CN116623295A - 一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法 - Google Patents

一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法 Download PDF

Info

Publication number
CN116623295A
CN116623295A CN202310551111.0A CN202310551111A CN116623295A CN 116623295 A CN116623295 A CN 116623295A CN 202310551111 A CN202310551111 A CN 202310551111A CN 116623295 A CN116623295 A CN 116623295A
Authority
CN
China
Prior art keywords
positive electrode
electrode material
lithium
rich manganese
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310551111.0A
Other languages
English (en)
Inventor
钟盛文
文萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN202310551111.0A priority Critical patent/CN116623295A/zh
Publication of CN116623295A publication Critical patent/CN116623295A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂离子电池材料领域,具体提供了一种钽与锆共掺杂的改性无钴单晶富锂锰基正极材料及其制备方法,所述正极材料的化学通式为:LiaNibMncTaxZryO2,其中,a介于1.2‑1.4之间,b介于0.2‑0.3之间,c介于0.5‑0.6之间,x和y介于0.005‑0.015之间,x和y相同或者不同。采用本发明的正极材料以及制备方法,提高了无钴单晶富锂锰基正极材料的循环稳定性,抑制了其首圈容量不可逆衰减,大幅提高了首次库伦效率。

Description

一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法
技术领域
本发明涉及电池材料领域,具体涉及一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法。
背景技术
锂离子电池的发展与正极材料、负极材料和电解质的发展有关。从目前的需求来看,正极材料的低能量密度是其短板。
正极材料中,相对于LiCoO2、LiMn2O4和LiFePO4来说,通式为xLi2MnO3·(1-x)LiMO2(M=Ni,Mn)的富锂锰基正极材料表现更高的比容量(>250mAh·g-1),被认为是下一代阴极。
富锂锰基正极材料的实际应用存在以下问题:(1)在较高的截止电压时,电解液容易受到局部过氧化活性基团的攻击而发生分解。此外,还会在材料表面产生电解质界面(CEI)层,增加了界面电阻,消耗锂化/脱锂锂离子,并导致产生额外的热量和气体。(2)初始库仑效率低(3)严重的容量和电压衰减现象(4)电压滞后。(5)较差的倍率性能和低温性能。在循环期间,这些问题会产生严重的性能问题和安全问题从而阻碍了富锂锰基正极材料的产业应用。通过阳离子、阴离子掺杂改性对富锂锰基材料的首次库伦效率和循环稳定性有很大的改善。
发明内容
本发明的目的在于提供一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法,用以提升无钴单晶富锂锰基正极材料的循环稳定性及其首次库伦效率率。
为了实现上述目的,本次发明采取的技术方案如下:
一种钽与锆共掺杂无钴单晶富锂锰基正极材料,其特征在于,所述正极材料的化学通式为:LiaNibMncTaxZryO2,其中,a介于1.2-1.4之间,b介于0.2-0.3之间,c介于0.5-0.6之间,x和y介于0.005-0.015之间,x和y相同或者不同;x和y优选介于0.008-0.012之间。
本发明另一方面还涉及上述钽与锆共掺杂无钴单晶富锂锰基正极材料的制备方法,包括以下步骤:
步骤1:利用共沉淀法制备无钴富锂锰基正极材料的前驱体;
步骤2:将步骤1中制备的前驱体进行洗涤、烘干处理;
步骤3:将步骤2中获得的前驱体、氢氧化锂、五氧化二钽和氧化锆混合球磨,得到钽、锆共掺杂改性无钴富锂锰基前驱体;
步骤4:将步骤3中得到的钽、锆共掺杂改性无钴富锂锰基前驱体进行烧结处理,即获得钽与锆共掺杂无钴单晶富锂锰基正极材料。
步骤5:将步骤4中获得钽与锆共掺杂无钴单晶富锂锰基正极材料经过球磨处理后,使用筛子进行过筛处理,随后得到正极料。
上述制备方法,利用共沉淀法制备无钴富锂锰基前驱体的具体步骤如下:
步骤1-1:将镍锰过渡金属盐按一定摩尔比称量,混合后加入去离子水配成溶液,称取NaOH并加入络合剂氨水溶液与去离子水配成4mol/L的混合碱溶液(氨水浓度为0.4~0.6mol/L);
步骤1-2:将步骤1-1中得到的溶液利用蠕动泵泵入共沉淀反应釜中,此过程中控制混合溶液的pH为10.6~11.2、蠕动泵的滴速、加热毯的温度及其反应釜的转速,经过搅拌反应后得到浅绿色物质,经过抽滤、洗涤及其干燥等工艺后获得所需前驱体,在这一步需要全程充入惰性气体。
上述制备方法,优选的,步骤1-1中所述过渡金属盐为硫酸盐、硝酸盐、乙酸盐中的一种或者多种;所述混合盐溶液的浓度1~2mol/L。
上述制备方法,优选的,步骤1-2中所述蠕动泵泵入滴速为1.0~1.7,加热毯的温度为50℃~60℃。反应釜的转速为400~600r/min。
上述制备方法,优选的,步骤1-2中所述中充入惰性气体即为氮气。
上述制备方法,优选的,步骤3中所述球磨时间为2~11h,球料比为1.5:1~6:1,球磨所用溶剂为无水乙醇或者甲醇之一,球磨转速为200~800r/min。
上述制备方法,优选的,步骤4中,所述烧结制度为:马弗炉空气气氛或者氧气气氛下以3~6℃/min的升温速率升温到450~570℃煅烧6h,930~960℃煅烧12h,最后随炉温自然冷却后。将煅烧的正极料经过球磨处理后,使用400目筛子进行过筛处理,随后得到富锂锰基正极料。
上述制备方法,优选的,步骤5中所述球磨球磨时间为2~6h,球料比为1.1:1~4:1球磨转速为300~900r/min。
本发明使用钽和锆共掺杂于富锂锰即正极材料中,所述钽和锆能取代部分锂和过渡金属,能够有效的增大锂离子扩散的层间距,进而有效改善富锂锰基材料的动力学性质,由于钽和氧、锆和氧的键都能高于镍或锰与氧的键能,因此钽与锆共掺杂能够提高材料结构的稳定性。此种改性方法提高了材料的首次库伦效率和循环稳定性。
附图说明
图1为本发明钽与锆共掺杂无钴单晶富锂锰基正极材料的XRD谱图;
图2为本发明钽与锆共掺杂无钴单晶富锂锰基正极材料的SEM图;(a)x=0.00;(b)x=0.005;(c)x=0.01;(d)x=0.015
图3为本发明钽与锆共掺杂无钴单晶富锂锰基正极材料的TEM图;(a-c)x=0.00;(d-f)x=0.01
图4为本发明钽与锆共掺杂无钴单晶富锂锰基正极材料的电化学性能图(电压窗口为2.0~4.6V.1C=200mAh·g-1);(a)首次充放电比容量曲线;(b)倍率图;(c)循环图。图4的结果表明,Ta、Zr共掺杂后提高了电化学性能。
具体实施方式
为使本发明的目的、技术效果及技术优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述;显然,所述的实施例是本发明一部分实施例。基于本发明中公开的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
比较例1
本实施例中提供一种无钴单晶富锂锰基正极材料,化学通式为:Li1.32Ni0.24Mn0.56TaxZrxO2(x=0.00),具体制备方法如下:
(1)将镍锰过渡金属盐按一定摩尔比称量,混合后加入去离子水配成溶液,称取NaOH并加入络合剂氨水溶液与去离子水配成4mol/L的混合碱溶液(氨水浓度为0.4~0.6mol/L);
(2)利用蠕动泵泵入共沉淀反应釜中,此过程中控制混合溶液的pH为10.6~11.2、蠕动泵的滴速1.0~1.7、加热毯的温度50℃~60℃及其反应釜的转速为400~600r/min,经过搅拌反应后得到浅绿色物质,经过抽滤、洗涤及其干燥等工艺后获得所需前驱体,在这一步需要全程充入惰性气体-N2
(3)将步骤(2)中获得0.8mol的前驱体与1.32mol氢氧化锂混合球磨,得到无钴富锂锰基前驱体;
(4)将步骤(3)中所述球磨时间为2~11h,球料比为1.5:1~6:1,球磨所用溶剂为无水乙醇或者甲醇之一,球磨转速为200~800r/min;
(5)将步骤(4)中得到的无钴富锂锰基前驱体进行烧结处理,即获得无钴富锂锰基正极材料;
(6)步骤(5)中所述烧结制度为:马弗炉空气气氛或者氧气气氛下以3~6℃/min的升温速率升温到450~570℃煅烧6h,930~960℃煅烧12h,随后得到富锂锰基正极料;
(7)将步骤(6)中获得无钴单晶富锂锰基正极材料经过球磨处理后,使用400目筛子进行过筛处理,随后得到Li1.32Ni0.24Mn0.56O2(即x=0.00)正极料;
(8)步骤(7)中所述球磨球磨时间为2~6h,球料比为1.1:1~4:1球磨转速为300~900r/min。
实施例1
本实施例中提供一种钽与锆共掺杂无钴单晶富锂锰基正极材料,化学通式为:Li1.32Ni0.24Mn0.56TaxZrxO2(x=0.005),具体制备方法如下:
(1)将镍锰过渡金属盐按一定摩尔比称量,混合后加入去离子水配成溶液,称取NaOH并加入络合剂氨水溶液与去离子水配成4mol/L的混合碱溶液(氨水浓度为0.4~0.6mol/L);
(2)利用蠕动泵泵入共沉淀反应釜中,此过程中控制混合溶液的pH为10.6~11.2、蠕动泵的滴速1.0~1.7、加热毯的温度50℃~60℃及其反应釜的转速为400~600r/min,经过搅拌反应后得到浅绿色物质,经过抽滤、洗涤及其干燥等工艺后获得所需前驱体,在这一步需要全程充入惰性气体-N2
(3)将步骤(2)中获得0.8mol的前驱体与1.32mol氢氧化锂、0.005mol五氧化二钽和0.005mol氧化锆混合球磨,得到钽、锆共掺杂改性无钴富锂锰基前驱体;
(4)将步骤(3)中所述球磨时间为2~11h,球料比为1.5:1~6:1,球磨所用溶剂为无水乙醇或者甲醇之一,球磨转速为200~800r/min;
(5)将步骤(4)中得到的无钴富锂锰基前驱体进行烧结处理,即获得钽、锆共掺杂改性无钴富锂锰基正极材料;
(6)步骤(5)中所述烧结制度为:马弗炉空气气氛或者氧气气氛下以3~6℃/min的升温速率升温到450~570℃煅烧6h,930~960℃煅烧12h,随后得到钽、锆共掺杂改性富锂锰基正极料;
(7)将步骤(6)中获得钽、锆共掺杂改性无钴单晶富锂锰基正极材料经过球磨处理后,使用400目筛子进行过筛处理,随后得到Li1.32Ni0.24Mn0.56TaxZrxO2(x=0.005)正极料;
(8)步骤(7)中所述球磨球磨时间为2~6h,球料比为1.1:1~4:1球磨转速为300~900r/min。
实施例2
本实施例中提供一种钽与锆共掺杂无钴单晶富锂锰基正极材料,化学通式为:Li1.32Ni0.24Mn0.56TaxZrxO2(x=0.01),具体制备方法如下:
(1)将镍锰过渡金属盐按一定摩尔比称量,混合后加入去离子水配成溶液,称取NaOH并加入络合剂氨水溶液与去离子水配成4mol/L的混合碱溶液(氨水浓度为0.4~0.6mol/L);
(2)利用蠕动泵泵入共沉淀反应釜中,此过程中控制混合溶液的pH为10.6~11.2、蠕动泵的滴速1.0~1.7、加热毯的温度50℃~60℃及其反应釜的转速为400~600r/min,经过搅拌反应后得到浅绿色物质,经过抽滤、洗涤及其干燥等工艺后获得所需前驱体,在这一步需要全程充入惰性气体-N2
(3)将步骤(2)中获得0.8mol的前驱体与1.32mol氢氧化锂、0.01mol五氧化二钽和0.005mol氧化锆混合球磨,得到钽、锆共掺杂改性无钴富锂锰基前驱体;
(4)将步骤(3)中所述球磨时间为2~11h,球料比为1.5:1~6:1,球磨所用溶剂为无水乙醇或者甲醇之一,球磨转速为200~800r/min;
(5)将步骤(4)中得到的无钴富锂锰基前驱体进行烧结处理,即获得钽、锆共掺杂改性无钴富锂锰基正极材料;
(6)步骤(5)中所述烧结制度为:马弗炉空气气氛或者氧气气氛下以3~6℃/min的升温速率升温到450~570℃煅烧6h,930~960℃煅烧12h,随后得到钽、锆共掺杂改性富锂锰基正极料;
(7)将步骤(6)中获得钽、锆共掺杂改性无钴单晶富锂锰基正极材料经过球磨处理后,使用400目筛子进行过筛处理,随后得到Li1.32Ni0.24Mn0.56TaxZrxO2(x=0.01)正极料;
(8)步骤(7)中所述球磨球磨时间为2~6h,球料比为1.1:1~4:1球磨转速为300~900r/min。
实施例3
本实施例中提供一种钽与锆共掺杂无钴单晶富锂锰基正极材料,化学通式为:Li1.32Ni0.24Mn0.56TaxZrxO2(x=0.015),具体制备方法如下:
(1)将镍锰过渡金属盐按一定摩尔比称量,混合后加入去离子水配成溶液,称取NaOH并加入络合剂氨水溶液与去离子水配成4mol/L的混合碱溶液(氨水浓度为0.4~0.6mol/L);
(2)利用蠕动泵泵入共沉淀反应釜中,此过程中控制混合溶液的pH为10.6~11.2、蠕动泵的滴速1.0~1.7、加热毯的温度50℃~60℃及其反应釜的转速为400~600r/min,经过搅拌反应后得到浅绿色物质,经过抽滤、洗涤及其干燥等工艺后获得所需前驱体,在这一步需要全程充入惰性气体-N2
(3)将步骤(2)中获得0.8mol的前驱体与1.32mol氢氧化锂、0.015mol五氧化二钽和0.005mol氧化锆混合球磨,得到钽、锆共掺杂改性无钴富锂锰基前驱体;
(4)将步骤(3)中所述球磨时间为2~11h,球料比为1.5:1~6:1,球磨所用溶剂为无水乙醇或者甲醇之一,球磨转速为200~800r/min;
(5)将步骤(4)中得到的无钴富锂锰基前驱体进行烧结处理,即获得钽、锆共掺杂改性无钴富锂锰基正极材料;
(6)步骤(5)中所述烧结制度为:马弗炉空气气氛或者氧气气氛下以3~6℃/min的升温速率升温到450~570℃煅烧6h,930~960℃煅烧12h,随后得到钽、锆共掺杂改性富锂锰基正极料;
(7)将步骤(6)中获得钽、锆共掺杂改性无钴单晶富锂锰基正极材料经过球磨处理后,使用400目筛子进行过筛处理,随后得到Li1.32Ni0.24Mn0.56TaxZrxO2(x=0.015)正极料;
(8)步骤(7)中所述球磨球磨时间为2~6h,球料比为1.1:1~4:1球磨转速为300~900r/min。
电池的装配:正极是用90wt.%所制备的正极料、6wt.%聚偏二氟乙烯(PVDF)粘合剂和4wt.%乙炔黑的浆料制备的。将得到的浆料涂布在铝布上。干燥、滚压后,将得到的正极片冲片,得到直径为1.2cm的圆片。将实验所需物品放入60℃的烘箱进行12h的烘干处理。随后在氩气保护的手套箱中组装CR2032扣式电池,其中负极为购买的金属锂片,电解液为1mol/L LiPF6溶解在碳酸亚乙酯(EC)/碳酸二甲酯(DEC)/碳酸乙基甲基酯(EMC)(体积比为1:1:1)的混合溶液。电池组装顺序为负极壳-金属锂-隔膜-正极片-垫片-弹片-正极壳。电压设定为2.00~4.60V,使用中国深圳市新威尔电子有限公司生产的电化学测试设备进行电化学性能测试。
本发明所组装的电池在2.0~4.6V电压范围内,0.1C下进行首次充放电测试,在0.5C放电倍率下进行循环测试,测得四个样品的电化学数据如下表所示。
表1展示了首次库伦效率和100圈后放电容量保持率
从表1中可以看出使用0.01mol钽和0.01mol锆共掺杂于富锂锰即正极材料中,所述钽和锆能取代部分锂和过渡金属,能够有效的增大锂离子扩散的层间距,进而有效改善富锂锰基材料的动力学性质,由于钽和氧、锆和氧的键能都高于镍或锰与氧的键能,因此钽与锆共掺杂能够提高材料结构的稳定性。此种改性方法提高了材料的首次库伦效率和循环稳定性。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求范围内。

Claims (10)

1.一种钽与锆共掺杂的改性无钴单晶富锂锰基正极材料,其特征在于,所述正极材料的化学通式为:LiaNibMncTaxZryO2,其中,a介于1.2-1.4之间,b介于0.2-0.3之间,c介于0.5-0.6之间,x和y介于0.005-0.015之间,x和y相同或者不同。
2.根据权利要求1所述的正极材料,所述x和y介于0.008-0.012之间。
3.权利要求1或2所述的正极材料的制备方法,其特征在于包括如下步骤:
步骤1:通过共沉淀法制备富锂层状氢氧化物前驱体;
步骤2:将步骤1中得到的前驱体与氢氧化锂、五氧化二钽和氧化锆混合并采用球磨机使其均匀分布;
步骤3:将混合均匀后的材料在空气箱式炉内分别按如下制度进行烧结450~570℃煅烧6h,930~960℃煅烧12h,最后随炉温自然冷却后。将煅烧的正极料经过球磨处理后,使用400目筛子进行过筛处理,随后得到无钴单晶富锂锰基正极材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤2中,所述球磨时间为2~11h,球料比为1.5:1~6:1,球磨所用溶剂为无水乙醇或者甲醇之一,球磨转速为200~800r/min。
5.根据权利要求3所述的制备方法,其特征在于,步骤3中,所述烧结制度为:马弗炉空气气氛或者氧气气氛下以3~6℃/min的升温速率升温到450~960℃,经过6~12h的煅烧。
6.根据权利要求3所述的制备方法,其特征在于,步骤3中,所述球磨球磨时间为2~6h,球料比为1.1:1~4:1球磨转速为300~900r/min。
7.根据权利要求1或2所述正极材料的制备方法,其特征在于,利用共沉淀法制备无钴单晶富锂锰基正极材料的前驱体具体包括以下步骤:
步骤1-1:将镍锰过渡金属盐按一定摩尔比称量,混合后加入去离子水配成溶液,称取NaOH并加入络合剂氨水溶液与去离子水配成4mol/L的混合碱溶液;
步骤1-2:将步骤1-1中得到的溶液利用蠕动泵泵入共沉淀反应釜中,此过程中控制混合溶液的pH、蠕动泵的滴速、加热毯的温度及其反应釜的转速,经过搅拌反应后得到浅绿色物质,经过抽滤、洗涤及其干燥等工艺后获得所需前驱体,在这一步全程充入惰性气体。
8.根据权利要求7所述的制备方法,其特征在于,步骤1-1中,所述过渡金属盐为硫酸盐、硝酸盐、乙酸盐中的一种或者多种;所述混合盐溶液的浓度1~2mol/L。
9.根据权利要求7所述的制备方法,其特征在于,步骤1-2中,所述混合溶液的pH为10.6~11.2、蠕动泵滴速为1.0~1.7,加热毯的温度为50℃~60℃。反应釜的转速为400~600r/min。
10.权利要求3~9任意一项所述制备方法制得的无钴富锂锰基正极料。
CN202310551111.0A 2023-05-16 2023-05-16 一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法 Pending CN116623295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310551111.0A CN116623295A (zh) 2023-05-16 2023-05-16 一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310551111.0A CN116623295A (zh) 2023-05-16 2023-05-16 一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116623295A true CN116623295A (zh) 2023-08-22

Family

ID=87609245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310551111.0A Pending CN116623295A (zh) 2023-05-16 2023-05-16 一种钽与锆共掺杂无钴单晶富锂锰基正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116623295A (zh)

Similar Documents

Publication Publication Date Title
CN109336193B (zh) 多元素原位共掺杂三元材料前驱体及其制备方法和应用
CN107706390B (zh) 一种快离子导体和导电聚合物双重修饰的锂离子电池三元正极材料的制备方法
JP4973825B2 (ja) 非水電解質二次電池用正極活物質の製造法、非水電解質二次電池
KR101400593B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102477330B1 (ko) 리튬 망간 리치 재료, 이의 제조 방법 및 응용
EP3930051B1 (en) Positive electrode material and application thereof
CN109713297B (zh) 一种一次颗粒定向排列的高镍正极材料及其制备方法
CN112750999A (zh) 正极材料及其制备方法和锂离子电池
CN114790013A (zh) 自补钠的钠离子电池正极活性材料及其制备方法和应用
CN110492095B (zh) 一种锡掺杂的富锂锰基正极材料及其制备方法
CN110034274B (zh) 改性三元正极材料、其制备方法及锂离子电池
CN113422033A (zh) 一种钇离子掺杂氧化钇包覆改性的富锂锰基正极材料、制备方法及应用
KR20140119621A (ko) 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
CN111762768A (zh) 尖晶石型锰酸锂-磷酸盐复合正极材料及其制备方法
CN114497527B (zh) 一种富锂锰基正极材料及其制备方法和锂离子电池
CN114520318B (zh) 一种动力电池用高镍无钴镍钨锰酸锂正极材料及制备方法
CN116093303B (zh) 一种钠、镧共掺杂改性富锂锰基正极材料及其制备方法
CN116454261A (zh) 锂离子电池正极材料及其制备方法
KR20120012628A (ko) 표면 개질된 리튬 이차전지용 양극 활물질 및 그 제조방법
CN115286042A (zh) 一种锂离子电池的富锂锰基正极材料及其制备方法
CN117878243A (zh) 无电压降高熵富锂锰基层状正极活性材料及制备、应用
CN105185969B (zh) 一种正极材料及其制备方法
CN111370666A (zh) 正极材料、其制备方法及应用
CN116154174A (zh) 一种多相复合层状锰基正极材料及制备方法
CN116081710A (zh) 一种钾掺杂的镍锰铜三元层状氧化物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination