CN116613203A - 半导体装置以及半导体装置的制造方法 - Google Patents

半导体装置以及半导体装置的制造方法 Download PDF

Info

Publication number
CN116613203A
CN116613203A CN202310096694.2A CN202310096694A CN116613203A CN 116613203 A CN116613203 A CN 116613203A CN 202310096694 A CN202310096694 A CN 202310096694A CN 116613203 A CN116613203 A CN 116613203A
Authority
CN
China
Prior art keywords
layer
type
impurity concentration
region
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310096694.2A
Other languages
English (en)
Inventor
本田成人
深田祐介
冈本隼人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN116613203A publication Critical patent/CN116613203A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

涉及半导体装置以及半导体装置的制造方法。抑制RC‑IGBT的恢复损耗的增加。关于半导体装置,IGBT区域具有漂移层的表层的第2导电型的基极层,二极管区域具有漂移层的表层的第2导电型的阳极层,终端区域具有漂移层的表层的第2导电型的阱层,沿漂移层的上表面的方向上的基极层的杂质浓度的分布以及阳极层的杂质浓度的分布周期性地变动,基极层的杂质浓度的分布与阳极层的杂质浓度的分布不同。

Description

半导体装置以及半导体装置的制造方法
技术领域
本申请说明书中公开的技术涉及半导体装置。
背景技术
在例如专利文献1中公开了反向导通型IGBT(reverseconducting insulatedgate bipolar transistor,即RC-IGBT)。在此,RC-IGBT是在一片半导体基板形成IGBT和续流二极管(free-wheeling diode,即FWD)而得到的。
在专利文献1所公开的RC-IGBT的表面侧,分别在IGBT区域形成P型的基极层,在二极管区域形成P型的阳极层,在终端区域形成P型的阱层,IGBT区域的P型的基极层以及二极管区域的P型的阳极层是以一样的深度平坦地形成的。
专利文献1:日本特开2021-136311号公报
在使IGBT和二极管成为一体的构造即RC-IGBT中,作为载流子的空穴从IGBT区域向二极管区域流入。因此,二极管的恢复动作时的电力损耗即恢复损耗增加。
另外,在专利文献1所示的RC-IGBT中,由于二极管区域的P型的阳极层的杂质浓度与IGBT区域的P型的基极层的杂质浓度相同,所以P型的阳极层成为为了IGBT特性而恰当化的杂质浓度。因此,由于来自P型的阳极层的空穴的流入变多,从而二极管的恢复损耗也增加。
发明内容
本申请说明书中公开的技术就是鉴于以上记载的问题而提出的,是一种用于抑制RC-IGBT的恢复损耗增加的技术。
本申请说明书所公开的技术的第1方式即半导体装置是将作为有源区域的IGBT区域以及二极管区域、在俯视观察时围绕所述有源区域的终端区域设置于单一的半导体基板的RC-IGBT,在所述半导体基板的上表面设置有第1导电型的漂移层,所述IGBT区域具有所述漂移层的表层的第2导电型的基极层,所述二极管区域具有所述漂移层的表层的第2导电型的阳极层,所述终端区域具有所述漂移层的表层的第2导电型的阱层,沿所述漂移层的上表面的方向上的所述基极层的杂质浓度的分布以及所述阳极层的杂质浓度的分布周期性地变动,所述基极层的杂质浓度的分布和所述阳极层的杂质浓度的分布不同。
发明的效果
根据本申请说明书所公开的技术的至少第1方式,通过设为基极层以及阳极层的杂质浓度的分布周期性地变动的结构,从而能够降低空穴的流入而抑制恢复损耗的增加。
另外,与本申请说明书所公开的技术相关联的目的、特征、方案和优点通过以下示出的详细说明和附图而变得更加清楚。
附图说明
图1是概略地表示本实施方式涉及的半导体装置即RC-IGBT的结构的例子的剖视图。
图2是表示形成本实施方式涉及的RC-IGBT的结构中的P型半导体层的工序的例子的剖视图。
图3是表示形成本实施方式涉及的RC-IGBT的结构中的P型半导体层的工序的例子的剖视图。
图4是表示形成本实施方式涉及的RC-IGBT的结构中的P型半导体层的工序的例子的剖视图。
图5是表示图4所示的IGBT区域的P型的基极层之内的A-A’部位的硼浓度分布的例子的图。
图6是表示图4所示的二极管区域的P型的阳极层之内的B-B’部位的硼浓度分布的例子的图。
图7是概略地表示本实施方式涉及的半导体装置即RC-IGBT的结构的例子的剖视图。
图8是概略地表示本实施方式涉及的半导体装置即RC-IGBT的结构的例子的剖视图。
图9是概略地表示本实施方式涉及的半导体装置即RC-IGBT的结构的例子的剖视图。
具体实施方式
以下,一边参照附图一边对实施方式进行说明。在以下的实施方式中,为了说明技术还示出了详细的特征等,但这些是例示,而不都是为了使实施方式能够实施而必须的特征。
此外,附图是概略地示出的,为了方便说明,有时在附图中适当地省略结构或简化结构等。另外,在不同附图中分别示出的结构等的大小以及位置的相互关系并非必然是准确地记载的,可以适当变更。另外,对于并非剖视图的平面图等附图,同样地,为了易于理解实施方式的内容,有时会标注阴影。
另外,在以下所示的说明中,对于同样的结构要素标注相同的标号而进行图示,它们的名称和功能也相同。因此,有时将对它们的详细说明省略以避免重复。
此外,在本申请说明书所记载的说明中,除非特别说明,记载为“具备”、“包含”或“具有”某结构要素等的情况不是将其它结构要素的存在排除在外的排他性表达。
另外,在本申请说明书所记载的说明中,有时使用“第1”或“第2”等序数,这些用语是为了易于理解实施方式的内容,出于方便起见而使用的,实施方式的内容不限定于能够由于上述序数产生的顺序等。
另外,除非特别说明,本申请说明书所记载的说明中的表示相对性的或绝对性的位置关系的表达,例如“在一个方向上”、“沿一个方向”、“平行”、“正交”、“中心”、“同心”或“同轴”等包含严格地表示该位置关系的情况、在公差或能得到相同程度的功能的范围中角度或距离发生偏移的情况。
另外,在本申请说明书所记载的说明中,除非特别说明,表示等同状态的表达,例如“相同”、“相等”、“均一”或“均质”等包含表示严格相等的状态的情况、在公差或能得到相同程度的功能的范围中产生偏差的情况。
另外,在本申请说明书所记载的说明中,有时使用“上”、“下”、“左”、“右”、“侧”、“底”、“表”或“背”等意味着特定的位置或方向的用语,这些用语是为了易于理解实施方式的内容,出于方便起见而使用的,与实施方式被实际实施时的位置或方向无关。
另外,在本申请说明书所记载的说明中,在记载为“……的上表面”或“……的下表面”等的情况下,还包含除作为对象的结构要素的上表面自身或下表面自身之外,在作为对象的结构要素的上表面或下表面形成有其它结构要素的状态。即,例如在记载为“在A的上表面设置的B”的情况下,不妨碍在A和B之间存在其它结构要素“C”。
<第1实施方式>
以下,对本实施方式涉及的半导体装置以及半导体装置的制造方法进行说明。另外,在以下的说明中,关于半导体的导电型,将第1导电型设为N型,将第2导电型设为P型。但是,也可以将它们的对应关系反转,将第1导电型设为P型,将第2导电型设为N型。
<关于半导体装置的结构>
图1是概略地表示本实施方式涉及的半导体装置即RC-IGBT的结构的例子的剖视图。图1中的IGBT区域、二极管区域以及终端区域形成于具有N-型的漂移层7的单一的半导体基板。IGBT区域以及二极管区域形成有源区域。
在IGBT区域,在N-型的漂移层7的表层形成杂质浓度比N-型的漂移层7高的N型的载流子储存(CS)层18。另外,在N-型的漂移层7的表层之中的N型的CS层18的上方形成P型的基极层5。另外,在P型的基极层5的表层形成杂质浓度比N-型的漂移层7高的N+型的源极层3、和杂质浓度比P型的基极层5高的P+型的接触层4。
另外,形成沟槽100,该沟槽100从IGBT区域的N-型的漂移层7的上表面(即,N+型的源极层3的上表面)贯通N+型的源极层3、P型的基极层5以及N型的CS层18而到达N-型的漂移层7。另外,在沟槽100的侧壁形成栅极氧化膜15。栅极氧化膜15是与由N+型的源极层3和漂移层7夹着的P型的基极层5接触地形成的。栅极电极16形成于沟槽100之内,并且隔着栅极氧化膜15而与N+型的源极层3、P型的基极层5、N型的CS层18以及N-型的漂移层7相对。在栅极电极16的上表面形成绝缘膜11。
另外,在IGBT区域的未被绝缘膜11覆盖的N+型的源极层3的上表面以及P+型的接触层4的上表面形成阻挡金属2。另外,覆盖绝缘膜11的上表面以及阻挡金属2的上表面而形成表面电极1。
在IGBT区域的N-型的漂移层7的下表面侧形成杂质浓度比N-型的漂移层7高的N型的缓冲层8。并且,在N型的缓冲层8的下方形成P+型的集电极层9。另外,在P+型的集电极层9的下方形成背面电极17。
在二极管区域,在N-型的漂移层7的表层形成杂质浓度比N-型的漂移层7高的N型的CS层18。另外,在N-型的漂移层7的表层之中的N型的CS层18的更上方形成P型的阳极层6。另外,在N-型的漂移层7的表层之中的P型的阳极层6的上方形成杂质浓度比P型的阳极层6高的P+型的接触层4。
另外,形成沟槽101,该沟槽101从二极管区域的N-型的漂移层7的上表面(即P+型的接触层4的上表面)贯通P+型的接触层4、P型的阳极层6以及N型的CS层18而到达N-型的漂移层7。另外,在沟槽101的侧壁形成栅极氧化膜15。栅极电极16形成于沟槽101之内,并且隔着栅极氧化膜15而与P+型的接触层4、P型的阳极层6、N型的CS层18以及N-型的漂移层7相对。
另外,在二极管区域的未被绝缘膜11覆盖的P+型的接触层4的上表面以及P型的阳极层6的上表面形成阻挡金属2。另外,覆盖绝缘膜11的上表面以及阻挡金属2的上表面而形成表面电极1。
在二极管区域的N-型的漂移层7的下表面侧形成杂质浓度比N-型的漂移层7高的N型的缓冲层8。并且,在N型的缓冲层8的下方形成杂质浓度比N型的缓冲层8高的N+型的阴极层10。另外,在N+型的阴极层10的下方形成背面电极17。
在终端区域,在N-型的漂移层7的表层形成P型的阱层12。另外,在远离IGBT区域的最外周形成杂质浓度比N-型的漂移层7高的N型的沟道截止层13。
另外,在终端区域的N-型的漂移层7的上表面、P型的阱层12的上表面的一部分以及N型的沟道截止层13的上表面的一部分形成绝缘膜11。并且,覆盖从绝缘膜11露出的P型的阱层12的上表面、从绝缘膜11露出的N型的沟道截止层13的上表面以及N-型的漂移层7的上表面而形成表面电极1。表面电极1与P型的阱层12的上表面的一部分以及N型的沟道截止层13的上表面的一部分接触。另外,覆盖表面电极1以及从表面电极1露出的绝缘膜11而形成半绝缘膜和绝缘膜混合存在的混合绝缘膜14。
在终端区域的N-型的漂移层7的下表面侧形成杂质浓度比N-型的漂移层7高的N型的缓冲层8。并且,在N型的缓冲层8的下方形成杂质浓度比N型的缓冲层8高的N+型的阴极层10。另外,在N+型的阴极层10的下方形成背面电极17。
在上述记载中,IGBT区域的P型的基极层5不是以一样的深度平坦地形成的。具体地说,IGBT区域的P型的基极层5形成为,相对于沿N-型的漂移层7的上表面(第1主面)的方向,深度以及浓度以一定的周期变化。
另外,二极管区域的P型的基极层5也不是以一样的深度平坦地形成的。具体地说,二极管区域的P型的基极层5形成为,相对于沿第1主面的方向,深度以及浓度以与IGBT区域的P型的基极层5不同的一定的周期变化。
<关于半导体装置的制造方法>
图2、图3及图4是表示形成本实施方式涉及的RC-IGBT的结构中的P型半导体层(具体地说,是P型的基极层5、P型的阳极层6以及P型的阱层12)的工序的例子的剖视图。
首先,如图2所例示的那样,准备N型的半导体基板19(例如,电阻率ρ为23Ω·cm,厚度为725μm)。接下来,在N型的半导体基板19的上表面形成N-型的漂移层7。
然后,如图3所例示的那样,在N型的半导体基板19的N-型的漂移层7的IGBT区域、二极管区域以及终端区域的范围使用光掩膜20(光刻胶)进行照相制版处理。
在此,在以往的制造方法中,在成为IGBT区域的部分以及成为二极管区域的部分没有配置光掩膜20的开口,但在本实施方式中,除了成为终端区域的部分之外,还针对成为IGBT区域的部分以及成为二极管区域的部分分别局部地配置光掩膜20的开口。
例如,形成在俯视观察时呈条带形状的重复进行移除和残留的光刻胶图案。并且,将IGBT区域中的移除的尺寸宽度(在图3中示出的宽度X1)设为例如0.6μm,将IGBT区域中的残留的尺寸宽度(在图3中示出的宽度X2)设为例如1.4μm。另外,将二极管区域中的移除的尺寸宽度(在图3中示出的宽度X3)设为例如0.4μm,将二极管区域中的残留的尺寸宽度(在图3中示出的宽度X4)设为例如0.9μm。在本实施方式中,在IGBT区域周期性地形成的开口宽度与在二极管区域周期性地形成的开口宽度不同。
在形成如上所述的光刻胶图案之后,进行离子注入处理(例如进行硼的注入处理。硼的注入量为例如3×1014atoms/cm2),将掺杂剂注入到N-型的漂移层7之中。
然后,通过进行热处理(例如在1100℃下进行60分钟),从而能够将注入至IGBT区域、二极管区域以及终端区域的掺杂剂激活,另外,使这些掺杂剂扩散至所期望的深度。
此时,注入的掺杂剂不仅向注入深度方向、也向与注入深度方向正交的方向扩散,因此IGBT区域的P型的基极层5与二极管区域的P型的阳极层6之间以及二极管区域的P型的阳极层6与终端区域的P型的阱层12之间如图4所例示的那样分别相连。
图5是表示图4所示的IGBT区域的P型的基极层5之内的A-A’部位的硼浓度分布的例子的图。在图5中,纵轴表示硼浓度[atoms/cm3],横轴表示朝向IGBT区域的外周侧的距离[μm]。
如图5所例示的那样,基极层5的硼浓度的变化以某一定的周期重复。硼浓度的变化的周期由光掩膜20的移除的尺寸宽度、残留的尺寸宽度、硼的注入条件或热处理条件等决定。
图6是表示图4所示的二极管区域的P型的阳极层6之内的B-B’部位的硼浓度分布的例子的图。在图6中,纵轴表示硼浓度[atoms/cm3],横轴表示朝向二极管区域的外周侧的距离[μm]。
如图6所例示的那样,阳极层6的硼浓度的变化以某一定的周期重复。但是,光掩膜20的移除的尺寸宽度以及残留的尺寸宽度与其在IGBT区域不同,因此二极管区域的硼浓度的变化的周期与IGBT区域的硼浓度的变化的周期不同。具体地说,二极管区域的硼浓度的变化的周期比IGBT区域的硼浓度的变化的周期短。
硼浓度的变化的周期能够通过调整移除的尺寸宽度与残留的尺寸宽度的比率(即光掩膜20的开口率)来控制。由此,通过上述的调整,能够分别控制IGBT区域的P型的基极层5的浓度分布以及二极管区域的P型的阳极层6的浓度分布,能够实现各自合适的浓度分布。
如此,就本实施方式涉及的RC-IGBT而言,能够通过1次照相制版处理(即,1片光掩膜20)而形成IGBT区域的P型的基极层5、二极管区域的P型的阳极层6以及终端区域的P型的阱层12。因此,能够使RC-IGBT的制造成本降低。
<第2实施方式>
对本实施方式涉及的半导体装置进行说明。此外,在以下的说明中,对于与在以上记载的实施方式中说明过的结构要素同样的结构要素,标注相同的标号而进行图示,适当地省略其详细的说明。
图7是概略地表示本实施方式涉及的半导体装置即RC-IGBT的结构的例子的剖视图。
在图7所示的RC-IGBT的IGBT区域形成N-型的漂移层7、N型的CS层18、N+型的源极层3和P+型的接触层4。另外,在N-型的漂移层7的表层之中的N型的CS层18的上方形成P型的基极层5A。另外,在IGBT区域形成沟槽100、栅极氧化膜15、绝缘膜11、阻挡金属2、表面电极1、N型的缓冲层8、P+型的集电极层9和背面电极17。
在图7所示的RC-IGBT的二极管区域形成N-型的漂移层7和N型的CS层18。另外,在N-型的漂移层7的表层之中的N型的CS层18的更上方形成P型的阳极层6A。在二极管区域形成P+型的接触层4、沟槽101、栅极氧化膜15、阻挡金属2、表面电极1、N型的缓冲层8、N+型的阴极层10和背面电极17。
就图7所示的RC-IGBT而言,IGBT区域的P型的基极层5A的每单位面积的杂质浓度(掺杂剂浓度)比二极管区域的P型的阳极层6A的每单位面积的杂质浓度(掺杂剂浓度)高。另外,就图7所示的RC-IGBT而言,IGBT区域的P型的基极层5A的形成深度比二极管区域的P型的阳极层6A的形成深度深。
例如,在将用于形成IGBT区域的P型基极层5A的光掩膜20的移除的尺寸宽度设为0.6μm,将残留的尺寸宽度设为1.4μm,将用于形成二极管区域的P型阳极层6A的光掩膜20的移除的尺寸宽度设为0.4μm,将残留的尺寸宽度设为1.6μm而进行离子注入处理的情况下,IGBT区域的P型的基极层5A的每单位面积的杂质浓度(掺杂剂浓度)成为二极管区域的P型的阳极层6A的每单位面积的杂质浓度(掺杂剂浓度)的1.5倍。
IGBT区域的P型的基极层5A的杂质浓度(掺杂剂浓度)是根据IGBT的阈值电压(Threshold Voltage)的设计值而设计的。另一方面,为了确保断开时的电流截断能力(RBSOA:Reverse Blocking Safe Operation Area)而防止闩锁效应,需要降低P型的基极层5A的电阻值。这样,优选IGBT区域的P型的基极层5A的杂质浓度(掺杂剂浓度)设定得高。
在此,如果提高二极管区域的P型的阳极层6A的杂质浓度(掺杂剂浓度),则二极管导通时的来自P型的阳极层6A的空穴注入效率变高,二极管接通时的在N-型的漂移层7积蓄的载流子浓度变高。因此,恢复损耗变大。
由此,就由于高频率动作的用途而要求降低恢复损耗的RC-IGBT而言,优选二极管区域的P型的阳极层6A的浓度设定得低。
就本实施方式涉及的RC-IGBT而言,IGBT区域的P型的基极层5A的杂质浓度(掺杂剂浓度)比二极管区域的P型的阳极层6A的杂质浓度(掺杂剂浓度)高。因此,能够一边维持IGBT特性所要求的阈值电压和断开时的电流截断能力,一边降低二极管的恢复损耗。
<第3实施方式>
对本实施方式涉及的半导体装置进行说明。此外,在以下的说明中,对于与在以上记载的实施方式中说明过的结构要素同样的结构要素,标注相同的标号而进行图示,适当地省略其详细的说明。
图8是概略地表示本实施方式涉及的半导体装置即RC-IGBT的结构的例子的剖视图。
在图8所示的RC-IGBT的IGBT区域形成N-型的漂移层7、N型的CS层18、N+型的源极层3和P+型的接触层4。另外,在N-型的漂移层7的表层之中的N型的CS层18的上方形成P型的基极层5B。另外,在IGBT区域形成沟槽100、栅极氧化膜15、绝缘膜11、阻挡金属2、表面电极1、N型的缓冲层8、P+型的集电极层9和背面电极17。
就图8所示的RC-IGBT而言,IGBT区域的P型的基极层5B的靠近沟槽100的位置的每单位面积的杂质浓度比沟槽100之间的台面部的中央附近的P型的基极层5B的每单位面积的杂质浓度低。这样的浓度分布例如能够通过使得用于形成IGBT区域的P型的基极层5B的光掩膜20的残留与栅极电极16的形成位置相对应而形成。
IGBT的阈值电压受到与沟槽100的侧壁部即栅极氧化膜15接触的位置的P型的基极层5B的杂质浓度(掺杂剂浓度)的影响。为了提高断开时的电流截断能力,优选提高IGBT区域的P型的基极层5B的杂质浓度而降低电阻值,但如果将P型的基极层5B的杂质浓度一样地提高,则对阈值电压也造成影响。
就本实施方式涉及的RC-IGBT而言,在IGBT区域的P型的基极层5B处,P型的基极层5B的中央部(台面部的中央附近)的杂质浓度(掺杂剂浓度)比P型的基极层5B的靠近沟槽100的位置的杂质浓度高。因此,能够一边维持IGBT特性所要求的阈值电压,一边使断开时的电流截断能力提高。
<第4实施方式>
对本实施方式涉及的半导体装置进行说明。此外,在以下的说明中,对于与在以上记载的实施方式中说明过的结构要素同样的结构要素,标注相同的标号而进行图示,适当地省略其详细的说明。
图9是概略地表示本实施方式涉及的半导体装置即RC-IGBT的结构的例子的剖视图。图9中的IGBT区域、二极管区域、边界区域以及终端区域形成于具有N-型的漂移层7的单一的半导体基板。边界区域位于IGBT区域与二极管区域之间。
在图9所示的RC-IGBT的边界区域,在N-型的漂移层7的表层形成杂质浓度比N-型的漂移层7高的N型的CS层18。另外,在N-型的漂移层7的表层之中的N型的CS层18的上方形成P型的边界基极层21。另外,在P型的边界基极层21的表层形成杂质浓度比N-型的漂移层7高的N+型的源极层3、杂质浓度比P型的边界基极层21高的P+型的接触层4。
另外,形成沟槽102,该沟槽102从边界区域的N-型的漂移层7的上表面(即N+型的源极层3的上表面)贯通N+型的源极层3、P型的边界基极层21以及N型的CS层18而到达N-型的漂移层7。另外,在沟槽102的侧壁形成栅极氧化膜15。栅极电极16形成于沟槽102之内,并且隔着栅极氧化膜15而与N+型的源极层3、P型的边界基极层21、N型的CS层18以及N-型的漂移层7相对。在栅极电极16的上表面形成绝缘膜11。
另外,在边界区域的未被绝缘膜11覆盖的N+型的源极层3的上表面以及P+型的接触层4的上表面形成阻挡金属2。另外,覆盖绝缘膜11的上表面以及阻挡金属2的上表面而形成表面电极1。
在边界区域的N-型的漂移层7的下表面侧形成与N-型的漂移层7相比杂质浓度更高的N型的缓冲层8。并且,在N型的缓冲层8的下方形成P+型的集电极层9。另外,在P+型的集电极层9的下方形成背面电极17。
在此,边界区域的P型的边界基极层21的每单位面积的杂质浓度比IGBT区域的P型的基极层5的每单位面积的杂质浓度高。另外,边界区域的P型的边界基极层21的每单位面积的杂质浓度比二极管区域的P型的阳极层6的每单位面积的杂质浓度高。
另外,沿漂移层7的上表面的方向上的P型的边界基极层21的杂质浓度的分布周期性地变动。在本实施方式中,P型的边界基极层21的杂质浓度的分布与P型的基极层5的杂质浓度的分布或P型的阳极层6的杂质浓度的分布的变动周期不同。
在图1等中与二极管区域接触的IGBT区域的P型的基极层5作为二极管的P型的阳极层6而做出贡献,形成寄生pn-二极管,对二极管的恢复特性造成影响。另外,该寄生pn-二极管受到IGBT的栅极电压的影响。
例如,如果对栅极电极16施加正电压,在沟槽侧壁部形成n沟道,则电子电流经由该n沟道而流动。因此,来自P型的基极层5的空穴注入效率下降,二极管接通时的在N-型的漂移层7积蓄的载流子浓度变低。这样,正向电压(VF)变高。
作为用于抑制该现象的手段,存在下述手段,即,通过使IGBT区域的P+型的集电极层9向二极管区域侧延伸,使来自N-型的漂移层7的下表面侧的注入效率大致为0,从而抑制与IGBT区域的边界附近的二极管动作。
但是,在该情况下,存在以下问题:无法将在二极管区域在N-型的漂移层7的下表面侧形成有P+型集电极层9的区域作为二极管而有效地利用。
另一方面,就本实施方式涉及的RC-IGBT而言,在IGBT区域与二极管区域之间设置边界区域,使边界区域的P型的边界基极层21的杂质浓度比IGBT区域的P型的基极层5的杂质浓度高。由此,使边界区域的晶体管的阈值电压比IGBT区域的晶体管的阈值电压高,提高边界区域的栅极电压施加时的n沟道电阻,并且抑制电子电流。由此,能够使二极管的正向电压的栅极电压依赖性降低。
此外,虽然沟道电阻变高,但能够使边界区域也作为IGBT而做出贡献,因此,能够有效地利用用各个区域。
<关于根据以上记载的实施方式而产生的效果>
接下来,示出通过以上记载的实施方式而产生的效果的例子。此外,在以下的说明中,基于在以上记载的实施方式中例示的具体的结构而记载了该效果,但在产生同样的效果的范围内,也可以与在本申请说明书中例示的其它的具体结构替换。即,以下,为方便起见,有时作为代表而仅记载相关联的具体结构之中的任意一个,但也可以将作为代表而记载的具体结构替换为相关联的其它具体结构。
另外,该替换也可以跨多个实施方式进行。即,也可以是将在不同的实施方式中例示的各个结构组合而产生同样的效果的情况。
根据以上记载的实施方式,半导体装置是将作为有源区域的IGBT区域以及二极管区域、在俯视观察时围绕有源区域的终端区域设置于单一的半导体基板19的RC-IGBT。在半导体基板19的上表面设置第1导电型(N-型)的漂移层7。IGBT区域具有N-型的漂移层7的表层的第2导电型(P型)的基极层5(或P型的基极层5A、P型的基极层5B)。二极管区域具有N-型的漂移层7的表层的第2导电型(P型)的阳极层6(或P型的阳极层6A)。终端区域具有N-型的漂移层7的表层的第2导电型(P型)的阱层12。沿N-型漂移层7的上表面的方向上的P型的基极层5的杂质浓度的分布以及P型的阳极层6的杂质浓度的分布周期性地变动。并且,P型的基极层5的杂质浓度的分布与P型的阳极层6的杂质浓度的分布不同。
根据这样的结构,通过设为基极层以及阳极层的杂质浓度的分布周期性地变动的结构,从而能够降低空穴的流入,抑制恢复损耗的增加。
此外,即使在将本申请说明书所例示的其它结构适当地追加到上述的结构的情况下,即,适当地追加并未作为上述的结构提及的本申请说明书中的其它结构的情况下,也能够产生同样的效果。
此外,根据以上记载的实施方式,P型的基极层5的杂质浓度的分布与P型的阳极层6的杂质浓度的分布的变动周期不同。根据这样的结构,通过提高浓度分布的自由度,从而能够降低空穴的流入,抑制恢复损耗的增加。
此外,根据以上记载的实施方式,P型的基极层5A在俯视观察时的每单位面积的杂质浓度比P型的阳极层6A在俯视观察时的每单位面积的杂质浓度高。根据这样的结构,能够一边维持IGBT的阈值电压以及破坏耐量,一边使二极管的恢复损耗降低。
另外,根据以上记载的实施方式,P型的基极层5A的形成深度比P型的阳极层6A的形成深度深(即,P型的阳极层6A的厚度比P型的基极层5A薄)。根据这样的结构,通过设为基极层以及阳极层的杂质浓度的分布周期性地变动的结构,从而能够降低空穴的流入而抑制恢复损耗的增加。
另外,根据以上记载的实施方式,IGBT区域具有P型的基极层5B的表层的N+型的源极层3、与由N+型的源极层3和N-型的漂移层7夹着的P型的基极层5B接触地形成的栅极氧化膜15、与栅极氧化膜15接触地形成的栅极电极16。并且,关于P型的基极层5B的每单位面积的杂质浓度,远离栅极电极16的位置处比靠近栅极电极16的位置处低。根据这样的结构,能够在IGBT中一边维持所期望的阈值电压(Vth),一边降低夹断(pinch)电阻。由此,能够使破坏耐量(RBSOA)提高。
另外,根据以上记载的实施方式,半导体装置具有位于IGBT区域与二极管区域之间的边界区域。边界区域具有漂移层7的表层的第2导电型的边界基极层21。并且,边界基极层21的杂质浓度比P型的基极层5的杂质浓度以及P型的阳极层6的杂质浓度高。根据这样的结构,能够在二极管中使正向电压(VF)的栅极电压依赖性降低。
另外,根据以上记载的实施方式,沿漂移层7的上表面的方向上的P型的边界基极层21的杂质浓度的分布周期性地变动。并且,P型的边界基极层21的杂质浓度的分布与P型的基极层5的杂质浓度的分布或P型的阳极层6的杂质浓度的分布的变动周期不同。根据这样的结构,通过提高浓度分布的自由度,从而能够降低空穴的流入,抑制恢复损耗的增加。
根据以上记载的实施方式,在半导体装置的制造方法中,在半导体基板19的上表面形成第1导电型的漂移层7。然后,使用共通的掩膜(例如光掩膜20),在IGBT区域的漂移层7的表层形成第2导电型的P型的基极层5,在二极管区域的漂移层7的表层形成第2导电型的P型的阳极层6,在终端区域的漂移层7的表层形成第2导电型的阱层12。光掩膜20至少具有与P型的基极层5对应的区域处和与P型的阳极层6对应的区域处的宽度不同且周期性地配置的开口。并且,沿漂移层7的上表面的方向上的P型的基极层5的杂质浓度的分布以及P型的阳极层6的杂质浓度的分布周期性地变动。另外,P型的基极层5的杂质浓度的分布和P型的阳极层6的杂质浓度的分布不同。
根据这样的结构,通过设为基极层以及阳极层的杂质浓度的分布周期性地变动的结构,从而能够降低空穴的流入,抑制恢复损耗的增加。
另外,即使在以不同的浓度或不同的深度形成多个P型的半导体层的情况下,也无需使用多个光掩膜(即,不进行多次照相制版处理),能够以1次照相制版处理(即,1片光掩膜)形成P型的半导体层(具体地说,P型的基极层5、P型的阳极层6以及P型的阱层12)。因此,能够使RC-IGBT的制造成本降低。
此外,在没有特殊的限制的情况下,能够变更进行各个处理的顺序。
此外,即使在将本申请说明书中例示的其它结构适当地追加到上述的结构的情况下,即,适当地追加并未作为上述的结构提及的本申请说明书中的其它结构的情况下,也能产生同样的效果。
<关于以上记载的实施方式的变形例>
在以上记载的实施方式中,有时还记载了各个结构要素的材质、材料、尺寸、形状、相对配置关系或实施的条件等,但它们是所有方案中的一个例子,而不是限定性的内容。
因此,在本申请说明书所公开的技术的范围之内会设想到未例示的无数的变形例和均等物。例如,包含对至少1个结构要素进行变形的情况、进行追加的情况或进行省略的情况,以及,提取至少一个实施方式中的至少一个结构要素而与其它实施方式中的结构要素组合的情况。
另外,在以上记载的实施方式中,在未特别指定地记载了材料名等的情况下,除非产生矛盾,则包含该材料含有其它添加物的例如合金等。
另外,在以上记载的实施方式中记载为具有“1个”结构要素的情况下,除非产生矛盾,则该结构要素也可以具有“大于等于1个”。
进一步地,以上记载的实施方式中的各个结构要素是概念性的单位,在本申请说明书所公开的技术的范围之内,包含1个结构要素由多个构造物构成的情况、1个结构要素与某构造物的一部分对应的情况、以及多个结构要素配备于1个构造物的情况。
另外,对于以上记载的实施方式中的各个结构要素,只要发挥相同功能,包含具有其它构造或形状的构造物。
另外,本申请说明书中的说明是为了与本技术相关联的所有目的而被参照的,均未承认是现有技术。
标号的说明
3源极层,5基极层,5A基极层,5B基极层,6阳极层,6A阳极层,7漂移层,11绝缘膜,12阱层,16栅极电极,19半导体基板,21边界基极层。

Claims (8)

1.一种半导体装置,其是将作为有源区域的IGBT区域以及二极管区域、在俯视观察时围绕所述有源区域的终端区域设置于单一的半导体基板的RC-IGBT,
在所述半导体基板的上表面设置有第1导电型的漂移层,
所述IGBT区域具有所述漂移层的表层的第2导电型的基极层,
所述二极管区域具有所述漂移层的表层的第2导电型的阳极层,
所述终端区域具有所述漂移层的表层的第2导电型的阱层,
沿所述漂移层的上表面的方向上的所述基极层的杂质浓度的分布以及所述阳极层的杂质浓度的分布周期性地变动,
所述基极层的杂质浓度的分布和所述阳极层的杂质浓度的分布不同。
2.根据权利要求1所述的半导体装置,其中,
所述基极层的杂质浓度的分布与所述阳极层的杂质浓度的分布的变动周期不同。
3.根据权利要求1或2所述的半导体装置,其中,
所述基极层在俯视观察时的每单位面积的杂质浓度比所述阳极层在俯视观察时的每单位面积的杂质浓度高。
4.根据权利要求1至3中任一项所述的半导体装置,其中,
所述基极层的形成深度比所述阳极层的形成深度深。
5.根据权利要求1至4中任一项所述的半导体装置,其中,
所述IGBT区域还具有:
所述基极层的表层的第1导电型的源极层;
栅极绝缘膜,其与由所述源极层和所述漂移层夹着的所述基极层接触地形成;以及
栅极电极,其与所述栅极绝缘膜接触地形成,
关于所述基极层的每单位面积的杂质浓度,远离所述栅极电极的位置处比靠近所述栅极电极的位置处低。
6.根据权利要求1至5中任一项所述的半导体装置,其中,
还具有边界区域,该边界区域位于所述IGBT区域与所述二极管区域之间,
所述边界区域具有所述漂移层的表层的第2导电型的边界基极层,
所述边界基极层的杂质浓度比所述基极层的杂质浓度以及所述阳极层的杂质浓度高。
7.根据权利要求6所述的半导体装置,其中,
沿所述漂移层的上表面的方向上的所述边界基极层的杂质浓度的分布周期性地变动,
所述边界基极层的杂质浓度的分布与所述基极层的杂质浓度的分布或所述阳极层的杂质浓度的分布的变动周期不同。
8.一种半导体装置的制造方法,其中,该半导体装置将作为有源区域的IGBT区域以及二极管区域、在俯视观察时围绕所述有源区域的终端区域设置于单一的半导体基板,
在该半导体装置的制造方法中,
在所述半导体基板的上表面形成第1导电型的漂移层,
使用共通的掩膜,在所述IGBT区域的所述漂移层的表层形成第2导电型的基极层,在所述二极管区域的所述漂移层的表层形成第2导电型的阳极层,在所述终端区域的所述漂移层的表层形成第2导电型的阱层,
所述掩膜至少具有与所述基极层对应的区域处和与所述阳极层对应的区域处的宽度不同且周期性地配置的开口,
沿所述漂移层的上表面的方向上的所述基极层的杂质浓度的分布以及所述阳极层的杂质浓度的分布周期性地变动,
所述基极层的杂质浓度的分布与所述阳极层的杂质浓度的分布不同。
CN202310096694.2A 2022-02-15 2023-02-10 半导体装置以及半导体装置的制造方法 Pending CN116613203A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-021382 2022-02-15
JP2022021382A JP2023118432A (ja) 2022-02-15 2022-02-15 半導体装置、および、半導体装置の製造方法

Publications (1)

Publication Number Publication Date
CN116613203A true CN116613203A (zh) 2023-08-18

Family

ID=87430486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310096694.2A Pending CN116613203A (zh) 2022-02-15 2023-02-10 半导体装置以及半导体装置的制造方法

Country Status (4)

Country Link
US (1) US20230261056A1 (zh)
JP (1) JP2023118432A (zh)
CN (1) CN116613203A (zh)
DE (1) DE102022129831A1 (zh)

Also Published As

Publication number Publication date
US20230261056A1 (en) 2023-08-17
DE102022129831A1 (de) 2023-08-17
JP2023118432A (ja) 2023-08-25

Similar Documents

Publication Publication Date Title
US10418441B2 (en) Semiconductor device and method for manufacturing the semiconductor device
JP6881463B2 (ja) Rc−igbtおよびその製造方法
US7968940B2 (en) Insulated gate bipolar transistor device comprising a depletion-mode MOSFET
USRE47072E1 (en) Insulated gate turn-off device with turn-off transistor
CN108780814B (zh) 半导体装置及其制造方法
JP2021048423A (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
US9711631B2 (en) Dual trench-gate IGBT structure
US20070034941A1 (en) Deep N diffusion for trench IGBT
KR20020077659A (ko) 전력용 반도체장치
US10943987B2 (en) Latch-up resistant transistor device
TWI685899B (zh) 金屬氧化物半導體閘極式裝置之單元佈線及製造技術之強化
US9806152B2 (en) Vertical insulated gate turn-off thyristor with intermediate p+ layer in p-base
US20070063269A1 (en) Trench IGBT with increased short circuit capability
JP2016033993A (ja) 半導体装置および半導体装置の製造方法
CN116613203A (zh) 半导体装置以及半导体装置的制造方法
CN114600252A (zh) 具有受控阳极注入的逆导型igbt
US20190115423A1 (en) Insulated gate power devices with reduced carrier injection in termination area
JP7364027B2 (ja) 半導体装置およびその製造方法
US20240088226A1 (en) Insulated gate turn-off device with short channel pmos transistor
WO2024116526A1 (ja) 半導体装置とその製造方法
JP2024013911A (ja) 半導体装置
KR20150056433A (ko) 전력 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination