CN116606499A - 抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法 - Google Patents

抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法 Download PDF

Info

Publication number
CN116606499A
CN116606499A CN202310776018.XA CN202310776018A CN116606499A CN 116606499 A CN116606499 A CN 116606499A CN 202310776018 A CN202310776018 A CN 202310776018A CN 116606499 A CN116606499 A CN 116606499A
Authority
CN
China
Prior art keywords
polyethylene
space charge
cable material
parts
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310776018.XA
Other languages
English (en)
Inventor
吕泽鹏
曹丹
吴锴
张琛
姚杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202310776018.XA priority Critical patent/CN116606499A/zh
Publication of CN116606499A publication Critical patent/CN116606499A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Abstract

本发明公开了一种抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法,电缆料包括70~90份聚乙烯树脂,1~7份纳米氧化硅,1~5份氮化硼纳米片,1~3份增塑剂,2~8份电压稳定剂,2~5份交联剂,1~5份抗氧剂。方法为LDPE树脂、纳米氧化硅、氮化硼纳米片、抗氧剂和交联剂混炼;再加入双酚A、增塑剂和电压稳定剂混炼后混合物料挤出造粒、干燥即得聚乙烯/纳米复合薄壁直流电缆料。本发明解决聚乙烯电缆料厚度过大,无法在狭窄空间使用问题,并且提高了聚乙烯材料的耐高温性能、机械性能和绝缘性能,有效抑制空间电荷积累,提高材料击穿场强,提高增塑效率和直流击穿强度,保障海工电力系统的安全运行。

Description

抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法
技术领域
本发明涉及高压直流电缆用绝缘材料技术领域,特别涉及一种具有抑制空间电荷作用的聚乙烯/纳米复合薄壁直流电缆料。
背景技术
随着近些年我国海工装备的升级换代,更高电压等级、更高功率密度的直流电力系统成为下一代海工装备的动力基础。海工装备电力系统舱体空间有限,动力电缆往往有十余甚至数十根,靠增加绝缘厚度和电缆数量无法满足海工装备高功率密度、紧凑型设计。传统船用电力电缆难以满足海工装备高电压等级、大电流、高功率密度、紧凑型设计的需求,迫切需要研发海工装备用薄壁直流电缆。
传统绝缘材料导热性能较差,需要尽可能减薄绝缘厚度从而实现更大的额定电流。而新一代海工电力系统电压等级更高,绝缘厚度减薄会使绝缘承受更高的工作电场强度,从而导致空间电荷积聚、电场畸变,导致击穿强度下降,发生材料击穿老化现象,极大的影响船用电力系统的安全稳定运行。现有技术中也采用了多种改性方法来提高聚乙烯材料的电性能,但是兼顾绝缘厚度和提升电性能方面研究很少。
有鉴于此,针对狭窄空间用高压直流电缆料,如何设计一种既能最大限度减小绝缘厚度又能有效抑制空间电荷、提高击穿强度是本发明研究的课题。
发明内容
为解决现有技术中存在的上述缺陷,本发明的目的在于提供一种具有抑制空间电荷作用的聚乙烯/纳米复合薄壁直流电缆料,提高聚乙烯材料耐高温性能、机械性能和绝缘性能,有效抑制空间电荷积累,提高材料击穿场强,提高增塑效率和直流击穿强度;解决现有的高压直流聚乙烯电缆料因厚度问题不能用于狭窄空间,如船用等,保障海工电力系统安全运行。
本发明是通过下述技术方案来实现的。
根据本发明的一个方面,提供了一种抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料,包括以下重量份的原材料:
根据本发明的示例性实施方式,所述聚乙烯树脂选用分子量为10000~20000的LDPE树脂。
根据本发明的示例性实施方式,所述纳米氧化硅的粒径范围为15~35nm;所述氮化硼纳米片的厚度范围为4~8nm。
根据本发明的示例性实施方式,所述增塑剂选用多元醇酯类增塑剂;所述多元醇酯类增塑剂选自二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、二缩三乙二醇二苯甲酸酯和一缩二乙二醇二苯甲酸酯中的至少一种。
根据本发明的示例性实施方式,所述电压稳定剂选用可接枝型芳香酮类稳定剂;所述可接枝型电压稳定剂选自4-丙烯氧基-2-羟基二苯甲酮(AOHBP)、3,5-二甲氧基苯乙酮和4-羟基-3-甲氧基苯丙酮中的至少一种。
根据本发明的示例性实施方式,所述交联剂选用过氧化二异丙苯、过氧化苯甲酸叔丁基和乙烯基三甲氧基硅烷中的一种。
根据本发明的示例性实施方式,所述抗氧剂选用1010。
根据本发明的另一方面,提供了一种抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料的制备方法,包括以下步骤:
步骤一.按照重量份数将聚乙烯树脂、纳米氧化硅、氮化硼纳米片、抗氧剂和交联剂,在密炼机中,混炼;再加入增塑剂和电压稳定剂,混炼得到混合物料;
步骤二.对得到的混合物料挤出造粒,得到具有抑制空间电荷作用的聚乙烯/纳米复合薄壁直流电缆料。
根据本发明的示例性实施方式,于160~180℃下,混炼20~30min。
根据本发明的示例性实施方式,所述挤出造粒过程中,挤出温度为165~190℃,挤出机的主机转速为1800~2500r/min。
本发明由于采取以上技术方案,其具有以下有益效果:
1.本发明将纳米氧化硅和氮化硼纳米片作为改性剂使用,两种材料和聚乙烯材料共混,不仅可以提高聚乙烯材料的耐高温性能,也可以有效抑制空间电荷积累,提高材料击穿场强。限制纳米氧化硅和氮化硼纳米片的添加量,可以保证在不影响聚乙烯机械性能的情况下,使其耐高温性能和绝缘性能更为优异。
2.选用多元醇酯类增塑剂,多元醇酯类增塑剂和聚乙烯相容性好,无需增加其他相容剂,既不影响聚乙烯的机械性能,又降低了成本,可以提高增塑效率。并且多元醇酯类增塑剂挥发性低、渗出性低、热稳定性好、不易氧化和挥发,有利于环境保护。
3.选用可接枝型芳香酮类稳定剂量子化学特性优异,能高效地吸收高能电子的能量,进而显著提高XLPE不同温度下的直流击穿强度;该电压稳定剂不会对电缆绝缘层电场分布产生显著负面影响,电压稳定剂加入后改变了XLPE的陷阱分布状态,降低了深陷阱密度,增大了浅陷阱密度,使空间电荷分布更均匀、消散速度更快。
4.本发明制备过程无有毒物质释放,对环境友好。制得的高压直流薄壁聚乙烯电缆料在耐高温性能、机械性能及绝缘性能上均有所提高,极大拓展了高压直流电缆料在船用领域的应用市场。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的不当限定,在附图中:
图1为高压直流聚乙烯/纳米复合电缆料空间电荷分布。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明实施例提供的一种抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料的制备方法,包括以下步骤:
步骤一.按照重量份数将70~90份聚乙烯树脂、1~7份纳米氧化硅、1~5份氮化硼纳米片、1~5份抗氧剂和2-5份交联剂,在密炼机中,于160~180℃下,混炼20~30min;再加入1~3份增塑剂和2~8份电压稳定剂,继续混炼15min得到混合物料;
步骤二.对得到的混合物料挤出造粒,挤出温度为165~190℃,挤出机的主机转速为1800~2500r/min,得到具有抑制空间电荷作用的聚乙烯/纳米复合薄壁直流电缆料。
其中,聚乙烯树脂选用分子量为10000~20000的LDPE树脂。
纳米氧化硅的粒径范围为15~35nm;氮化硼纳米片的厚度范围为4~8nm。
增塑剂选用多元醇酯类增塑剂;多元醇酯类增塑剂选自二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、二缩三乙二醇二苯甲酸酯和一缩二乙二醇二苯甲酸酯中的至少一种。
电压稳定剂选自4-丙烯氧基-2-羟基二苯甲酮(AOHBP)、3,5-二甲氧基苯乙酮和4-羟基-3-甲氧基苯丙酮中的至少一种。交联剂选用过氧化二异丙苯、过氧化苯甲酸叔丁基和乙烯基三甲氧基硅烷中的一种。
抗氧剂选用1010。
下面通过不同实施例来进一步说明本发明制备。
实施例1:
步骤一.按照重量份数称取各原材料;将70份分子量为18000的LDPE型树脂、5份粒径为20nm的纳米氧化硅、5份厚度为5nm的氮化硼纳米片、5份抗氧剂1010和5份交联剂过氧化二异丙苯,在密炼机中,于165℃下,混炼20min;再加入2份增塑剂二甘醇二苯甲酸酯和8份电压稳定剂4-丙烯氧基-2-羟基二苯甲酮(AOHBP),继续混炼15min得到混合物料;
步骤二.用双螺杆挤出机对得到的混合物料挤出造粒,控制挤出温度为175℃,双螺杆挤出机的主机转速为2200r/min,即得抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料。
实施例2:
步骤一.按照重量份数称取各原材料;将85份分子量为22000的LDPE型树脂、3份粒径为15nm的纳米氧化硅、2份厚度为7nm的氮化硼纳米片、3份抗氧剂1010和2份交联剂乙烯基三甲氧基硅烷,在密炼机中,于170℃下,混炼25min;再加入3份增塑剂一缩二乙二醇二苯甲酸酯和2份电压稳定剂3,5-二甲氧基苯乙酮,继续混炼15min得到混合物料;
步骤二.用双螺杆挤出机对得到的混合物料挤出造粒,控制挤出温度为165℃,挤出机的主机转速为2500r/min,即得抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料。
实施例3:
步骤一.按照重量份数称取各原材料;将80份分子量为20000的LDPE型树脂、1份粒径为30nm的纳米氧化硅、4份厚度为4nm氮化硼纳米片、1份抗氧剂1010和5份交联剂过氧化苯甲酸叔丁基,在密炼机中,于160℃下,混炼30min;再加入3份增塑剂二丙二醇二苯甲酸酯和6份电压稳定剂3,5-二甲氧基苯乙酮,继续混炼15min得到混合物料;
步骤二.用双螺杆挤出机对得到的混合物料挤出造粒,控制挤出温度为190℃,挤出机的主机转速为1800r/min,即得抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料。
实施例4:
步骤一.按照重量份数称取各原材料;将90份分子量为10000的LDPE型树脂、2份粒径为35nm的纳米氧化硅、1份厚度为8nm的氮化硼纳米片、1份抗氧剂1010和3份交联剂乙烯基三甲氧基硅烷,在密炼机中,于180℃下,混炼20min;再加入1份增塑剂二缩三乙二醇二苯甲酸酯和2份电压稳定剂4-羟基-3-甲氧基苯丙酮,继续混炼15min得到混合物料;
步骤二.用双螺杆挤出机对得到的混合物料挤出造粒,控制挤出温度为165℃,挤出机的主机转速为2500r/min,即得抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料。
以上实施例中制得的样品在平板硫化机中制样得到厚度0.2mm的胞膜状样品,进行空间电荷、击穿场强等绝缘性能测试。
各实施例得到的具有抑制空间电荷作用的聚乙烯/纳米复合薄壁直流电缆料空间电荷性能测试采用电声脉冲法,基本原理为:聚乙烯试样厚度为d,试样内部空间电荷浓度为ρ(x)。向试样施加一个脉冲高电压e(t),在脉冲e(t)作用下,试样内部空间电荷会产生电场力f(x,t),空间电荷会产生一个微小的位移Δx。位移会产生一个声振动,并向两极传播,声振动传播到阴极时,会被阴极下方的压电传感器接收转变为电信号,由前置放大器处理后得到V(t),经过计算机上位机程序处理后可以得到空间电荷分布。
根据实施例1得到的具有抑制空间电荷作用的聚乙烯/纳米复合电缆料空间电荷分布如图1所示。从图1可以看出掺杂纳米粒子的材料基本没有同极性或者异极性电荷积聚,解决了直流下空间电荷积聚问题。
本发明实施例性能测试结果对比见表1。
表1聚乙烯/纳米复合电缆料性能对比
项目 实施例1 实施例2 实施例3 实施例4
拉伸强度,MPa 40 44 42 39
断裂伸长率,% 389 375 380 420
击穿强度,kV/mm 295 300 297 315
耐温等级,℃ 80 89 90 87
从表1可以看出,本发明制备聚乙烯/纳米复合电缆料拉伸强度不低于39MPa,断裂伸长率不低于375,击穿场强不低于295kV/mm,耐温等级在80℃以上。本发明所制备的聚乙烯/纳米复合电缆料不仅具有较高的机械力学性能和良好的耐温性能,也可以有效抑制空间电荷积累,提高材料击穿场强,电缆料在耐高温性能、机械性能及绝缘性能上均有所提高。本发明上述实施例中得到的具有抑制空间电荷作用的聚乙烯/纳米复合电缆料具有很好的空间电荷抑制能力,绝缘厚度最大限度的减小满足狭小空间使用要求。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (10)

1.一种抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料,其特征在于,包括以下重量份的原材料:
2.根据权利要求1所述的抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料,其特征在于,所述聚乙烯树脂选用分子量为10000~20000的LDPE树脂。
3.根据权利要求1所述的抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料,其特征在于,所述纳米氧化硅的粒径范围为15~35nm;所述氮化硼纳米片的厚度范围为4~8nm。
4.根据权利要求1所述的抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料,其特征在于,所述增塑剂选用多元醇酯类增塑剂;所述多元醇酯类增塑剂选自二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、二缩三乙二醇二苯甲酸酯和一缩二乙二醇二苯甲酸酯中的至少一种。
5.根据权利要求1所述的抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料,其特征在于,所述电压稳定剂选自4-丙烯氧基-2-羟基二苯甲酮、3,5-二甲氧基苯乙酮和4-羟基-3-甲氧基苯丙酮中的至少一种。
6.根据权利要求1所述的抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料,其特征在于,所述交联剂选用过氧化二异丙苯、过氧化苯甲酸叔丁基和乙烯基三甲氧基硅烷中的一种。
7.根据权利要求1所述的抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料,其特征在于,所述抗氧剂选用1010。
8.根据权利要求1~7中任意一项所述的抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料的制备方法,其特征在于,包括以下步骤:
步骤一.按照重量份数将聚乙烯树脂、纳米氧化硅、氮化硼纳米片、抗氧剂和交联剂,在密炼机中,混炼;再加入增塑剂和电压稳定剂,混炼得到混合物料;
步骤二.对得到的混合物料挤出造粒,得到具有抑制空间电荷作用的聚乙烯/纳米复合薄壁直流电缆料。
9.根据权利要求8所述的制备方法,其特征在于,于160~180℃下,混炼20~30min。
10.根据权利要求8所述的制备方法,其特征在于,所述挤出造粒过程中,挤出温度为165~190℃,挤出机的主机转速为1800~2500r/min。
CN202310776018.XA 2023-06-28 2023-06-28 抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法 Pending CN116606499A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310776018.XA CN116606499A (zh) 2023-06-28 2023-06-28 抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310776018.XA CN116606499A (zh) 2023-06-28 2023-06-28 抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法

Publications (1)

Publication Number Publication Date
CN116606499A true CN116606499A (zh) 2023-08-18

Family

ID=87678400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310776018.XA Pending CN116606499A (zh) 2023-06-28 2023-06-28 抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法

Country Status (1)

Country Link
CN (1) CN116606499A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117264418A (zh) * 2023-11-17 2023-12-22 河南华佳新材料技术有限公司 一种柔性直流输变电换流电容用金属化膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117264418A (zh) * 2023-11-17 2023-12-22 河南华佳新材料技术有限公司 一种柔性直流输变电换流电容用金属化膜及其制备方法
CN117264418B (zh) * 2023-11-17 2024-01-26 河南华佳新材料技术有限公司 一种柔性直流输变电换流电容用金属化膜及其制备方法

Similar Documents

Publication Publication Date Title
JP5640889B2 (ja) 電線・ケーブル
CN116606499A (zh) 抑制空间电荷聚乙烯/纳米复合薄壁直流电缆料及制备方法
CN106977825A (zh) 一种耐寒电缆料及其制备方法
CN106543563B (zh) 热塑性高压电缆绝缘材料及其制备方法
CN102942792A (zh) 一种移动式电缆用半导电硅橡胶屏蔽材料及其制备方法
CN111051398A (zh) 乙烯-乙酸乙烯酯的反应性混炼
CN113736203A (zh) 一种含高耐电性能配合剂的交联聚乙烯电缆绝缘材料及其制备方法
Gill et al. A novel two-step melt blending method to prepare nano-silanized-silica reinforced crosslinked polyethylene (XLPE) nanocomposites
CN108676211A (zh) 一种添加古马隆-茚树脂的缆线护套材料及其制备方法
CN106893186A (zh) 高介电性能n‑乙基咔唑/聚乙烯复合材料及其制备方法
CN111363229A (zh) 一种高压橡皮电缆绝缘半导电屏蔽料
CN115651105A (zh) 一种接枝改性型交联聚乙烯抗水树绝缘料及其制备方法和应用
Makmud et al. Ageing and degradation mechanism of linear low density polyethylene-natural rubber composites due to partial discharge
CN109206711A (zh) 一种高压直流电缆用可交联聚乙烯绝缘材料及其制备方法
Liang et al. Preparation and electrical properties of 4-allyloxy-2-hydroxybenzophenone grafted polypropylene for HVDC cables
CN116554602A (zh) 一种聚丙烯/poe复合薄壁直流电缆料及其制备方法
CN113698723A (zh) 一种用于环保型电缆的聚丙烯基热塑型半导电屏蔽料及制备方法
KR101480009B1 (ko) 고압 또는 초고압 전력 케이블용 반도전성 컴파운드 및 이를 적용한 초고압 전력 케이블
KR101114992B1 (ko) 현상 롤러 제조용 조성물, 이를 이용한 현상 롤러 및 이의 제조방법
CN113817257A (zh) 一种防铜害的二步法硅烷交联聚乙烯绝缘料及其制备方法
CN109957179B (zh) 35kV超净乙丙橡胶电缆绝缘料及其制备方法
Junian et al. Natural rubber as electrical insulator: A review
KR20200078329A (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
EP2522694B1 (en) Composite material
CN110564042A (zh) 一种用于制备导电热缩复合材料的组合物及导电热缩复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination