重要。这不仅可以完全规避巨量转移带来的高成本和边缘效应等难题,还可以实现对每一个像素点的单独控制。然而目前存在的问题是,由于纳米线的生长方向是沿着衬底晶面方向生长的,而在Si(100)衬底上,纳米线不具备[100]方向优先成核生长,即无法自组形成垂直于基底的纳米线。
基于以上普遍认知,到目前为止,工业化的Micro-LED与CMOS电路的连接采用巨量转移技术,即Micro-LED和CMOS电路分别在不同材料的基底上生长,当Micro-LED在衬底(比如蓝宝石衬底)上生长后,需要通过某种高精度设备将大量Micro-LED从衬底分离并转移到目标基板或者驱动电路板上,这需要进行多次转移(至少需要从蓝宝石衬底→临时衬底→新衬底),且每次转移芯片量非常大,对转移工艺的稳定性和精确度要求非常高,同时还会带来严重的侧壁损耗和边缘效应。对于 R/G/B 全彩显示而言,由于每一种工艺只能生产一种颜色的芯片,故需要将红/绿/蓝芯片分别进行转移,需要非常精准的工艺进行芯片的定位,极大的增加了转移的工艺难度。Micro-LED的厚度仅为几微米,将其精确地放置在目标衬底上的难度非常高,芯片尺寸及间距都很小,要将芯片连上电路也是一个挑战。此外,由于 Micro LED 尺寸极小,传统测试设备难以使用,如何在百万级甚至千万级的芯片中对坏点进行检测修复是一大挑战,同样通过检测技术挑出缺陷晶粒后,如何替换坏点也是一项不可或缺的技术。这便造成Micro-LED阵列显示成本居高不下,费时费力,精度不高,阻碍其市场推广和在穿戴设备的发展。
发明内容
本发明的目的在于针对现有技术的不足,克服技术偏见,将Si(100)基的CMOS器件和发光纳米线进行直接集成,得到高精度纳米线发光器件。本发明无需巨量转移技术,无需额外的引线或焊点进行阵列与电路的连接,突破器件与电路集成问题的同时,还具有超高像素点、亮度高、对比度高、体积小、功耗低、独立驱动、利于便携式使用等优点。
本发明采用如下技术方案:一种纳米线发光器件,所述纳米线集成生长于CMOS 器件有源区,实现驱动电路、控制电路等电路系统与发光阵列的高度集成。本发明所述CMOS器件基底为Si(100)衬底;其中的纳米线至少包含一个发光区。
本发明所述CMOS器件包含两个以上Si(100)MOS器件,至少一个MOS为一个独立控制单元。所述MOS器件可分为N沟道增强型、N沟道耗尽型、P沟道增强型、P沟道耗尽型。所述MOS器件为包含一个源极、一个漏极和一个栅极。通过CMOS驱动电路的设计,可实现独立控制生长在该MOS器件上的纳米线阵列发光性能,实现多种图案、数字、文字等的视觉传达,有利于近眼、AR/VR、汽车显示屏等显示应用。在本发明的某些实施例中,若干个MOS器件也可以进行关联控制,具体的控制程序可以通过电路设置实现。
本发明所述CMOS器件包含两个以上Si(100)MOS器件,且MOS的有源区生长有单根或多根纳米线。针对一个MOS上包含多根纳米线,一个MOS控制单元内相邻纳米线可为同种材料或不同种材料,且相邻MOS控制单元的纳米线可为同种材料或不同种材料排列分布。通过本发明的纳米线材料设计,实现单色或多色全彩发光阵列,颜色可覆盖红橙黄绿青蓝紫等多色系颜色。
本发明中,所述纳米线与Si(100)衬底为异质材料。纳米线材料采用半导体材料体系,实现发光阵列的超长实际使用寿命、发光效率稳定、发光颜色稳定。并且纳米线与Si(100)衬底为异质材料,突破纳米线只能选用硅材料的局限。
本发明中,所述纳米线至少包括两个发光区,发光区沿所述纳米线径向、或轴向排列。通过纳米线的可控合成,发光区数量可达50以上,远远高于薄膜发光阵列的发光数,实现纳米线发光阵列的发光亮度可调和高亮度。
本发明所述的发光区为未包含PN结的纳米线,或为纳米线PN结区域;纳米线PN结区域为量子阱、量子点或量子阱和量子点结合组成。
本发明还提供上述纳米线发光器件的制备方法,至少包括:Si(100)衬底上纳米线的制备和CMOS电路的构建;这两个环节的先后可以根据实际工况调节,例如,在Si(100)衬底形成CMOS电路,然后切出(111)晶面,用于纳米线生长;或在Si(100)衬底切出(111)晶面,在Si(111)衬底形成CMOS电路,然后制备纳米线。
其中,所述Si(100)衬底上纳米线的制备为:
在Si(100)衬底切出(111)晶面,在所述(111)晶面上生长纳米线;
或,直接在Si(100)衬底上生长纳米线。
在Si(100)衬底切出(111)晶面并在(111)晶面生长纳米线是由于纳米线不具备[100]方向优先成核生长,通过该技术方法,可以在Si(100)上实现好的纳米线晶体质量,提高发光效率。直接在Si(100)衬底上生长纳米线的技术方法,规避了对硅(100)晶圆的处理,但是后续需要通过相关技术方法进行纳米线生长约束,使纳米线垂直于Si(100)衬底。两种技术方法具有各自优缺点,但均提出了如何将CMOS器件与纳米线发光器件集成基础的工艺方法。
在本发明某些实施例中,CMOS电路构建的具体工艺如下:
沉积第一层光刻胶;
掩膜、曝光、刻蚀形成开口结构;
剥除第一层光刻胶;
在所述开口内填充第一种绝缘介质形成浅槽隔离结构;
依次沉积第一层绝缘层、第一层导电层以及第二层光刻胶;
掩膜、曝光、刻蚀形成MOS器件的栅极;
剥除第二层光刻胶;
沉积第三层光刻胶;
掩膜曝光、光刻形成MOS器件的源极和漏极所需掺杂的区域;
进行离子注入,形成MOS器件的源极和漏极;
剥除第三层光刻胶;
沉积第四层光刻胶;
掩膜曝光、光刻暴露MOS器件的源极或漏极(没有纳米线阵列的位置);
沉积第二层导电层,并刻蚀所述第二层导电层形成金属接触;
去除第四层光刻胶;
沉积第五层光刻胶
掩膜曝光、光刻暴露MOS器件的源极或漏极(纳米线阵列的位置);
沉积第三层导电层,并刻蚀所述第三层导电层形成金属接触;
去除第五层光刻胶。
在本发明某些实施例中,CMOS器件表面由所述切出 (111)晶面后形成的切出面构成。通过切平或填充等方法使得CMOS器件表面由所述切出 (111)晶面后形成的切出面构成,有利于纳米线后续生长腔室的放置以及后续整体显示应用的使用,减少人工校准最优的阵列出光方向后固定其整体外延片的倾斜角度。
本发明中,所述纳米线可以垂直生长于所述Si(100)衬底切出(111)晶面上,包括但不限于采用如下方式:
沉积第一种光刻胶;
掩膜、曝光、刻蚀形成开口结构;
沉积一种掩膜材料;
剥除第一种光刻胶,掩膜材料只存在于原开口结构位置;
纳米线生长于未有掩膜材料区域(未掩膜材料区域对应于MOS器件的源极或漏极);
剥除掩膜材料。
或,所述纳米线以倾斜生长于所述Si(100)晶面上,包括但不限于在Si(100)晶面上形成约束通道,然后定向生长[100]纳米线,具体如下:
沉积第一层光刻胶;
掩膜、曝光、刻蚀形成开口结构;
沉积一种掩膜材料;
沉积第二层光刻胶;
掩膜、曝光、刻蚀于掩膜材料区域,至少形成一个约束通道;
剥除第二层光刻胶。
上述第一种绝缘介质、掩膜材料为SiO2、SiOX、Si3N4、SiNx
上述第一层绝缘层为二氧化硅、高介电常数的材料、二维材料或者它们之间的混合层。所述第一层导电层为TiN、TaN等金属栅极材料或者掺杂的多晶硅。
上述第二、三层导电层为Cu、Al、Ti、Au等金属导电材料。所述纳米线生长方法为刻蚀、水热自组装、外延生长包含MOCVD、LPCVD、MBE等。
本发明所述纳米线材料为Si、GaAs、InAs、GaN、InGaN或者其他III-V、氧化物材料的半导体。
本发明的有益效果在于:本发明所提出的集成于Si(100)衬底的纳米线发光阵列克服了不能自组装形成异质的[100]纳米线的技术偏见,提出实现Si(100)衬底上的独立控制的纳米线发光阵列的技术结构和制备技术,解决硅基集成纳米线发光阵列的技术瓶颈,使得单个芯片就可以实现图像显示。因此,采用本发明技术的半导体制造的显示设备具有超高像素密度、体积小、重量轻、功耗低、发光亮度高、便携性大、色温稳定、使用寿命长、全彩/单色均可实现等优点。而且,CMOS集成电路与发光阵列的高度集成,使得纳米线显示器件的系统大大简化,降低了生产成本,具有商业化前景。
附图说明
图1 各种类纳米线集成生长CMOS 器件有源区和整体金属电极连接示意图;其中图1中的(a)为侧视图,图1中的(b)为俯视图;
图2单个纳米线阵列集成生长CMOS 器件源区示意图;
图3多个可独立的纳米线阵列同时集成生长CMOS 器件源区示意图;
图4纳米线径向结构示意图;其中图4中的(a)为侧视图,图4中的(b)为俯视图;
图5纳米线轴向结构示意图;
图6a Si(100)衬底切出(111)面后,衬底处理示意图;
图6b MOS 晶体管的源区和漏区需掺杂的图形制备示意图;
图6c MOS 晶体管制备示意图;
图6d MOS上生长纳米线并填充保护层的示意图;
图6e纳米线阵列电极制作的示意图。
其中,Si衬底1、掺杂区2,源区3、漏区4、栅介质层5、浅槽隔离结构6、纳米线7、填充材料8、栅电极9、电极10、n型区域11、发光层12、p型区域13。
具体实施方式
下面结合附图和具体实施例,对本发明作进一步说明。
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。
如图1~图2所示,一种CMOS集成、交流驱动有源寻址NLED微显示器件,包括发光组件和CMOS器件,图中,CMOS器件包含了ABCD四个类型的MOS单元,作为本领域公知常识,MOS器件包括源区3、漏区4、以及由栅介质层5和栅电极9组成的栅区。源区3、漏区4均为本发明所述的有源区;Nano LED纳米线/Nano LED发光阵列生长在源区3或漏区4。浅槽隔离结构6用做 MOS 电路中每一个MOS组的隔离层。
其中,MOS的尺寸根据现有集成工艺可调控,每个MOS可通过其栅极独立控制,使与其集成生长纳米线成为一个独立的像素点,而每个像素可为不同颜色的LED并具备交流电压单独驱动和发射光束的功能。以单根直径800纳米的纳米线为例,在宽度为一英寸的芯片尺寸,纳米线密度至少可达到1万根,芯片的重量仅有几克,阈值电压在5V左右,阵列发光亮度可达2万尼特每像素,功耗仅LCD的五分之一或者OLED的四分之一,解析度将达到8K以上。因此,通过设计纳米线之间的间距和MOS器件阵列密度,实现超高像素密度、体积小、重量轻、功耗低、发光亮度高、便携性大、色温稳定、使用寿命长、全彩/单色均可实现等优点。
图中,A类、C类、D类MOS为NMOS,具有N沟道;B类MOS为PMOS,具有P沟道。N型衬底为Si (100)衬底经五价元素砷、磷、锑等掺杂,P型衬底可以为Si(100)衬底经三价元素硼等掺杂。
图2是MOS发光单元,可以为A类/C类MOS器件和自组装生长在MOS器件有源区的纳米线7阵列。MOS器件采用Si衬底1为(100)晶面。所述纳米线发光阵列可以为AlGaAs、InGaAsP、GaP、GaAsP、AlGaInP、InGaN、GaN、SiC 等材料构成的含有单或多量子阱、量子点或纯单一材料结构。所述纳米线表面包裹有钝化层,它们将所述纳米线和纳米线,纳米线与其它材料隔开,并对所述器件保护不受外界环境的影响。图2中,填充材料8可以对器件进行封装保护。电极10是金属材料,作为该器件的金属电极。
图3是MOS发光单元,可以为D类MOS器件和自组装生在有源区的纳米线7阵列;需要注意的是,该单元中是两个独立的纳米线阵列,分别采用电极10与电源连接。通过控制纳米线顶端电极的电压,使得两个阵列的VDS1和VDS2不同,通过VG和VDS实现两个纳米线阵列的独立控制,能够实现二级控制效果。
对于上述纳米线7,可以是以下五种情况:
CMOS器件表面的源极或漏极与该区域的单根(多根)纳米线的接触界面同为p型材料为第一种类型;
CMOS器件表面的源极或漏极与该区域的单根(多根)纳米线的接触界面同为n型材料为第二种类型;
CMOS器件表面的源极或漏极与该区域的单根(多根)纳米线的接触界面同为p-n型材料为第三种类型;
CMOS器件表面的源极或漏极与该区域的单根(多根)纳米线的接触界面同为n-p型材料为第四种类型;
CMOS器件表面的源极或漏极与该区域的多根纳米线的单个接触界面为同p、同n、p-n、n-p型材料为第五种类型。
整个纳米线发光阵列,可由上述五种类型或该五种类型的衍生类型进行排布组合。
纳米线至少包含一个发光区,在某些优选的方案中,包含了两个以上发光区。本发明所述的发光区是指纳米线的发光区域,其可以为整根纳米线发光,也可以是纳米线局部发光。不管是整体区域发光或局部区域发光的,均可以是一个或多个发光区域组成。每个发光区域一般是载流子辐射复合发光(基于电子与空穴复合实现发光);载流子辐射复合发光可以基于纳米线材料的本征发光实现或纳米线的PN结发光实现,因此,本申请称之为纳米线的本征发光区,或为纳米线PN结区域。
上述的本征发光是指本征电致发光(电场发光,EL),指电流通过物质时或物质处于强电场下发光的现象,一般认为是在强电场作用下,电子的能量相应增大,直至远远超过热平衡状态下的电子能量而成为过热电子,这过热电子在运动过程中可以通过碰撞使晶格离化形成电子、空穴对,当这些被离化的电子、空穴对复合或被激发的发光中心回到基态时便发出光来。实现本发明本征发光的材料,包括无机电致发光材料和有机电致发光材料。无机电致发光材料一般为等半导体材料。有机电致发光材料依据有机发光材料的分子量的不同,可以区分为小分子和高分子两大类。小分子OLED材料以有机染料或颜料为发光材料,高分子OLED材料以共轭或者非共轭高分子(聚合物)为发光材料,典型的高分子发光材料为PPV及其衍生物。
上述的PN结发光纳米线PN结区域可以由单个或多个量子阱或者量子点结构组成。
在本发明实施例中,以InGaN/GaN材料为例来描述图3、图4所示半导体器件的制造工艺。
图4的径向PN发光结构为从内到外生长的n型GaN(n型区域11)、InGaN/GaN 量子阱(发光层12)和p型GaN(p型区域13)构成,生长方式为在源区图案化形成的孔洞中生长n型GaN核纳米线,再在核纳米线表面依次生长量子阱和p型GaN,形成径向pn结构。
图5的轴向pn结构为从下到上生长的n型GaN(n型区域11)、InGaN/GaN 量子点(发光层12)和p型GaN(p型区域13)构成,生长方式为在源区图案化形成的孔洞中生n型GaN核纳米线,再在纳米线上方依次生长量子点和n型GaN,形成轴向pn结构。
本发明所公开的集成于Si(100)衬底的纳米线发光阵列可以通过很多方法制造。以下所叙述的是本发明所公开的如图1所示Si(100)衬底的纳米线发光阵列的制造方法的一个实例。图6a至图6e描述了制造一个如图1所示纳米线发光阵列的制作工序。
(1)在提供的Si(100)衬底切出(111)晶面,通过切平或填充等方法使得CMOS器件的衬底可水平放置且暴露利于纳米线生长的111晶面。
(2)接着淀积一层光刻胶,然后掩膜、曝光、刻蚀形成开口结构,接着在所形成的开口中填充绝缘介质形成浅槽隔离结构6,剥除剩余的光刻胶后的结构如图6b 所示。绝缘介质优选为SiO2
(3)接下来,淀积一层光刻胶,然后掩膜、曝光、光刻形成 MOS晶体管的源区和漏区需掺杂的图形,接着进行离子注入形成 MOS 电路的源区3和漏区4,淀积一层绝缘介质层,剥除光刻胶。接着,再次淀积一层光刻胶,然后掩膜、曝光、刻蚀形成 MOS 电路的栅电极9,接着剥除剩余的光刻胶,如图6c 所示。绝缘介质层为由SiO2和高k材料形成的一层或两层结构。栅电极9为Ti/Au等金属。
(4)淀积一层光刻胶,然后掩膜、曝光、刻蚀在源区3上形成孔洞阵列,通过外延工艺(优选为 MBE) 依次生长纳米线发光阵列的n型区域11、发光层12、p型区域13。生长纳米线阵列之后,填充透明有机物,所形成的结构如图6d所示。
(5)淀积一层光刻胶,然后掩膜、曝光、刻蚀暴露出源区和漏区顶端区域,淀积一层金属,刻蚀所述金属形成电极10,如图6e所示。

Claims (11)

1.一种纳米线发光器件,其特征在于,所述纳米线集成生长于CMOS 器件有源区之上;所述CMOS器件基底为Si(100)衬底;纳米线至少包含一个发光区。
2.根据权利要求1所述的纳米线发光器件,其特征在于,所述CMOS器件包含两个以上Si(100)MOS器件,至少一个MOS为一个独立控制单元。
3.根据权利要求2所述的纳米线发光器件,其特征在于,所述CMOS器件包含两个以上Si(100)MOS器件,且MOS的有源区生长有单根或多根纳米线。
4.根据权利要求1所述的纳米线发光器件,其特征在于,所述纳米线与Si(100)衬底为异质材料。
5.根据权利要求1所述的纳米线发光器件,其特征在于,所述纳米线至少包括两个载流子辐射复合发光区,发光区沿所述纳米线径向、或轴向排列。
6.根据权利要求5所述的纳米线发光器件,其特征在于,所述载流子辐射复合发光区为纳米线的本征发光区,或为纳米线PN结区域;纳米线PN结区域为量子阱、量子点或量子阱和量子点结合组成。
7.如权利要求1所述的纳米线发光器件的制备方法,其特征在于,至少包括:Si(100)衬底上纳米线的制备和CMOS电路的构建;其中,所述Si(100)衬底上纳米线的制备为:
在Si(100)衬底切出(111)晶面,在所述(111)晶面上生长纳米线;
或,直接在Si(100)衬底上生长纳米线。
8.根据权利要求7所述的制备方法,其特征在于,在Si(100)衬底形成CMOS电路,然后切出(111)晶面,用于纳米线生长;或在Si(100)衬底切出(111)晶面,在Si(111)晶面形成CMOS电路,然后制备纳米线。
9.根据权利要求8所述的制备方法,其特征在于,CMOS器件表面由所述切出 (111)晶面后形成的切出面构成。
10.根据权利要求7所述的制备方法,其特征在于,所述纳米线垂直生长于所述Si(100)衬底切出(111)晶面上,或,所述纳米线倾斜生长于所述Si(100)晶面上。
11.根据权利要求10所述的制备方法,其特征在于,在Si(100)晶面上形成约束通道,然后定向生长[100]纳米线。
CN202310970945.5A 2023-08-03 2023-08-03 一种纳米线发光器件及其制备方法 Active CN116682843B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310970945.5A CN116682843B (zh) 2023-08-03 2023-08-03 一种纳米线发光器件及其制备方法
CN202311428075.5A CN117276305A (zh) 2023-08-03 2023-08-03 一种纳米线发光器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310970945.5A CN116682843B (zh) 2023-08-03 2023-08-03 一种纳米线发光器件及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311428075.5A Division CN117276305A (zh) 2023-08-03 2023-08-03 一种纳米线发光器件及其制备方法

Publications (2)

Publication Number Publication Date
CN116682843A true CN116682843A (zh) 2023-09-01
CN116682843B CN116682843B (zh) 2023-11-28

Family

ID=87784090

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310970945.5A Active CN116682843B (zh) 2023-08-03 2023-08-03 一种纳米线发光器件及其制备方法
CN202311428075.5A Pending CN117276305A (zh) 2023-08-03 2023-08-03 一种纳米线发光器件及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311428075.5A Pending CN117276305A (zh) 2023-08-03 2023-08-03 一种纳米线发光器件及其制备方法

Country Status (1)

Country Link
CN (2) CN116682843B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110079796A1 (en) * 2009-10-05 2011-04-07 Zena Technologies, Inc. Nano structured leds
US20130140521A1 (en) * 2011-12-02 2013-06-06 Philippe Gilet Optoelectronic device including nanowires with a core/shell structure
US8653599B1 (en) * 2012-11-16 2014-02-18 International Business Machines Corporation Strained SiGe nanowire having (111)-oriented sidewalls
US20170133431A1 (en) * 2015-11-11 2017-05-11 The Regents Of The University Of Michigan Direct Growth Of Optoelectronic Devices On CMOS Technology
US20170271211A1 (en) * 2016-03-16 2017-09-21 Zing Semiconductor Corporation Hybrid integration fabrication of nanowire gate-all-around ge pfet and polygonal iii-v pfet cmos device
KR20180074014A (ko) * 2016-12-23 2018-07-03 포항공과대학교 산학협력단 수직 나노선 터널링 전계효과 트랜지스터 및 이의 제조방법
US20210336003A1 (en) * 2018-12-30 2021-10-28 South China Normal University Nanowire array, optoelectronic device and preparation method thereof
CN113646894A (zh) * 2018-08-24 2021-11-12 马修·哈滕斯维尔德 纳米线发光开关装置及其方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110079796A1 (en) * 2009-10-05 2011-04-07 Zena Technologies, Inc. Nano structured leds
US20130140521A1 (en) * 2011-12-02 2013-06-06 Philippe Gilet Optoelectronic device including nanowires with a core/shell structure
US8653599B1 (en) * 2012-11-16 2014-02-18 International Business Machines Corporation Strained SiGe nanowire having (111)-oriented sidewalls
US20170133431A1 (en) * 2015-11-11 2017-05-11 The Regents Of The University Of Michigan Direct Growth Of Optoelectronic Devices On CMOS Technology
US20170271211A1 (en) * 2016-03-16 2017-09-21 Zing Semiconductor Corporation Hybrid integration fabrication of nanowire gate-all-around ge pfet and polygonal iii-v pfet cmos device
CN107204311A (zh) * 2016-03-16 2017-09-26 上海新昇半导体科技有限公司 纳米线半导体器件及其制造方法
KR20180074014A (ko) * 2016-12-23 2018-07-03 포항공과대학교 산학협력단 수직 나노선 터널링 전계효과 트랜지스터 및 이의 제조방법
CN113646894A (zh) * 2018-08-24 2021-11-12 马修·哈滕斯维尔德 纳米线发光开关装置及其方法
US20210336003A1 (en) * 2018-12-30 2021-10-28 South China Normal University Nanowire array, optoelectronic device and preparation method thereof

Also Published As

Publication number Publication date
CN116682843B (zh) 2023-11-28
CN117276305A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
KR101571577B1 (ko) 모놀리식 광전자 반도체 본체 및 그 제조 방법
CN112510060B (zh) 一种全彩半导体发光微显示器及其制造工艺
US8354665B2 (en) Semiconductor light-emitting devices for generating arbitrary color
JPH09148628A (ja) フル・カラ−発光ダイオ−ド表示装置
WO2015147390A1 (ko) 발광다이오드 및 이의 제조방법
CN110310907A (zh) 一种Micro-LED芯片转移方法及显示装置
US10396121B2 (en) FinFETs for light emitting diode displays
TWI803827B (zh) 高分辨率單體式rgb陣列
CN109148652A (zh) 无机发光二极管显示面板及其制作方法和显示装置
CN108899332A (zh) 一种Micro-LED显示面板及其制造方法
CN109690783A (zh) 形成发光器件的p型层的方法
KR102661676B1 (ko) 표시장치 제조방법
CN111785714B (zh) 一种由led和oled相反极性并联组成的显示器件
CN116682843B (zh) 一种纳米线发光器件及其制备方法
EP1891687A1 (en) Method of manufacturing integrated light emitting diode displays using biofabrication
US6740904B2 (en) Silicon light-emitting device and display apparatus employing the same
CN112289899B (zh) Micro LED晶圆结构及其制备方法
CN221125951U (zh) 一种多级发光分支纳米线发光器件
CN210837761U (zh) 一种显示面板及显示装置
JP2023553850A (ja) 電圧制御可能なモノリシックネイティブrgbアレイ
KR100970611B1 (ko) 다수 파장의 광들을 방출하는 발광 다이오드 및 그의제조방법
CN113921512A (zh) MicroLED三基色发光结构及其制备方法
US11605668B2 (en) Pixel architectures for low power micro light-emitting diode displays
CN117038696A (zh) 一种多级发光分支纳米线发光器件及其制备方法
US20240213299A1 (en) Monolithic integration of multicolor light emitting diodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant