CN116654986A - 一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用 - Google Patents

一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用 Download PDF

Info

Publication number
CN116654986A
CN116654986A CN202310647356.3A CN202310647356A CN116654986A CN 116654986 A CN116654986 A CN 116654986A CN 202310647356 A CN202310647356 A CN 202310647356A CN 116654986 A CN116654986 A CN 116654986A
Authority
CN
China
Prior art keywords
preparation
manganese sulfide
manganese
stirring
nanoflower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310647356.3A
Other languages
English (en)
Other versions
CN116654986B (zh
Inventor
孙晓
张鑫宇
许学莉
马桂琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong First Medical University and Shandong Academy of Medical Sciences
Original Assignee
Shandong First Medical University and Shandong Academy of Medical Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong First Medical University and Shandong Academy of Medical Sciences filed Critical Shandong First Medical University and Shandong Academy of Medical Sciences
Priority to CN202310647356.3A priority Critical patent/CN116654986B/zh
Publication of CN116654986A publication Critical patent/CN116654986A/zh
Application granted granted Critical
Publication of CN116654986B publication Critical patent/CN116654986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/32Manganese; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用。将含聚乙烯亚胺的乙二醇溶液滴加至含有乙酰丙酮锰和柠檬酸三钠的乙二醇溶液中,进行第一次搅拌,加入硫代乙酰胺溶液,再滴加三乙醇胺,进行第二次搅拌,将得到的混合溶液进行溶剂热反应,反应结束后离心、洗涤,得到的固体即为硫化锰纳米花。硫化锰纳米花包覆生物相容性材料得到一体化诊疗制剂。本发明通过溶剂热法制备得到具有三维结构的硫化锰纳米花,可用于化学动力学治疗,从而将CDT和成像技术相结合,实现诊疗一体化。

Description

一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用
技术领域
本发明涉及生物医药技术领域,具体涉及一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用。
背景技术
恶性肿瘤严重威胁人类的生命健康,传统的癌症手段,如化学疗法、放射疗法和免疫疗法等虽然能够一定程度遏制肿瘤的增殖,但在彻底根除肿瘤细胞方面并不完全令人满意。因此,需要开发不同的策略,以改进这些传统的治疗方法,提高治疗效率,并进一步减少治疗的副作用。
基于纳米材料的化学动力学治疗(CDT)是一种新兴的治疗方法,通过肿瘤微环境(TME)激活的芬顿反应或类芬顿反应,将内源性过氧化氢(H2O2)转化为羟基自由基(·OH)进而杀伤肿瘤。但CDT无法确定肿瘤组织的位置、大小及监测治疗效果,从而使CDT的应用受到限制。
纳米诊疗一体化能够将CDT和成像技术有机结合有益于肿瘤的治疗,是目前的研究热点。但是现有的纳米诊疗体系对病灶组织识别度差,对肿瘤微环境响应不足,使纳米诊疗剂难以精确观察和高效治疗肿瘤组织。锰基纳米材料如硫化锰,一般作为半导体或造影剂使用,将其用于化学动力学治疗的报道几乎没有;并且现有的硫化锰材料一般以纳米颗粒或一维、二维结构的形式,比表面积小,药物负载量低。因此,如果能将硫化锰用于化学动力学治疗,就能得到肿瘤微环境响应的诊疗一体化纳米材料。所以制备具有三维结构的硫化锰,且能够同时将其用于CDT和MRI成像技术,是本领域技术人员亟需解决的问题。
发明内容
针对上述现有技术,本发明的目的是提供一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用。本发明通过溶剂热法制备得到具有三维结构的硫化锰纳米花,可用于化学动力学治疗,从而将CDT和MRI成像技术相结合,实现诊疗一体化。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供一种硫化锰纳米花的制备方法,所述制备方法为:
将含聚乙烯亚胺的乙二醇溶液滴加至含有乙酰丙酮锰和柠檬酸三钠的乙二醇溶液中,进行第一次搅拌,加入硫代乙酰胺溶液,再滴加三乙醇胺,进行第二次搅拌,将得到的混合溶液进行溶剂热反应,反应结束后离心、洗涤,得到的固体即为硫化锰(MnS)纳米花。
优选的,所述含聚乙烯亚胺的乙二醇溶液中,聚乙烯亚胺和乙二醇的加入量之比为150mg:5mL;所述含有乙酰丙酮锰和柠檬酸三钠的乙二醇溶液中,乙酰丙酮锰、柠檬酸三钠和乙二醇的加入量之比为0.6mmol:0.2mmol:15mL。
优选的,所述硫代乙酰胺溶液的浓度为0.05M;所述聚乙烯亚胺、乙酰丙酮锰、硫代乙酰胺溶液和三乙醇胺的加入量之比为150mg:0.6mmol:15mL:0.5mL。
优选的,所述第一次搅拌的时间为120~150min;所述第二次搅拌的时间为1~10min;所述第一次搅拌和第二次搅拌的速度均为600-800rpm。
优选的,所述三乙醇胺的滴加速度为500μL/min。
优选的,所述溶剂热反应的温度为200℃,时间为24h。
本发明的第二方面,提供上述制备方法得到的硫化锰纳米花。
本发明的第三方面,提供硫化锰纳米花在制备如下1)~3)任一项药品中的应用:
1)制备一体化诊疗制剂;
2)制备化学动力学治疗制剂;
3)制备造影剂。
本发明的第四方面,提供一种一体化诊疗制剂,由硫化锰纳米花包覆生物相容性材料得到。
优选的,所述生物相容性材料为甲氧基聚乙二醇巯基(mPEG-SH);所述一体化诊疗制剂的制备方法为:
将硫化锰纳米花和mPEG-SH溶于无水乙醇,冰浴条件下搅拌反应,将得到的产物离心、洗涤,得到一体化诊疗制剂。
优选的,所述硫化锰纳米花、mPEG-SH和无水乙醇的加入量之比为1mg:1mg:1mL;所述搅拌的时间为6h。
优选的,所述mPEG-SH的分子量为5000~20000。
本发明的有益效果:
(1)本发明制备的硫化锰纳米花通过化学动力疗法(CDT)可以产生活性氧(ROS),诱导细胞死亡,而不需要通过激光照射外部的能量输入,从而规避了光穿透组织的限制。
(2)本发明基于肿瘤微环境低pH值的特性,合成了对肿瘤组织pH敏感的硫化锰纳米花。该纳米材料一旦进入肿瘤组织,可释放锰离子,发挥高效肿瘤T1磁共振造影功能。同时,该纳米花释放的锰离子能够与将肿瘤微环境中高浓度的H2O2催化为·OH,达到肿瘤协同治疗效果。
(3)本发明首次通过溶剂热法合成硫化锰纳米花,得到的产物颗粒大小均匀、分散性好,无团聚。该工艺简单,整个合成体系容易构建、操作简便、条件易控、成本低廉、产物组成易控、产物分布均匀、不易团聚、适合于大规模工业生产。
附图说明
图1为实施例1制得的MnS纳米花的透射电镜图片,(a)和(b)均为MnS纳米花的透射电镜图;
图2为实施例1制得的不同浓度的MnS纳米花水分散液照片;
图3为实施例1制得的不同浓度的MnS纳米花分散液的吸收光谱图;
图4为MnS纳米花在不同pH缓冲液中的Mn离子释放情况;
图5为不同浓度的MnS纳米花在不同pH缓冲液中的r1弛豫率,(a)MnS纳米花在pH=7.4的PBS缓冲液中的MnS纳米花,(b)MnS纳米花在pH=5.5的PBS缓冲液中的MnS纳米花,;
图6为TMB检测不同浓度MnS纳米花与H2O2共孵育后的·OH产生情况;
图7为TMB检测MnS纳米花与H2O2共孵育后不同时间点的·OH产生情况;
图8为流式细胞术检测MDA-MB-231细胞与不同浓度SH-PEG5000包裹MnS纳米花制剂(简称为MnS-PEG)共孵育后的细胞摄取情况;
图9为激光扫描共聚焦显微镜(CLSM)检测MDA-MB-231细胞与不同浓度MnS-PEG共孵育后的细胞摄取情况;
图10为不同浓度的MnS-PEG的药物体外溶血测定结果图;
图11为不同浓度的MnS-PEG对HUVEC细胞的生物相容性测定结果图;
图12为不同浓度的MnS-PEG对MDA-MB-231细胞的细胞毒性测定结果图;
图13为Calcein AM/PI荧光探针检测不同浓度MnS-PEG与MDA-MB-231细胞共孵育后活/死细胞染色的荧光图像;
图14为DCFH-DA荧光探针检测不同浓度MnS-PEG与MDA-MB-231细胞共孵育后产生·OH的荧光图像;
图15为流式细胞术检测不同浓度MnS-PEG对MDA-MB-231细胞的诱导凋亡的能力验证,(a)NC组对MDA-MB-231细胞的诱导凋亡的流式结果验证,(b)MnS-PEG组对MDA-MB-231细胞的诱导凋亡的流式结果验证;
图16为实施例1制备的MnS纳米花的XRD图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
正如背景技术部分介绍的,目前三维硫化锰纳米材料主要以硫化锰纳米球为主,但硫化锰纳米球分散性差,且硫化锰在制备过程非常容易被氧化。
基于此,本发明的目的是提供一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用。本发明以乙酰丙酮锰和硫代乙酰胺为原料,通过加入聚乙烯亚胺和三乙醇胺并调整这两种试剂的用量,用溶剂热反应制备得到硫化锰纳米花。该合成方法简单,可操作性强;合成的产品稳定,具有可重复性;另外,该合成方式可以有效避免硫化锰在合成过程中的氧化;通过与聚乙二醇结合制备的硫化锰纳米花制剂具有优异的过氧化物酶、生物相容性好,安全无毒,可用于包括肿瘤在内的化学动力学治疗。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。
实施例1:
(1)硫化锰纳米花的制备
将0.6mmol的乙酰丙酮锰和0.2mmol的柠檬酸三钠溶解于15mL乙二醇中,然后,将150mg聚乙烯亚胺(PEI)溶解于5mL乙二醇中,再将PEI加入到上述溶液中,在常温条件,800rpm的磁力搅拌下反应120min。随后,在溶液中加入15mL的0.05M的硫代乙酰胺溶液,然后向混合物中以500μL/min的速度滴入0.5mL的三乙醇胺。在常温,800rpm的磁力搅拌下反应1min。搅拌结束后,将混合溶液全部转移至高压釜中,在200℃下加热反应24h。最后,以14000rpm,10min离心收集,用无水乙醇洗3遍。
图16为硫化锰纳米花的XRD测试结果,从图中可看出,硫化锰纳米花为非晶型。对样品做进一步物相分析,标准卡片的峰位与测量的主峰位为基本一致,则可确定制备的物品为硫化锰,其对应的pdf卡片号为89-4089。
(2)硫化锰纳米花制剂的制备
将1mg的MnS纳米花和1mg的mPEG-SH溶于1mL的无水乙醇中,在冰浴条件下,以350rpm搅拌6h。将得到的产物以14000rpm离心5min,弃上清收集沉淀,用无水乙醇洗1遍,得到最终的MnS纳米花诊疗一体化制剂(记作MnS-PEG)。
(3)纳米材料的性能分析
如图1所示,取适量硫化锰纳米花溶解于无水乙醇中,配置为1mg/mL的溶液,使用移液器取20μL滴加至铜网上,,烘干制备成透射电镜检测样品,并用透射电镜观察,制备的硫化锰的形状为均匀分散的花形,粒径约为90nm。
如图2所示,分别配制10、20、40、80和160μg/mL的硫化锰纳米花水分散液。
如图3所示,所配置的不同浓度的硫化锰纳米花水分散液各取200μL,使用紫外分光光度计检测不同浓度的吸收曲线。
如图4所示,将10mg的步骤(1)制得的纳米材料分别溶解于2mL的pH7.4和pH5.5的PBS中,放置于14000KDa的透析袋,在100mL的pH7.4和pH5.5的PBS中透析,使用电感耦合等离子体发射光谱仪检测不同时间点透析液中锰离子的释放水平。结果发现,锰离子在pH5.5的PBS中可以释放水平明显升高,说明步骤(1)制得的硫化锰纳米花具有良好的酸响应性分解能力。
如图5所示,将步骤(1)制得的纳米材料分别溶解于pH7.4和pH5.5的PBS中,并配置成不同锰摩尔浓度的溶液,2h后用0.5T核磁共振仪测得不同锰浓度所对应的弛豫时间,1/弛豫时间(y)与锰的摩尔浓度(x)成线性关系。结果显示,pH7.4的溶液所得函数为y=8.6294x+0.6789,斜率8.6294mM-1s-1即为材料在pH7.4中的弛豫率R1值。pH5.5的溶液所得函数为y=13.837x+0.3221,斜率13.837mM-1s-1即为材料在pH5.5中的弛豫率R1值。说明步骤(1)制得的硫化锰纳米花在酸性环境中具有更好的MRI成像能力。
如图6所示,使用3,3′,5,5′-四甲基联苯胺(TMB)检测步骤(1)制得的纳米材料的过氧化物酶活性。将硫化锰纳米花,TMB,过氧化氢三者混合,分别配置硫化锰纳米花终浓度为5、10、20μg/mL的溶液,TMB终浓度为1Mm,过氧化氢的终浓度为100μM,1.5h后,使用紫外分光光度计检测溶液在550-750nm之间的吸收光谱,并拍照记录溶液颜色变化。结果显示,随着硫化锰纳米花的浓度升高,混合溶液的蓝色逐渐加深,550-750nm之间的吸收峰逐渐增高,说明硫化锰纳米花能够将过氧化氢催化为·OH,具有随浓度增强的过氧化物酶活性。
如图7所示,将硫化锰纳米花,TMB,过氧化氢三者混合,配置硫化锰纳米花终浓度为20μg/mL的溶液,TMB终浓度为1Mm,过氧化氢的终浓度为100μM。在0、0.5、1、1.5、2h时使用紫外分光光度计检测溶液在550-750nm之间的吸收光谱并拍照记录溶液颜色变化。结果显示,随着时间的延长,混合溶液的蓝色逐渐加深,550-750nm之间的吸收峰逐渐增高,说明硫化锰纳米花具有随时间逐渐增强的过氧化物酶活性。
如图8所示,使用流式细胞术检测步骤(2)制得的MnS-PEG诊疗一体化制剂被肿瘤细胞摄取的能力。首先将1mg MnS-PEG与1mg FITC混合于2mL的PBS中,搅拌6h后,使用去离子水洗涤2次,制备MnS-PEG-FITC。将MnS-PEG-FITC以0(对照组NC)、10、40μg/ml的浓度于MDA-MB-231细胞共孵育,在4h后检测细胞对纳米材料的摄取情况。结果发现,随着浓度增加,流式细胞术检测到的FITC的荧光逐渐增强,说明MnS-PEG能够以浓度依赖的方式,有效被肿瘤细胞摄取。
如图9所示,使用共聚焦显微镜检测步骤(2)制得的MnS-PEG被肿瘤细胞摄取的能力。MnS-PEG-FITC的制备方法如上述所示,将MnS-PEG-FITC以0(对照组NC)、10、40μg/mL的浓度于MDA-MB-231细胞共孵育,在4h后检测细胞对纳米材料的摄取情况。结果发现,随着浓度增加,共聚焦显微镜拍摄的绿色荧光逐渐增强,进一步说明MnS-PEG能够以浓度依赖的方式,有效被肿瘤细胞摄取。
如图10所示,将小鼠心脏中取出新鲜的血液,在常温下,以3000rpm离心15min以获得红细胞。加入5ml PBS缓冲液,轻轻吹打混匀,离心弃上清,并将沉淀红细胞在20ml的PBS中重悬。将步骤(2)制得的MnS-PEG制剂加入红细胞悬液中,配制为最终浓度为0.75、1.5、3、6、12.5、25、50和100μg/mL。以PBS稀释的红细胞悬液为阴性对照(-),以超纯水稀释的红细胞悬液为阳性对照(+),添加不同浓度材料的红细胞为实验组。将各组溶液在37℃恒温培养箱中孵育4小时,然后将溶液以3000rpm离心15min,将样本摆在同一水平线上,对其溶血现象进行拍摄。用移液器吸取100μl样本的上清液于96孔板中,用酶标仪检测样本在542nm的吸光度,并计算溶血率。结果发现,当用不同浓度的MnS-PEG制剂与红细胞共孵育时,可以观察到红细胞基本全部下沉,上清液与阴性对照组相比变化不大。这说明MnS-PEG制剂没有使红细胞发生溶血,与血细胞有良好的相容性。
如图11所示,在96孔板中各自分别加入1×104的人脐静脉内皮细胞HUVEC,在含有5% CO2的37℃恒温培养箱中培养24小时后,将步骤(2)制得的MnS-PEG制剂以不同最终浓度为0μg/mL、5μg/mL、10μg/mL、20μg/mL、40μg/mL、80μg/mL分别加入所述纳米材料,与细胞共同孵育24h。此后,吸去培养液,每孔加入MTT培养基培养3h,吸去培养液,每孔加入150μLDMSO,振荡10min使紫色固体全部溶解,利用酶标仪读取各个浓度下的吸光值,由吸光值算得的细胞存活率与纳米材料浓度的关系作图。结果显示,HUVEC细胞的存活率在纳米材料浓度低于80μg/mL时均为大约80%,说明MnS-PEG制剂对正常细胞具有良好的生物相容性。
如图12所示,在96孔板中各自分别加入1×104的人乳腺癌细胞MDA-MB-231,在含有5% CO2的37℃恒温培养箱中培养24小时后,将步骤2制得的MnS-PEG制剂以不同最终浓度为0μg/mL、5μg/mL、10μg/mL、20μg/mL、40μg/mL、80μg/mL分别加入所述纳米材料,与细胞共同孵育24h。此后,吸去培养液,每孔加入MTT培养基培养3h,吸去培养液,每孔加入150μLDMSO,振荡10min使紫色固体全部溶解,利用酶标仪读取各个浓度下的吸光值,由吸光值算得的细胞存活率与纳米材料浓度的关系作图。结果显示,随着MnS-PEG制剂浓度的增加,MDA-MB-231的细胞存活率逐渐降低,说明MnS-PEG制剂对肿瘤细胞具有浓度依赖的细胞毒性作用。
如图13所示,分别用Calcein-AM和PI两种荧光染料标记活细胞和死亡细胞,将4T1细胞铺在6孔板中,分别用0(对照组NC)、20,40μg/mL的MnS-PEG制剂处理细胞。24h后,吸除培养液,加入1ml的Calcein AM/PI检测工作液,避光在37℃下孵育30分钟。30分钟后,在荧光显微镜下观察红色荧光(PI:Ex/Em=535/617nm)和绿色荧光(CalceinAM:Ex/Em=494/517nm)的分布情况。结果显示,随着MnS-PEG制剂浓度的增加,红色荧光逐渐增加,绿色荧光逐渐减弱,进一步说明步骤(2)制得的纳米材料对肿瘤细胞的毒性作用。
如图14所示,使用DCFH-DA荧光探针检测MnS-PEG制剂处理后细胞内ROS的生成情况。将4T1细胞以2×105/孔的密度接种于6孔板中,分别用0(对照组NC)、20、40μg/mL的MnS-PEG制剂处理细胞。培养6小时后,将DCFH-DA荧光探针用无血清培养基稀释至10μmol/L。吸去6孔板上清培养基,加入DCFH-DA工作液(1ml/孔),黑暗状态下在37℃细胞培养箱内孵育30分钟。洗涤细胞3次,去除细胞外的DCFH-DA。利用CLSM使用488nm激发波长,525nm发射波长观察细胞内DCF荧光。结果显示,随着MnS-PEG制剂浓度的增加,DCF的绿色荧光逐渐增加,说明步骤(2)制得的纳米材料处理的肿瘤细胞内活性氧含量增加。
如图15所示,使用凋亡试剂盒检测MnS-PEG制剂处理后肿瘤细胞的凋亡情况凋亡实验所用染料为Annexin-V FITC和7-AAD,Q1代表Annexin-V FITC-/7-AAD+,表示细胞死亡;Q2代表Annexin-V FITC+/7-AAD+,表示晚期凋亡;Q3代表Annexin-VFITC+/7-AAD-,表示早期凋亡;Q4代表Annexin-V FITC-/7-AAD-,表示正常细胞。结果显示,MnS-PEG制剂处理后,肿瘤细胞的凋亡率明显增加,表明本发明制备MnS-PEG制剂具有促进肿瘤细胞凋亡的能力。
实施例2:
(1)硫化锰纳米花的制备
将0.6mmol的乙酰丙酮锰和0.2mmol的柠檬酸三钠溶解于15mL乙二醇中,然后,将150mg聚乙烯亚胺(PEI)溶解于5mL乙二醇中,再将PEI加入到上述溶液中,在常温条件,600rpm的磁力搅拌下反应150min。随后,在溶液中加入15mL的0.05M的硫代乙酰胺溶液,然后向混合物中以500μL/min的速度滴入0.5mL的三乙醇胺。在常温,800rpm的磁力搅拌下反应1min。搅拌结束后,将混合溶液全部转移至高压釜中,在200℃下加热反应24h。最后,以14000rpm,10min离心收集,用无水乙醇洗3遍。
(2)硫化锰纳米花制剂的制备
将1mg的MnS纳米花和1mg的mPEG-SH溶于1mL的无水乙醇中,在冰浴条件下,以350rpm搅拌6h。将得到的产物以14000rpm离心5min,弃上清收集沉淀,用无水乙醇洗1遍,得到最终的MnS-PEG。
实施例3:
(1)硫化锰纳米花的制备
将0.6mmol的乙酰丙酮锰和0.2mmol的柠檬酸三钠溶解于15mL乙二醇中,然后,将150mg聚乙烯亚胺(PEI)溶解于5mL乙二醇中,再将PEI加入到上述溶液中,在常温条件,800rpm的磁力搅拌下反应150min。随后,在溶液中加入15mL的0.05M的硫代乙酰胺溶液,然后向混合物中以500μL/min的速度滴入0.5mL的三乙醇胺。在常温,800rpm的磁力搅拌下反应10min。搅拌结束后,将混合溶液全部转移至高压釜中,在200℃下加热反应24h。最后,以14000rpm,10min离心收集,用无水乙醇洗3遍。
(2)硫化锰纳米花制剂的制备
将1mg的MnS纳米花和1mg的mPEG-SH溶于1mL的无水乙醇中,在冰浴条件下,以350rpm搅拌6h。将得到的产物以14000rpm离心5min,弃上清收集沉淀,用无水乙醇洗1遍,得到最终的MnS-PEG。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种硫化锰纳米花的制备方法,其特征在于,所述制备方法为:
将含聚乙烯亚胺的乙二醇溶液滴加至含有乙酰丙酮锰和柠檬酸三钠的乙二醇溶液中,进行第一次搅拌,加入硫代乙酰胺溶液,再滴加三乙醇胺,进行第二次搅拌,将得到的混合溶液进行溶剂热反应,反应结束后离心、洗涤,得到的固体即为硫化锰纳米花。
2.根据权利要求1所述的制备方法,其特征在于,所述含聚乙烯亚胺的乙二醇溶液中,聚乙烯亚胺和乙二醇的加入量之比为150mg:5mL;所述含有乙酰丙酮锰和柠檬酸三钠的乙二醇溶液中,乙酰丙酮锰、柠檬酸三钠和乙二醇的加入量之比为0.6mmol:0.2mmol:15mL。
3.根据权利要求1所述的制备方法,其特征在于,所述硫代乙酰胺溶液的浓度为0.05M;所述聚乙烯亚胺、乙酰丙酮锰、硫代乙酰胺溶液和三乙醇胺的加入量之比为150mg:0.6mmol:15mL:0.5mL。
4.根据权利要求1所述的制备方法,其特征在于,所述第一次搅拌的时间为120~150min;所述第二次搅拌的时间为1~10min;所述第一次搅拌和第二次搅拌的速度均为600-800rpm。
5.根据权利要求1所述的制备方法,其特征在于,所述溶剂热反应的温度为200℃,时间为24h。
6.权利要求1~5任一项所述的制备方法得到的硫化锰纳米花。
7.权利要求6所述的硫化锰纳米花在制备如下1)~3)任一项药品中的应用:
1)制备一体化诊疗制剂;
2)制备化学动力学治疗制剂;
3)制备造影剂。
8.一种一体化诊疗制剂,其特征在于,由权利要求6所述的硫化锰纳米花包覆生物相容性材料得到。
9.根据权利要求8所述的一体化诊疗制剂,其特征在于,所述生物相容性材料为甲氧基聚乙二醇巯基;所述一体化诊疗制剂的制备方法为:
将硫化锰纳米花和甲氧基聚乙二醇巯基溶于无水乙醇,冰浴条件下搅拌反应,将得到的产物离心、洗涤,得到一体化诊疗制剂。
10.根据权利要求9所述的一体化诊疗制剂,其特征在于,所述硫化锰纳米花、甲氧基聚乙二醇巯基和无水乙醇的加入量之比为1mg:1mg:1mL;所述搅拌的时间为6h。
CN202310647356.3A 2023-06-02 2023-06-02 一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用 Active CN116654986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310647356.3A CN116654986B (zh) 2023-06-02 2023-06-02 一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310647356.3A CN116654986B (zh) 2023-06-02 2023-06-02 一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116654986A true CN116654986A (zh) 2023-08-29
CN116654986B CN116654986B (zh) 2024-01-16

Family

ID=87722068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310647356.3A Active CN116654986B (zh) 2023-06-02 2023-06-02 一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116654986B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117860781A (zh) * 2024-03-12 2024-04-12 山东第一医科大学(山东省医学科学院) 一种双重调控肿瘤pd-l1表达的诊疗一体化纳米探针及其制备方法与应用
CN117919455A (zh) * 2024-03-21 2024-04-26 山东第一医科大学(山东省医学科学院) 一种硫化锰纳米球的尺寸调控方法与核磁成像应用
CN118307042A (zh) * 2024-04-09 2024-07-09 山东第一医科大学附属肿瘤医院(山东省肿瘤防治研究院、山东省肿瘤医院) 一种利用聚乙烯亚胺调控制备不同尺寸锰基核磁纳米探针的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106075443A (zh) * 2016-07-15 2016-11-09 上海工程技术大学 一种金包覆硒化铜纳米粒子及其制备方法与应用
CN110585237A (zh) * 2019-05-23 2019-12-20 深圳大学 一种纳米诊疗剂及其制备方法、应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106075443A (zh) * 2016-07-15 2016-11-09 上海工程技术大学 一种金包覆硒化铜纳米粒子及其制备方法与应用
CN110585237A (zh) * 2019-05-23 2019-12-20 深圳大学 一种纳米诊疗剂及其制备方法、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG TAO等: ""Hydrothermal synthesis of 3D α-MnS flowerlike nanoarchitectures"", vol. 61, pages 4973, XP022284111, DOI: 10.1016/j.matlet.2007.03.084 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117860781A (zh) * 2024-03-12 2024-04-12 山东第一医科大学(山东省医学科学院) 一种双重调控肿瘤pd-l1表达的诊疗一体化纳米探针及其制备方法与应用
CN117860781B (zh) * 2024-03-12 2024-05-28 山东第一医科大学(山东省医学科学院) 一种双重调控肿瘤pd-l1表达的诊疗一体化纳米探针及其制备方法与应用
CN117919455A (zh) * 2024-03-21 2024-04-26 山东第一医科大学(山东省医学科学院) 一种硫化锰纳米球的尺寸调控方法与核磁成像应用
CN118307042A (zh) * 2024-04-09 2024-07-09 山东第一医科大学附属肿瘤医院(山东省肿瘤防治研究院、山东省肿瘤医院) 一种利用聚乙烯亚胺调控制备不同尺寸锰基核磁纳米探针的方法

Also Published As

Publication number Publication date
CN116654986B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN116654986B (zh) 一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用
Dong et al. Upconversion-mediated ZnFe 2 O 4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy
Feng et al. Multifunctional UCNPs@ MnSiO 3@ gC 3 N 4 nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapy
Xu et al. Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and in vivo
CN116477668B (zh) 一种二维硫化铁纳米片及其制备方法和应用
CN110591075B (zh) 一种PEG-Peptide线性-树状给药系统及其制备方法和用途
CN109718197A (zh) 一种磁性可注射水凝胶、制备方法及应用
CN111603559B (zh) 铜碘簇化合物@光敏剂复合纳米颗粒及其作为x射线光动力治疗药物的应用
Li et al. Ultra-small gold nanoparticles self-assembled by gadolinium ions for enhanced photothermal/photodynamic liver cancer therapy
CN111821279A (zh) 白蛋白载二氧化锰及全氟溴辛烷纳米粒及制备方法与应用
Li et al. A synergistic chemodynamic–photodynamic-photothermal therapy platform based on biodegradable Ce-doped MoO x nanoparticles
CN111358946A (zh) 金属-icg配合物及制备方法、金属-icg配合物白蛋白纳米颗粒及制备方法和应用
Zhu et al. In situ assembled titanium carbide-based heterojunctions for the synergistic enhancement of NIR-II photothermal/photodynamic therapy against breast cancer
Zhao et al. Acidity-responsive nanocages as robust reactive oxygen species generators with butterfly effects for maximizing oxidative damage and enhancing cancer therapy
CN113648414B (zh) 一种金属离子配位的碳点/二氧化钛异质结及其制备方法和应用
Shao et al. Mn-doped single atom nanozyme composited Au for enhancing enzymatic and photothermal therapy
CN108434121B (zh) 一种双层核壳结构分子载体
CN104147608B (zh) 一种聚乙二醇‑叶酸修饰的氨基化锂皂石纳米颗粒及其制备和应用
Hu et al. An Intelligent and Soluble Microneedle Composed of Bi/BiVO4 Schottky Heterojunction for Tumor Ct Imaging and Starvation/Gas Therapy‐Promoted Synergistic Cancer Treatment
CN113230418A (zh) 一种超小核壳结构铁纳米颗粒的制备方法及应用
CN108355132B (zh) 一种磁共振靶向分子探针
CN115212319B (zh) 一种小尺寸铁掺杂氧化锌纳米复合颗粒的制备及应用
CN107998393B (zh) 增强光吸收的黑色素/Ce6光动力纳米肿瘤药物及其制备和应用
Wang et al. Self-assembled CeVO 4/Au heterojunction nanocrystals for photothermal/photoacoustic bimodal imaging-guided phototherapy
CN110642865B (zh) 一种高电荷阳离子卟啉在制备pdt纳米光敏剂中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant