CN116593717B - 突触融合蛋白8在检测线粒体损伤中的应用 - Google Patents

突触融合蛋白8在检测线粒体损伤中的应用 Download PDF

Info

Publication number
CN116593717B
CN116593717B CN202310879043.0A CN202310879043A CN116593717B CN 116593717 B CN116593717 B CN 116593717B CN 202310879043 A CN202310879043 A CN 202310879043A CN 116593717 B CN116593717 B CN 116593717B
Authority
CN
China
Prior art keywords
mitochondrial
detection
protein
microwave radiation
heart tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310879043.0A
Other languages
English (en)
Other versions
CN116593717A (zh
Inventor
张雪岩
吕岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Stomatological Hospital
Original Assignee
Beijing Stomatological Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Stomatological Hospital filed Critical Beijing Stomatological Hospital
Priority to CN202310879043.0A priority Critical patent/CN116593717B/zh
Publication of CN116593717A publication Critical patent/CN116593717A/zh
Application granted granted Critical
Publication of CN116593717B publication Critical patent/CN116593717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及分子诊断技术领域,尤其涉及突触融合蛋白8在检测线粒体损伤中的应用。本发明发现,STX8与线粒体损伤存在显著的相关性,通过检测STX8的表达情况可以确定线粒体损伤情况,尤其是微波辐射后发生于生物体心脏组织中的线粒体损伤,具有检测效率高、结果准确度高的优点,本发明为微波辐射的生物医学研究和临床诊断分析奠定了基础。

Description

突触融合蛋白8在检测线粒体损伤中的应用
技术领域
本发明涉及分子诊断技术领域,尤其涉及突触融合蛋白8在检测线粒体损伤中的应用。
背景技术
线粒体是生物体能量代谢和细胞有氧呼吸的主要场所,与生物体的多种生理病理活动有着密切的联系,例如,线粒体功能障碍涉及多种心血管疾病的发病机制,包括心肌梗死、各种病因的心肌病、心律失常、高血压和动脉粥样硬化等。
电磁技术在各个领域的应用,促进了行业的突破性发展,推动了社会的进步。尤其在无线通讯和互联网技术中的应用,实现了全球信息共享与交流。随着电磁技术的发展,使得人们置身于更强和更加复杂的电磁辐射环境之中,因此,电磁辐射对人体的健康影响引起了各国学者的关注。有研究表明,电磁辐射会造成线粒体损伤,而且,心脏是微波辐射损伤敏感的靶器官之一,且心脏组织中线粒体损伤出现早且程度重。
现有检测线粒体损伤的技术中,通常需要对生物样本的心脏组织中的线粒体结构、线粒体功能等多个指标同时检测,其检测时间长、操作复杂。
因此,如何快速、准确地检测出各种原因是否引起了线粒体损伤,成为本领域亟待解决的技术难题。
发明内容
为解决上述技术难题,特提出本发明。
第一方面,本发明提供了突触融合蛋白8在检测线粒体损伤中的应用。
突触融合蛋白8(Syntaxin 8,STX8)属于可溶性附着蛋白受体SNARE家族亚家族成员之一,主要定位于高尔基体、早期内体和晚期内体的膜组分中,并在囊泡的运输和膜融合过程中发挥重要的调节作用。本发明通过对心脏组织线粒体中的多种蛋白的检测分析后发现,STX8与线粒体损伤存在显著的相关性。
在一些实施方案中,所述线粒体损伤为线粒体超微结构损伤或线粒体功能紊乱中的至少一种。
在一些实施方案中,所述线粒体损伤表现为以下至少一种情况:
(1)线粒体肿胀;
(2)线粒体形态异常;
(3)线粒体嵴断裂;
(4)线粒体膜破裂;
(5)线粒体膜电位去极化。
本领域知晓,线粒体膜电位去极化是指线粒体损伤样本的线粒体膜电位与正常样本的线粒体膜电位存在明显差别;
优选地,线粒体损伤样本的线粒体膜电位低于正常样本。
在一些实施方案中,所述线粒体损伤为生物体心脏组织中的线粒体损伤。
在一些实施方案中,所述线粒体损伤为微波辐射导致的线粒体损伤。
本发明发现,STX8与微波辐射导致的心脏组织线粒体损伤具有极显著的相关性,STX8对经微波辐射后引起的心脏组织线粒体损伤的敏感性高,可将其作为敏感蛋白,用于确定经微波辐射后生物样本心脏组织线粒体是否发生损伤。
第二方面,本发明提供了突触融合蛋白8在制备试剂或试剂盒中的应用,所述试剂或试剂盒被用于检测线粒体损伤。
由于STX8与线粒体损伤存在显著的相关性,因此所制备的试剂或试剂盒用于检测线粒体损伤时,具有快速、准确、有效的检测优势。
在一些实施方案中,所述试剂或试剂盒被用于检测微波辐射导致的线粒体损伤。
在一些实施方案中,所述试剂或试剂盒被用于检测生物体心脏组织中的线粒体损伤。
优选地,所述试剂或试剂盒被用于以下至少一种检测方法中:
(1)质谱检测;
(2)免疫组织化学检测;
(3)蛋白免疫印迹检测。
采用上述检测方法时,能够快速地对生物样本线粒体中的STX8蛋白或基因的表达量进行检测,且具有准确度高、使用方便等优点。
第三方面,本发明提供了一种检测线粒体损伤的方法,包括:检测突触融合蛋白8蛋白或基因的表达量。
当STX8的蛋白或基因表达量增加时,则说明线粒体存在损伤情况。
第四方面,本发明提供了一种检测线粒体损伤的系统,包括:
提取模块;所述提取模块用于从生物样本中提取突触融合蛋白8蛋白或核酸;
检测模块;所述检测模块用于检测突触融合蛋白8的蛋白或基因表达量;
分析模块;所述分析模块用于根据所述检测模块的检测结果确定线粒体损伤情况。
通过利用上述系统,能够简单、快速、准确地检测出线粒体损伤情况。
与现有技术相比,本发明的有益效果在于:
本发明发现,STX8与线粒体损伤存在显著的相关性,通过检测STX8的表达情况可以确定线粒体损伤情况,尤其是微波辐射后发生于生物体心脏组织中的线粒体损伤,具有检测效率高、结果准确度高的优点,本发明为微波辐射的生物医学研究和临床诊断分析奠定了基础。
附图说明
图1是实施例1假辐射组大鼠心脏组织线粒体超微结构图。
图2是实施例1微波辐射组大鼠心脏组织线粒体超微结构图。
图3是实施例1假辐射组大鼠心脏组织线粒体膜电位荧光图。
图4是实施例1微波辐射组大鼠心脏组织线粒体膜电位荧光图。
图5是实施例1大鼠心脏组织线粒体差异表达的蛋白质聚类分析图。
图6是实施例1大鼠心脏组织线粒体差异表达的蛋白质火山图。
图7是实施例3假辐射组大鼠心脏组织线粒体超微结构图。
图8是实施例3微波辐射组大鼠心脏组织线粒体超微结构图。
图9是实施例3大鼠心脏组织线粒体STX8蛋白平行反应监测绝对定量结果图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购途径获得的常规产品。
实施例1 微波辐射大鼠心脏组织线粒体损伤模型构建
将10只体重为180±20克的二级雄性Wistar大鼠(购买自中国人民解放军军事科学院军事医学研究院),随机分为假辐射组和微波辐射组,每组5只。采用微波辐射源对微波辐射组的大鼠进行全身均匀辐射,微波辐射源的平均功率密度为30 毫瓦每平方厘米,辐射15分钟。假辐射组置于辐射盒中,不予辐射。
将微波辐射组与假辐射组大鼠分别于辐射(或假辐射)后恢复常规喂养7天,采用腹腔注射1%戊巴比妥钠(30毫克/公斤)对大鼠进行麻醉后,取心脏组织分离新鲜心脏组织线粒体,取1立方毫米心脏组织线粒体,迅速放入2.5%戊二醛固定2小时,1%锇酸后固定2小时,梯度乙醇和丙酮脱水,树脂包埋,半薄切片定位后,制作超薄切片(厚70纳米),醋酸铀和柠檬酸铅双重染色,然后采用透射电镜观察并摄像,结果见图1和图2(标尺为500纳米)。
由图1和图2结果可见,假辐射组大鼠心脏组织线粒体呈正常超微结构,表现为线粒体结构完整,形态正常,呈椭圆形。微波辐射组心脏组织线粒体肿胀,结构异常,嵴断裂,部分线粒体膜溶解破裂。因此,结果表明,微波辐射后,大鼠心脏组织线粒体超微结构损伤。
将微波辐射组与假辐射组大鼠分别于辐射(或假辐射)后的第7天,采用1%戊巴比妥钠(30毫克每公斤体重)经腹腔注射麻醉,取心脏组织,采用组织线粒体分离试剂盒,提取组织线粒体。取心脏组织纯化的线粒体,进行蛋白定量后,采用纯化线粒体内膜电位荧光测定试剂盒检测线粒体膜电位,结果见图3和图4。
由图3和图4的结果可见,与假辐射组相比,微波辐射组荧光强度(灰色部分为荧光)显著降低,说明微波辐射后,大鼠心脏组织线粒体膜电位明显低于假辐射组,心脏组织线粒体内膜功能损伤。
实施例2大鼠心脏组织线粒体蛋白质组表达谱检测
1、大鼠心脏组织线粒体蛋白质组文库
蛋白提取:采用Bradford法测定提取的蛋白浓度。
蛋白质酶解:全溶液酶切获得肽段。
数据依赖获取文库建立:高效液相色谱分离混合肽段。
数据非依赖数据采集:每个样品酶解后的肽段单独上机采集。
2、大鼠心脏组织线粒体蛋白质组表达谱信息分析
数据质控与鉴定情况:DDA数据质控进行蛋白数据库搜索,数据依赖获取数据库鉴定肽段数和蛋白数。数据质量评估包括肽段长度分布、母离子质量容差分布、蛋白覆盖度分布、蛋白分子量分布、数据非依赖获取数据质控。
数据非依赖差异蛋白的筛选:全局分析;差异蛋白筛选;功能注释和分析;对差异蛋白进行基因本体/京都基因与基因组百科全书功能注释以及功能富集分析,发掘差异蛋白差异化表达的功能和调控关系,结果见图5和图6。
如图5所示,假辐射组3、4和微波辐射组4组内差别较大,因此删除,其他组样品的组内一致性较好;组间有筛选获得差异蛋白。
如图6所示,定量值在进行中值归一化后得到的结果,进一步进行归一化,并且,由于样品的重复次数大于等于3次,因此直接采用t检验进行差异分析,卡P值0.05,变化倍数1.2倍,得到差异蛋白的分析结果;结果发现,微波辐射后,显著上调的蛋白有232个,显著下调的蛋白有28个。
经过对上述差异表达蛋白的筛选和验证,最终发现了STX8蛋白与线粒体损伤具有显著的相关性,能够用于准确判断线粒体损伤情况,在蛋白质组结果中,STX8蛋白表达差异倍数为1.454719,P值为0.001439,结果显示,STX8蛋白表达显著上调(P<0.01)。
实施例3大鼠心脏组织线粒体STX8蛋白表达验证
将10只体重为180±20克的二级雄性Wistar大鼠(购买自中国人民解放军军事科学院军事医学研究院),随机分为假辐射组和微波辐射组,每组5只。动物建模并采用电镜进行心肌线粒体超微结构观察以确定建模成功(方法同实施例1),进而进行心脏线粒体蛋白提取及定量(方法同实施例1)。采用平行反应监测质谱,蛋白还原烷基化及酪氨酸酶解,数据依赖预实验质谱分析,筛选目标蛋白和肽段。每份样品经毛细管高效液相色谱分离后用质谱仪进行质谱分析,利用Skyline软件对质谱数据进行建库、提取和分析。
采用电镜对超微结构观察结果发现,假辐射组线粒体形态正常如图7所示,微波辐射组线粒体肿胀,结构异常,嵴断裂,部分线粒体膜溶解破裂如图8所示,表明该批次动物模型建立成功。
进一步对该批次大鼠心脏组织中STX8蛋白采用平行反应监测定量质谱的方法进行了验证,表达结果见图9,蛋白质定量检测结果中,STX8蛋白表达差异倍数为2.066889535,P值为0.006746271,结果显示,与假辐射组相比,微波辐射组大鼠心脏组织线粒体STX8蛋白的表达显著上调(P=0.013)。
结果表明,STX8蛋白能够准确用于判断微波辐射导致的大鼠心脏组织线粒体损伤情况。
此外,本发明在后续科研实践过程中,采用其它批次的大鼠进行验证,均取得了一致的效果。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.突触融合蛋白8在制备试剂或试剂盒中的应用,所述试剂或试剂盒被用于检测微波辐射导致的大鼠心脏组织的线粒体损伤。
2.根据权利要求1所述的应用,其特征在于,所述线粒体损伤为线粒体超微结构损伤或线粒体功能紊乱中的至少一种。
3.根据权利要求1所述的应用,其特征在于,所述线粒体损伤表现为以下至少一种情况:
(1)线粒体肿胀;
(2)线粒体形态异常;
(3)线粒体嵴断裂;
(4)线粒体膜破裂;
(5)线粒体膜电位去极化。
4.根据权利要求1所述的应用,其特征在于,所述试剂或试剂盒被用于以下至少一种检测方法中:
(1)质谱检测;
(2)免疫组织化学检测;
(3)蛋白免疫印迹检测。
5.一种检测微波辐射导致的大鼠心脏组织的线粒体损伤的系统,其特征在于,包括:
提取模块;所述提取模块用于从微波辐射后的大鼠心脏组织中提取突触融合蛋白8蛋白或核酸;
检测模块;所述检测模块用于检测突触融合蛋白8的蛋白或基因表达量;
分析模块;所述分析模块用于根据所述检测模块的检测结果确定微波辐射导致的大鼠心脏组织的线粒体损伤情况。
CN202310879043.0A 2023-07-18 2023-07-18 突触融合蛋白8在检测线粒体损伤中的应用 Active CN116593717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310879043.0A CN116593717B (zh) 2023-07-18 2023-07-18 突触融合蛋白8在检测线粒体损伤中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310879043.0A CN116593717B (zh) 2023-07-18 2023-07-18 突触融合蛋白8在检测线粒体损伤中的应用

Publications (2)

Publication Number Publication Date
CN116593717A CN116593717A (zh) 2023-08-15
CN116593717B true CN116593717B (zh) 2023-09-26

Family

ID=87608479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310879043.0A Active CN116593717B (zh) 2023-07-18 2023-07-18 突触融合蛋白8在检测线粒体损伤中的应用

Country Status (1)

Country Link
CN (1) CN116593717B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283106A (zh) * 2005-07-27 2008-10-08 肿瘤疗法科学股份有限公司 小细胞肺癌的诊断方法
CN103397033A (zh) * 2013-08-13 2013-11-20 中国人民解放军军事医学科学院放射与辐射医学研究所 分离的寡核苷酸rno-miR-181a及其在脑线粒体损伤中的应用
CN114527284A (zh) * 2022-02-28 2022-05-24 中国人民解放军军事科学院军事医学研究院 Mfn2蛋白在作为确定经微波辐射后是否出现线粒体动力学异常的标志物中的用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090003263A (ko) * 2006-02-24 2009-01-09 디에스엠 아이피 어셋츠 비.브이. 포유동물에서 건강 상태를 증진시키기 위한 레스베라트롤 및 그의 유도체의 용도
US9746482B2 (en) * 2011-08-11 2017-08-29 Rowan University Diagnostic biomarker profiles for the detection and diagnosis of parkinsons disease
US20150344888A1 (en) * 2012-09-17 2015-12-03 Genentech, Inc. Usp30 inhibitors and methods of use
US20180128812A1 (en) * 2016-07-18 2018-05-10 Northwestern University Compositions and methods for identifying metabolically active agents
WO2020018461A1 (en) * 2018-07-16 2020-01-23 The University Of Virginia Patent Foundation Compositions and methods of diagnosis and treatment for neurological diseases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283106A (zh) * 2005-07-27 2008-10-08 肿瘤疗法科学股份有限公司 小细胞肺癌的诊断方法
CN103397033A (zh) * 2013-08-13 2013-11-20 中国人民解放军军事医学科学院放射与辐射医学研究所 分离的寡核苷酸rno-miR-181a及其在脑线粒体损伤中的应用
CN114527284A (zh) * 2022-02-28 2022-05-24 中国人民解放军军事科学院军事医学研究院 Mfn2蛋白在作为确定经微波辐射后是否出现线粒体动力学异常的标志物中的用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1.8GHz射频电磁场对大鼠神经元基因表达谱的影响;张淑芝;姚耿东;鲁德强;姜槐;许正平;;浙江预防医学(第07期);第3-6页 *
Expression of Syntaxin 8 in Visceral Adipose Tissue Is Increased in Obese Patients with Type 2 Diabetes and Related to Markers of Insulin Resistance and Inflammation;Lancha Andoni 等;《Archives of medical research》;第46卷(第01期);第47-53页 *

Also Published As

Publication number Publication date
CN116593717A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
Zareba-Koziol et al. Stress-induced Changes in the S-palmitoylation and S-nitrosylation of Synaptic Proteins*[S]
Soste et al. A sentinel protein assay for simultaneously quantifying cellular processes
Parker et al. Multiplexed temporal quantification of the exercise-regulated plasma peptidome
WO2019147725A1 (en) Methods and systems for determining the biological age of samples
CN108414660B (zh) 一组与肺癌早期诊断相关的血浆代谢小分子标志物的应用
CN108603859B (zh) 尿中代谢物在制备癌的评价方法所使用的试剂盒中的用途
AU2010277664A1 (en) Method for predicting the likelihood of an onset of an inflammation associated organ failure
WO2011157655A1 (en) Use of bile acids for prediction of an onset of sepsis
Schnackenberg et al. An integrated study of acute effects of valproic acid in the liver using metabonomics, proteomics, and transcriptomics platforms
EP2052254B1 (de) Biomarker für leberentzündung
CN110441438A (zh) 一种基于s100蛋白家族的急性胰腺炎严重程度预测模型及其检测方法
MacDonald et al. Laser capture microdissection–targeted mass spectrometry: a method for multiplexed protein quantification within individual layers of the cerebral cortex
Lelli et al. From targeted quantification to untargeted metabolomics
US20160293394A1 (en) MALDI-TOF MS Method And Apparatus For Assaying An Analyte In A Bodily Fluid From A Subject
Mitchell et al. Direct cellular peptidomics of hypothalamic neurons
Azkargorta et al. TUBEs-mass spectrometry for identification and analysis of the ubiquitin-proteome
CN105092627A (zh) 用于检测胃癌相关代谢小分子的核磁共振模型及制备方法
CN116593717B (zh) 突触融合蛋白8在检测线粒体损伤中的应用
CN117686712A (zh) 一种基于舌苔微生物蛋白筛查胃癌的方法
Mendelsohn et al. Proteomic analysis of anoxia tolerance in the developing zebrafish embryo
CN111551749A (zh) 一种鉴定药物靶蛋白的方法
He et al. Metabolic alterations in dairy cattle with lameness revealed by untargeted metabolomics of dried milk spots using direct infusion-tandem mass spectrometry and the triangulation of multiple machine learning models
Engskog et al. Metabolic profiling of epithelial ovarian cancer cell lines: evaluation of harvesting protocols for profiling using NMR spectroscopy
CN111812309A (zh) 肿瘤骨转移的尿液蛋白标记物及其用途
Taran et al. The first protocol of stable isotope ratio assessment in tumor tissues based on original research

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant