CN116606149A - 一种高强高纯氮化硅坩埚及其制备方法和应用 - Google Patents

一种高强高纯氮化硅坩埚及其制备方法和应用 Download PDF

Info

Publication number
CN116606149A
CN116606149A CN202310572227.2A CN202310572227A CN116606149A CN 116606149 A CN116606149 A CN 116606149A CN 202310572227 A CN202310572227 A CN 202310572227A CN 116606149 A CN116606149 A CN 116606149A
Authority
CN
China
Prior art keywords
silicon nitride
crucible
purity
silicon
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310572227.2A
Other languages
English (en)
Inventor
张青
成来飞
叶昉
周杰
赵凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202310572227.2A priority Critical patent/CN116606149A/zh
Publication of CN116606149A publication Critical patent/CN116606149A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5066Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及多晶硅铸锭技术领域,具体涉及一种高强高纯氮化硅坩埚及其制备方法和应用。本发明采用反应烧结结合化学气相沉积法制备氮化硅坩埚,解决现有反应烧结制备的氮化硅坩埚中,因具有杂质导致的不适合应用于硅晶制备的技术问题。本发明采用化学气相沉积法制备高纯度Si3N4涂层,通过采用此涂层作为坩埚内层,以阻隔氮化硅陶瓷基体中杂质的扩散,避免单晶硅生产中基体内的杂质与硅进行反应。反应烧结的氮化硅基体具有较高的强度,而且CVD Si3N4纯度高无杂质,二者结合后所制备的氮化硅坩埚能够很好地满足单晶硅的制备要求,具有广阔的市场应用前景。

Description

一种高强高纯氮化硅坩埚及其制备方法和应用
技术领域
本发明涉及多晶硅铸锭技术领域,具体来说是一种高强高纯氮化硅坩埚及其制备方法和应用。
背景技术
以太阳能利用为目的光伏能源具有清洁、环保、可再生等特点,随着工业发展带来的环境污染和破坏问题,太阳能利用已经成为国际大力发展的新能源和战略性新兴产业之一。光伏产业的主导产品有晶体硅太阳能电池等,其中单晶硅电池更是凭借比其他晶体硅太阳能电池更高的转换效率和稳定性,占据重要地位。
在单晶硅生产中,坩埚是熔硅和晶体生长的关键材料,对单晶硅的生产成本和产品产量、质量都有直接的重要影响。传统的石英坩埚在单晶硅制备领域虽然已经广泛应用,但是仍存在很多性能上的不足,如:熔融石英高温性能不足,易导致坩埚破裂;另外石英坩埚易被熔融硅侵蚀,污染产物的同时也可能产生残余应力导致坩埚开裂等问题。
氮化硅陶瓷是一种高温结构特种陶瓷材料,具有强度高、耐高温、抗氧化、抗腐蚀、耐磨损、化学稳定性好、导热系数大和热膨胀系数低等优点,以及与熔融硅不润湿的特性,作为可重复使用的硅晶体冶炼用坩埚材料得到了各国的大力研发。郭大为在“一种反应烧结制备氮化硅坩埚的方法”(CN 104744047A)中提到了以硅粉、粘结剂和溶剂为原料或者以硅粉、氮化硅粉、粘结剂和溶剂为原料,采用反应烧结法制备氮化硅坩埚,而由于粘结剂在烧结时,不可避免的会使得氧、碳积存于氮化硅中,那么在单晶硅的生产制备过程中随温度的升高,氧、碳等杂质不可避免的会进入至单晶硅中,致使单晶硅中不可避免地引入杂质,难以保证单晶硅的纯度要求,即便上述技术方案达到了杂质含量低的技术目的,但是无法从根本上解决在单晶硅生产中保证单晶硅纯度的问题。
发明内容
针对上述现有技术存在的不足,本发明提供了一种高强高纯氮化硅坩埚及其制备方法和应用,本发明采用反应烧结(RS)结合化学气相沉积法(CVD)制备氮化硅坩埚,解决现有反应烧结制备的氮化硅坩埚中,因具有杂质导致的不适合应用于硅晶制备的技术问题。
为实现上述目的,本发明的技术方案如下:
一种高强高纯氮化硅坩埚的制备方法,包括以下步骤:
步骤1、氮化硅基体的制备:
S1、将30~70wt.%的硅粉与20~60wt.%的高纯去离子水混合并球磨8~12h,然后加入分散剂、粘结剂以及烧结助剂继续球磨8~12h混合均匀制得浆料;将浆料浇注到模具中,抽真空30~60min以除去其中气泡,之后在20~40℃下自然干燥24~48h后,得到坩埚坯体;
S2、将步骤1的坩埚坯体于氮气气氛中进行致密烧结,得到氮化硅基体;
将氮化硅基体采用200~600目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面粗糙度控制在0.4~0.8mm;表面粗糙度指表面粗糙的程度,表面略粗糙有利于氮化硅涂层的结合;
步骤2、高强高纯氮化硅坩埚的制备,于步骤S2的氮化硅基体表面沉积氮化硅涂层:
以四氯化硅、氨气为反应源,以氢气为载气,采用鼓泡法、即采用氢气(H2)带出SiCl4,以氩气为稀释气体,采用化学气相沉积法在步骤S2的氮化硅基体表面制备高纯Si3N4涂层,得到高强高纯氮化硅坩埚。
优选的,所述步骤S1中粘结剂为聚乙烯醇缩丁醛或聚乙烯醇;分散剂为磷酸三乙酯或正硅酸乙酯;烧结助剂选自Al2O3、Y2O3、钇铝石榴石中的一种或多种的混合。
优选的,所述步骤S1中硅粉为30~70wt.%、粘结剂为2~3wt.%、分散剂为2~3wt.%、烧结助剂为6~15wt.%、高纯去离子水为20~60wt.%,各原料的质量百分比之和为100%;其中硅粉的粒径为5~40μm。
优选的,所述步骤S2中致密烧结的条件为:于温度为1500~2000℃、压力为0.1~10MPa条件下烧结2~5h。
优选的,所述步骤2中化学气相沉积法的具体操作为:先在沉积温度为800~1000℃下沉积1~3h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在900~1200℃下沉积2~3h,提高氮化硅涂层的厚度至40~150μm。
优选的,所述步骤2中四氯化硅流量为15~60mL/min,氨气流量为20~90mL/min,氢气流量为60~200mL/min,氩气流量为20~300mL/min。
本发明还保护了上述制备方法制得的高强高纯氮化硅坩埚,所述高强高纯氮化硅坩埚的氮化硅基体厚度为3~40mm,所述高纯Si3N4涂层的厚度为40~150μm。
本发明还保护了高强高纯氮化硅坩埚在制备单晶硅生产坩埚中的应用。
与现有技术相比,本发明的有益效果:
1、本发明提出一种高强高纯氮化硅坩埚的制备方法,通过反应烧结结合化学气相沉积法,制备一种具有强度高、耐高温、可保证硅晶生产产物纯净、可长期重复使用的氮化硅坩埚,用以弥补传统反应烧结制备的氮化硅坩埚存在杂质的技术缺陷,本发明的原理在于:采用化学气相沉积法制备高纯度Si3N4涂层,通过采用此涂层作为坩埚内层,以阻隔氮化硅陶瓷基体中杂质的扩散(杂质源于烧结助剂),避免单晶硅生产中基体内的杂质与硅进行反应。反应烧结的氮化硅基体具有较高的强度,而且CVD Si3N4纯度高无杂质,二者结合后所制备的氮化硅坩埚能够很好地满足单晶硅的制备要求,具有广阔的市场应用前景。
2、本发明通过将烧结氮化硅基体的密度、表面粗糙度与CVD Si3N4涂层的沉积温度、沉积时间等参数相结合,氮化硅基体的密度为2.8-3.0g/cm3,表面粗糙度为0.4~0.8mm,进而调控涂层的制备工艺,使涂层封填基体表面残余孔隙的同时,实现涂层和基体的结合,获得一种可保证硅晶生产产物纯净的氮化硅坩埚。
附图说明
图1为本发明实施例1反应烧结制得的氮化硅基体形貌的扫描电镜图;
图2为本发明实施例1化学气相沉积工艺后于氮化硅基体表面沉积的氮化硅涂层表面形貌的扫描电镜图;
图3为本发明实施例1反应烧结结合化学气相沉积工艺制得的高强高纯氮化硅坩埚的横截面形貌的扫描电镜图,即氮化硅基体表面沉积氮化硅涂层后的横截面形貌;
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明各实施例中所述实验方法,如无特殊说明,均为常规方法。
下述实验方法和检测方法,如没有特殊说明,均为常规方法;下述试剂和原料,如没有特殊说明,均为市售。
实施例1
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将30wt.%、粒径为10μm的硅粉与50wt.%的高纯去离子水混合并球磨12h,然后加入3wt.%的分散剂(磷酸三乙酯)、2wt.%的粘结剂(聚乙烯醇缩丁醛)以及各5wt.%的Al2O3、Y2O3、钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在40℃下自然干燥24h后,得到坩埚坯体;
S12、将步骤S11的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为1500℃、压力为5MPa、时间为2h,得到烧结致密坩埚;
S13、采用200目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.4mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为800℃下沉积3h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在1100℃下沉积2h,提高氮化硅涂层的厚度至100μm,氮化硅基体厚度为30mm,得到高强高纯氮化硅坩埚。
实施例2
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将40wt.%、粒径为8μm的硅粉与40wt.%的高纯去离子水混合并球磨12h,然后加入3wt.%的分散剂(磷酸三乙酯)、3wt.%的粘结剂(聚乙烯醇缩丁醛)以及5wt.%的Al2O3、5wt.%的Y2O3、4wt.%的钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在30℃下自然干燥32h后,得到坩埚坯体;
S12、将步骤S11的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为1600℃、压力为2MPa、时间为4h,得到烧结致密坩埚;
S13、采用300目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.5mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为850℃下沉积2.5h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在1000℃下沉积2.5h,提高氮化硅涂层的厚度至120μm,氮化硅基体厚度为25mm,得到高强高纯氮化硅坩埚。
实施例3
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将50wt.%、粒径为5μm的硅粉与30wt.%的高纯去离子水混合并球磨12h,然后加入2wt.%的分散剂(磷酸三乙酯)、3wt.%的粘结剂(聚乙烯醇缩丁醛)以及各5wt.%的Al2O3、Y2O3、钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在20℃下自然干燥36h后,得到坩埚坯体;
S12、将步骤S11的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为1800℃、压力为0.1MPa、时间为5h,得到烧结致密坩埚;
S13、采用400目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.6mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为900℃下沉积2h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在900℃下沉积3h,提高氮化硅涂层的厚度至50μm,氮化硅基体厚度为25mm,得到高强高纯氮化硅坩埚。
实施例4
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将50wt.%、粒径为5μm的硅粉与30wt.%的高纯去离子水混合并球磨12h,然后加入2wt.%的分散剂(磷酸三乙酯)、3wt.%的粘结剂(聚乙烯醇缩丁醛)以及各5wt.%的Al2O3、Y2O3、钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在20℃下自然干燥24h后,得到坩埚坯体;
S12、将步骤S11的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为2000℃、压力为5MPa、时间为2h,得到烧结致密坩埚;
S13、采用400目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.6mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为1000℃下沉积2h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在1200℃下沉积2h,提高氮化硅涂层的厚度至100μm,氮化硅基体厚度为30mm,得到高强高纯氮化硅坩埚。
实施例5
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将60wt.%、粒径为8μm的硅粉与20wt.%的高纯去离子水混合并球磨12h,然后加入3wt.%的分散剂(磷酸三乙酯)、3wt.%的粘结剂(聚乙烯醇缩丁醛)以及5wt.%的Al2O3、4wt.%的Y2O3、5wt.%的钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在30℃下自然干燥18h后,得到坩埚坯体;
S12、将步骤S11的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为1700℃、压力为10MPa、时间为5h,得到烧结致密坩埚;
S13、采用500目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.7mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为900℃下沉积2.5h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在1100℃下沉积2.5h,提高氮化硅涂层的厚度至80μm,氮化硅基体厚度为32mm,得到高强高纯氮化硅坩埚。
实施例6
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将70wt.%、粒径为10μm的硅粉与20wt.%的高纯去离子水混合并球磨12h,然后加入2wt.%的分散剂(磷酸三乙酯)、2wt.%的粘结剂(聚乙烯醇缩丁醛)以及各2wt.%的Al2O3、Y2O3、钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在40℃下自然干燥12h后,得到坩埚坯体;
S12、将步骤S11的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为1700℃、压力为10MPa、时间为5h,得到烧结致密坩埚;
S13、采用600目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.8mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为800℃下沉积3h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在1000℃下沉积3h,提高氮化硅涂层的厚度至150μm,氮化硅基体厚度为35mm,得到高强高纯氮化硅坩埚。
实施例7
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将50wt.%、粒径为5μm的硅粉与30wt.%的高纯去离子水混合并球磨12h,然后加入2wt.%的分散剂(磷酸三乙酯)、3wt.%的粘结剂(聚乙烯醇缩丁醛)以及各5wt.%的Al2O3、Y2O3、钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在20℃下自然干燥24h后,得到坩埚坯体;
S12、将步骤S11制得的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为1500℃、压力为10MPa、时间为2h,得到烧结致密坩埚;
S13、采用400目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.6mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为800℃下沉积2h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在1200℃下沉积2h,提高氮化硅涂层的厚度至40μm,氮化硅基体厚度为3mm,得到高强高纯氮化硅坩埚。
实施例8
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将60wt.%、粒径为8μm的硅粉与20wt.%的高纯去离子水混合并球磨12h,然后加入3wt.%的分散剂(磷酸三乙酯)、3wt.%的粘结剂(聚乙烯醇缩丁醛)以及5wt.%的Al2O3、4wt.%的Y2O3、5wt.%的钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在30℃下自然干燥18h后,得到坩埚坯体;
S12、将步骤S11制得的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为1700℃、压力为7MPa、时间为4h,得到烧结致密坩埚;
S13、采用500目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.7mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为850℃下沉积1.5h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在1100℃下沉积2.5h,提高氮化硅涂层的厚度至80μm,氮化硅基体厚度为32mm,得到高强高纯氮化硅坩埚。
实施例9
一种高强高纯氮化硅坩埚的制备方法,包括如下步骤:
步骤1、氮化硅基体的制备:
S11、将70wt.%、粒径为10μm的硅粉与20wt.%的高纯去离子水混合并球磨12h,然后加入2wt.%的分散剂(磷酸三乙酯)、2wt.%的粘结剂(聚乙烯醇缩丁醛)以及各2wt.%的Al2O3、Y2O3、钇铝石榴石(烧结助剂)继续球磨12h混合均匀制得稳定浆料,然后将浆料浇注到模具中,抽真空30min以除去其中气泡,然后在40℃下自然干燥12h后,得到坩埚坯体;
S12、将步骤S11制得的坩埚坯体置于反应烧结炉中进行烧结致密,烧结气氛为N2,温度为2000℃、压力为5MPa、时间为5h,得到烧结致密坩埚;
S13、采用600目的砂轮进行平整度调整,将步骤S12的烧结致密坩埚打磨光滑,使坩埚表面的粗糙度控制在0.8mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
于氮化硅基体表面沉积氮化硅涂层,具体为:将步骤1的氮化硅基体于沉积炉中进行氮化硅涂层的沉积,沉积工艺如下:
以四氯化硅(SiCl4)、氨气(NH3)为反应源,采用鼓泡法、即采用氢气(H2)为载气带出SiCl4,氩气(Ar)为稀释气体,四氯化硅与氨气的流量比为3:4,采用化学气相沉积法在氮化硅坩埚表面制备高纯Si3N4涂层,先在沉积温度为900℃下沉积1h,使CVD Si3N4能渗透进入氮化硅表面,渗透至烧结工艺造成的未致密孔洞并修饰加工粗糙度,同时与氮化硅坩埚形成良好的结合;然后在900℃下沉积3h,提高氮化硅涂层的厚度至60μm,氮化硅基体厚度为40mm,得到高强高纯氮化硅坩埚。
本发明实施例1-9均制得具有强度高、耐高温、可保证产物纯净、可长期重复使用的氮化硅坩埚,下面以实施例2中的氮化硅坩埚为例,对氮化硅坩埚的性能进行研究,具体研究方法和结果如下所示:
图1为反应烧结制备的氮化硅基体形貌图,图1的测试方法为扫描电子显微镜,结果表明,本发明采用的反应烧结制备的氮化硅基体具有很高的致密化程度。
图2为采用化学气相沉积工艺在氮化硅基体表面沉积的氮化硅涂层表面形貌图,图2的测试方法为扫描电子显微镜,结果表明,CVD工艺制备的氮化硅涂层表面平整且完全致密。
图3为氮化硅基体表面沉积氮化硅涂层后的横截面形貌图,图3的测试方法为扫描电子显微镜,结果表明,基体和涂层基本致密,且基体和涂层结合紧密,完全没有分界。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种高强高纯氮化硅坩埚的制备方法,其特征在于,包括以下步骤:
步骤1、氮化硅基体的制备:
S1、将硅粉、粘结剂、分散剂、烧结助剂与高纯去离子水混合并球磨,球磨至浆料中硅粉粒径为1~5μm,将浆料置于模具中并去除气泡,然后室温下自然干燥,得到坩埚坯体;
S2、将步骤1的坩埚坯体于氮气气氛中进行致密烧结后,打磨至坩埚表面粗糙度为0.4~0.8mm,得到氮化硅基体;
步骤2、高强高纯氮化硅坩埚的制备:
以四氯化硅、氨气为反应源,以氢气为载气,以氩气为稀释气体,采用化学气相沉积法在步骤S2的氮化硅基体表面制备高纯Si3N4涂层,得到高强高纯氮化硅坩埚。
2.根据权利要求1所述的一种高强高纯氮化硅坩埚的制备方法,其特征在于,所述步骤S1中粘结剂为聚乙烯醇缩丁醛或聚乙烯醇;分散剂为磷酸三乙酯或正硅酸乙酯;烧结助剂选自Al2O3、Y2O3、钇铝石榴石中的一种或多种的混合。
3.根据权利要求1所述的一种高强高纯氮化硅坩埚的制备方法,其特征在于,所述步骤S1中硅粉为30~70wt.%、粘结剂为2~3wt.%、分散剂为2~3wt.%、烧结助剂为6~15wt.%、高纯去离子水为20~60wt.%,各原料的质量百分比之和为100%;其中硅粉的粒径为5~40μm。
4.根据权利要求1所述的一种高强高纯氮化硅坩埚的制备方法,其特征在于,所述步骤S2中致密烧结的条件为:于温度为1500~2000℃、压力为0.1~10MPa条件下烧结2~5h。
5.根据权利要求1所述的一种高强高纯氮化硅坩埚的制备方法,其特征在于,所述步骤2中化学气相沉积法的具体操作为:先在沉积温度为800~1000℃下沉积1~3h,然后在900~1200℃下沉积2~3h。
6.根据权利要求1所述的一种高强高纯氮化硅坩埚的制备方法,其特征在于,所述步骤2中四氯化硅流量为15~60mL/min,氨气流量为20~90mL/min,氢气流量为60~200mL/min,氩气流量为20~300mL/min。
7.一种权利要求1-6任一项所述制备方法制得的高强高纯氮化硅坩埚,其特征在于,所述高强高纯氮化硅坩埚的氮化硅基体厚度为3~40mm,所述高纯Si3N4涂层的厚度为40~150μm。
8.一种权利要求7所述的高强高纯氮化硅坩埚在制备单晶硅生产坩埚中的应用。
CN202310572227.2A 2023-05-22 2023-05-22 一种高强高纯氮化硅坩埚及其制备方法和应用 Pending CN116606149A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310572227.2A CN116606149A (zh) 2023-05-22 2023-05-22 一种高强高纯氮化硅坩埚及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310572227.2A CN116606149A (zh) 2023-05-22 2023-05-22 一种高强高纯氮化硅坩埚及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116606149A true CN116606149A (zh) 2023-08-18

Family

ID=87674128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310572227.2A Pending CN116606149A (zh) 2023-05-22 2023-05-22 一种高强高纯氮化硅坩埚及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116606149A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090851A (en) * 1976-10-15 1978-05-23 Rca Corporation Si3 N4 Coated crucible and die means for growing single crystalline silicon sheets
CN104744047A (zh) * 2015-03-04 2015-07-01 烟台同立高科新材料股份有限公司 一种反应烧结制备氮化硅坩埚的方法
CN105603374A (zh) * 2016-02-19 2016-05-25 中科院微电子研究所昆山分所 一种在多晶硅铸锭坩埚上制备Si3N4薄膜的方法
CN109796208A (zh) * 2019-03-28 2019-05-24 西安增材制造国家研究院有限公司 一种Si3N4陶瓷结构件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090851A (en) * 1976-10-15 1978-05-23 Rca Corporation Si3 N4 Coated crucible and die means for growing single crystalline silicon sheets
CN104744047A (zh) * 2015-03-04 2015-07-01 烟台同立高科新材料股份有限公司 一种反应烧结制备氮化硅坩埚的方法
CN105603374A (zh) * 2016-02-19 2016-05-25 中科院微电子研究所昆山分所 一种在多晶硅铸锭坩埚上制备Si3N4薄膜的方法
CN109796208A (zh) * 2019-03-28 2019-05-24 西安增材制造国家研究院有限公司 一种Si3N4陶瓷结构件及其制备方法

Similar Documents

Publication Publication Date Title
CN114149260B (zh) 一种低热导率高熵陶瓷热障涂层材料
WO2022156636A1 (zh) 一种高热导、净尺寸氮化硅陶瓷基片的制备方法
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN101508590A (zh) 一种多晶硅铸锭用坩埚涂层以及制备方法
WO2020244484A1 (zh) 一种常压固相烧结的高纯SiC陶瓷及其制备方法
WO2022156637A1 (zh) 一种氮化硅陶瓷材料的制备方法
CN108610056B (zh) 一种氮化硅陶瓷及其制备方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN109627050B (zh) 一种石英坩埚内表面涂层及其制备方法
CN105648528A (zh) 一种新型高纯石英坩埚及其制备方法
CN112939607A (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN116332678B (zh) 一种在碳材料表面制备碳化钽涂层的方法
US8685357B2 (en) Firing support for ceramics and method for obtaining same
CN111847402A (zh) 一种多孔高纯氮化铝原料的制备方法
CN114368981A (zh) 石墨类材料及工件抗氧化处理技术和应用
CN114249595B (zh) 光学系统用碳化硅陶瓷材料、反光镜、制备方法及烧结助剂
CN104831351A (zh) 一种多晶硅铸锭炉用坩埚盖板及盖板表面涂层方法
CN116606149A (zh) 一种高强高纯氮化硅坩埚及其制备方法和应用
CN105112995A (zh) 多晶硅铸锭炉用的复合隔碳涂层以及制备方法、石墨护板、多晶硅铸锭炉
CN111484330A (zh) 金刚石增强碳化硅基板及其制备方法和电子产品
CN112521154A (zh) 具有高纯工作表面的SiC陶瓷器件及其制备方法和应用
JP3250149B2 (ja) シリコンインゴット鋳造用鋳型およびその製造方法
JPS62101026A (ja) 不純物拡散源
CN108558405B (zh) 一种高致密度高纯度碳化硅衬底材料的制备方法
CN115321969A (zh) 一种熔融石英陶瓷坩埚的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination