CN116590725A - 一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法 - Google Patents

一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法 Download PDF

Info

Publication number
CN116590725A
CN116590725A CN202310543011.3A CN202310543011A CN116590725A CN 116590725 A CN116590725 A CN 116590725A CN 202310543011 A CN202310543011 A CN 202310543011A CN 116590725 A CN116590725 A CN 116590725A
Authority
CN
China
Prior art keywords
copper
hydroxymethylfurfural
electrocatalytic
cathode
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310543011.3A
Other languages
English (en)
Inventor
赵浙菲
王思琪
郑华均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202310543011.3A priority Critical patent/CN116590725A/zh
Publication of CN116590725A publication Critical patent/CN116590725A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/21Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铜铁双金属催化剂电催化5‑羟甲基糠醛加氢合成2,5‑二羟甲基呋喃的方法,该方法采用阴阳两极电解槽,阴阳两极采用阳离子膜隔开,以CuFe双金属催化剂作为阴极,铂片电极为阳极,通过施加恒定电压,对含有5‑羟甲基糠醛的溶液进行电解合成得到2,5‑二羟甲基呋喃;本发明工艺条件温和、电极材料成本低廉且合成过程环境友好,具有很好的工业应用前景。

Description

一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二 羟甲基呋喃的方法
技术领域
本发明属于有机电化学合成领域,涉及一种双金属CuFe作为贵金属催化剂的潜在替代品作为阴极,将5-羟甲基糠醛电催化加氢合成为2,5-二羟甲基呋喃的方法。
背景技术
随着时代的不断发展,世界各国对于能源和材料的需求日益增长,化石能源持续消耗,并且不断释放二氧化碳,全球变暖问题加剧,能源短缺与环境破坏的问题日益成为人们关注的焦点。有调查研究表明,当前世界的化石能源的消耗占全球能源消耗的百分之八十。化石能源总有一天会消耗殆尽,因此寻找一种绿色清洁可持续的新能源迫切成为一种需要。目前,在对新能源的研究中,越来越多的人把目光集中在生物质的研究上。在漫长的人类历史长河中,在人类发现化石能源之前,很长一段时间都是使用生物质来完成对能量的需求。所谓生物质,指的是植物在光合作用下所形成的碳水化合物的总称。由于生物质的能量来自于植物的光合作用,它既可以转化为固体燃料,也可以转化为气体或者液体燃料,所以是一种丰富的碳源。生物质在地球的储量不仅十分丰富,而且也是清洁无毒无害的能源。
研究发现,将生物质的所有组分进行分离,降解然后提纯为高附加值产物,也即是分级转化工艺,以这种方式可以最大化的利用生物质。与化石燃料不同,生物质是由各种各样的聚合物高分子构成,这些聚合物高分子含氧量非常高,高达百分之四十以上,例如木质纤维素是生物质资源的重要成分,其结构组成主要是六碳糖等碳氢氧化物,通过水解、异构化、脱水后可得到5-羟甲基糠醛(简称HMF)。HMF是美国能源部列出的十大重要平台化学品之一。HMF经过氧化、还原和醚化反应可以合成为很多重要高价值的化学工业品,在医药、精细化工、可降解塑料等领域具有广阔的应用前景。HMF的甲酰基加氢还原可以制备2,5-二羟甲基呋喃(简称DHMF),它是一种比较重要的化工中间体,由于含有两个羟甲基,所以用途比较多,DHMF也是合成医药中间体的重要原料,比如冠醚。也可以被用来作为软化剂、溶剂、湿润剂、合成增塑剂、表面活性剂等。亦可在分子识别中作为人造受体。再者它也可以作为单体用来合成聚酯、聚氨酯等高分子材料。DHMF是许多HMF还原产物中最重要的化学工业品之一。到目前为止,HMF转化为DHMF主要是通过化学催化加氢的方法来实现,即以H2作为氢源,在2.8~35MPa高压、130~150℃高温下使用铂、钯等贵金属非均相催化剂的环境下进行。具体的反应式如下所示:
这种化学催化加氢反应一般需要采用贵金属为催化剂,并要求在高温高压下进行,这极大地增加了生产成本,因此,很多研究团队都围绕着廉价催化剂的开发及工艺条件的优化等方面进行深入的研究,如国家发明专利CN201910371068.3公开了一种利用5-羟甲基糠醛催化加氢制备2,5-呋喃二甲醇的方法,他们开发了一种MnO@C-N非贵金属催化剂,通过将低级醇加入5-羟甲基糠醛溶液来完成转移加氢。但该工艺仍需要在150~200℃的温度下进行30小时的反应,高温条件且反应时间漫长;另外,催化剂MnO@C-N的制备较为复杂。国家发明专利CN201910373537.5也公开了一种新型的催化剂CuNPs@ZIF-8,将乙醇加入5-羟甲基糠醛溶液中,在120~150℃温度和1~4MPa的压力下反应0.1~5小时,选择性加氢制备2,5-呋喃二甲醇。该过程也需要在高温高压下进行,当然还使用了活泼气体H2为氢源,生产有一定的安全风险。
相比于化学热催化法,电催化加氢技术具有反应条件温和、操作简单、能量利用率高等优点,近年来备受关注。利用电催化加氢技术将生物质基平台分子转化为高附加值的化学工业产品,是一种环境友好的绿色生产技术。
电催化技术将HMF电催化加氢合成为DHMF,其电极反应路径如下所示:
从现有的研究情况来看,国内外对HMF电催化加氢合成DHMF的研究报道还很少,且所采用的阴极电极材料都采用贵金属银(Ag)。如Huimin Li等人使用Ag/PA催化材料来进行HMF的电催化加氢合成DHMF(International Journal of Hydrogen Energy 2022,47,28904-28914),金属Ag作为电催化活性物质起主要作用,但是贵金属Ag具有较强的析氢性能,会导致DHMF生成的法拉第效率降低。因此,也有人尝试用铜(Cu)替代Ag,因为Cu相较于Ag的析氢过电位高,价格低,有望用于呋喃类的加氢反应,Sungyup Jung等人使用纯Cu应用于糠醛(FF)电催化加氢合成糠醇(FA)(Catalysis Today 2019 26–34),但是单金属Cu选择性较差,FA的产率仅有20%,且以单金属Cu作为阴极,HMF容易发生上式所示的聚合反应生成二聚物。对比于单金属材料,双金属之间存在协同作用,较大的比表面积,较多的活性位点,双金属化合物往往比单金属化合物具有更高的催化活性。例如:CuFe双金属催化剂的设计构建可以改变金属的电子结构,从而影响催化行为(Catal.Sci.Technol.,2021,11,3353-3363)。
发明内容
针对目前化学热催化技术和电催化加氢技术将5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃存在的不足,本发明提出采用铜铁双金属(简称CuFe)催化剂作为电催化阴极,将HMF电催化加氢合成为DHMF的方法。
本发明的技术方案如下:
一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法,所述方法为:
采用H型电解反应装置,阴阳两极反应槽间采用N117阳离子膜分隔电解液,以CuFe双金属为阴极,铂片为阳极,阴极反应槽中加入含有5-羟甲基糠醛的PBS缓冲液作为电解液,阳极反应槽中加入PBS缓冲液作为支持电解液,在常压、温度20~50℃、电压-1.6~-1V的条件下进行电解反应2~6h,得到2,5-二羟甲基呋喃;
其中,PBS缓冲液为磷酸钾缓冲液、硼酸钾缓冲液或碳酸钾缓冲液等无机盐缓冲液的一种,缓冲液浓度0.01~0.6mol/L,pH值范围4~12,最优pH值9.2;
优选阴极反应槽中含有5-羟甲基糠醛的PBS缓冲液中的5-羟甲基糠醛浓度为0.02~0.05mol/L;
通常阴极、阳极反应槽中的电解液均在搅拌情况下通过水浴来恒定温度;
特别优选电解反应的温度为25℃,电压为-1.2V,时间为4h;
本发明中,阴极材料CuFe双金属由高比表面积铜材料(简称Cu-h)通过恒电流电沉积法制得,具体的制备方法如下:
(1)铜基材料在硫酸铜溶液中经恒电流电沉积制得高比表面积铜材料(Cu-h);
铜基材料为泡沫铜;
电沉积电流为-0.1A,电沉积时间为300s;
(2)步骤(1)所得高比表面积铜材料在硫酸亚铁溶液中经恒电流电沉积制得CuFe双金属;
硫酸亚铁溶液中,硫酸亚铁的浓度范围在0.025~0.15M;
电沉积电流范围在-0.05~-0.2A,电沉积时间为90s。
与现有技术比较,本发明的有益效果是:
本发明首次提出采用铜铁双金属材料作为阴极,实现了HMF电催化加氢合成DHMF,避免使用金属银作为电催化剂,而且电沉积方法制备工艺成熟易控制,降低了生产成本。由于铜基材料具有较高的析氢过电位,故在电催化还原过程时,能优先进行HMF到DHMF的电催化加氢,并且由于金属铁的加入极大地提高了反应的选择性。
因此,本发明提供的工艺条件及方法具有优异电催化性能,HMF电催化加氢合成为DHMF的产率最高达到90%,HMF转化率达到97%,选择性达到93%,法拉第效率达到86%。本发明工艺条件温和、电极材料低廉且合成过程环境友好,具有很好的工业应用前景。
附图说明
图1为本发明电催化还原HMF合成DHMF反应槽的示意图。
图2为本发明实施例一制备的CuFe双金属催化剂的SEM图。
图3为本发明实施例一制备的CuFe双金属催化剂的XRD图。
图4为本发明实施例一的HMF电催化还原为DHMF电解4小时前后的液相谱图对比。
图5为本发明实施例二的HMF电催化还原为DHMF电解4小时前后的液相谱图对比。
图6为本发明实施例三的HMF电催化还原为DHMF电解2小时前后的液相谱图对比。
具体实施方式
为了便于理解本发明,下面将结合具体实施例进一步阐述本发明的技术内容,这些实施例仅用于说明本发明而不限制本发明的范围。
所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
实施例中使用的N117阳离子膜为从美国杜邦公司购得的质子交换膜N117全氟磺酸离子膜Nafion117。泡沫铜是从天津安诺合新能源科技有限公司购得的,其尺寸为120mm*120mm。
实施例一:
采用Cu-h通过恒电流电沉积制备双金属CuFe催化剂,以此为阴极将HMF电催化加氢合成得到DHMF。
(1)采用恒电流电沉积法制备Cu-h电极
将泡沫铜清洗后作为阳极,金属Pt片作为阴极,Ag/AgCl作为参比电极,电解液为0.15mol/L的CuSO4和0.3mol/L的H2SO4。在室温下进行恒电流电沉积,将电流恒定在-0.1A下沉积300S后得到高比表面积的铜(Cu-h),将制备好的Cu-h用乙醇冲洗然后氮气吹干备用。
(2)以Cu-h为阳极恒电流电沉积制备CuFe电极
以上述Cu-h电极作为阳极,金属Pt片作为阴极,Ag/AgCl作为参比电极,电解液为0.025mol/L的FeSO7H2O和0.3mol/L的H2BO3。在室温下进行恒电流电沉积,将电流恒定在-0.05A下沉积90s后得到双金属CuFe。
(3)以Cu-h为阳极恒电流电沉积制备CuNi电极
以上述Cu-h电极作为阳极,金属Pt片作为阴极,Ag/AgCl作为参比电极,电解液为0.025mol/L的NiCl2.6H2O和0.3mol/L的H2BO3。在室温下进行恒电流电沉积,将电流恒定在-0.05A下沉积90s后得到双金属CuNi。
(4)以Cu-h为阳极恒电流电沉积制备CuMn电极
以上述Cu-h电极作为阳极,金属Pt片作为阴极,Ag/AgCl作为参比电极,电解液为0.025mol/L的MnSO4.H2O和0.3mol/L的H2BO3。在室温下进行恒电流电沉积,将电流恒定在-0.05A下沉积90s后得到双金属CuMn。
(5)以CuFe为阴极,将HMF电催化加氢合成DHMF
图1为电催化还原HMF合成DHMF反应槽的示意图。采用N117阳离子膜将阴阳极反应槽中的电解液隔离。阴极槽电解液为浓度为0.02mol/L的HMF和0.5mol/L的磷酸钾缓冲溶液,阳极槽电解液为浓度0.5mol/L的磷酸钾缓冲溶液,并将电解液的pH值调整为9.2;电解液的温度控制在25℃左右,通过持续搅拌保持电解液温度在电解过程中基本恒定。恒定阴阳两极间的电压为-1.2V电解4h。所得阴极电解液采用液相色谱定量检测,电催化还原的液相结果图如图4所示。经测定和计算,HMF转化为DHMF的产率为90%,HMF转化率达到97%,选择性达到93%,法拉第效率达到86%。
(6)以CuNi为阴极,将HMF电催化加氢合成DHMF
实验过程同案例一中(5),经测定和计算,HMF转化为DHMF的产率为16.7%,HMF转化率达到19.4%,选择性达到86.5%,法拉第效率达到49.5%。
(7)以CuMn为阴极,将HMF电催化加氢合成DHMF
实验过程同案例一中(5),经测定和计算,HMF转化为DHMF的产率为35.1%,HMF转化率达到40.5%,选择性达到86.7%,法拉第效率达到55.7%。
实施例二:
采用Cu-h通过改变FeSO7H2O的量恒电流电沉积制备得到CuFe催化剂,以此为为阴极,将HMF电催化加氢合成得到DHMF。
(1)采用恒电流电沉积法制备Cu-h电极
制备方法和过程同实施案例一中(1)。
(2)以Cu-h为阳极电沉积制备双CuFe电极
将1×1.5cm2的Cu-h作为阳极,金属Pt片作为阴极,Ag/AgCl作为参比电极,电解液为0.1mol/L的FeSO7H2O和0.3mol/L的H2BO3。在室温下进行恒电流电沉积,将电流恒定在-0.05A下沉积90S后得到双金属CuFe,将制备好的CuFe用乙醇冲洗然后氮气吹干备用。
(3)以CuFe为阴极将HMF电催化加氢合成DHMF
实验过程同案例一中(3),经测定和计算,HMF转化为DHMF的产率为70%,HMF转化率达到80%,选择性达到87.5%,法拉第效率达到78%。
实施例三:
恒电流电沉积制备双金属CuFe催化剂,以此为阴极,改变HMF电催化加氢合成DHMF的电解电压和电解时间。
(1)采用恒电流电沉积法制备Cu-h电极
制备方法和过程同实施案例一中(1)。
(2)以Cu-h为阳极电沉积制备双金属CuFe催化剂
将1×1.5cm2的Cu-h作为阳极,金属Pt片作为阴极,Ag/AgCl作为参比电极,电解液为0.025mol/L的FeSO7H2O和0.3mol/L的H2BO3。在室温下进行恒电流电沉积,将电流恒定在-0.05A下沉积90S后得到双金属CuFe,将制备好的CuFe用乙醇冲洗然后氮气吹干备用。
(3)以CuFe为阴极将HMF电催化加氢合成DHMF
阴极槽电解液为浓度为0.02mol/L的HMF和0.5mol/L的磷酸钾缓冲溶液,阳极槽电解液为浓度0.5mol/L的磷酸钾缓冲溶液,并将电解液的pH值调整为9.2;电解液的温度控制在25℃左右,通过持续搅拌保持电解液温度在电解过程中基本恒定。恒定阴阳两极间的电压为-1.25V电解2小时。经测定和计算,HMF转化为DHMF的产率为87.6%,HMF转化率达到90.8%,选择性达到96.5%,法拉第效率达到80%。

Claims (5)

1.一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法,其特征在于,所述方法为:
采用H型电解反应装置,阴阳两极反应槽间采用N117阳离子膜分隔电解液,以CuFe双金属为阴极,铂片为阳极,阴极反应槽中加入含有5-羟甲基糠醛的PBS缓冲液作为电解液,阳极反应槽中加入PBS缓冲液作为支持电解液,在常压、温度20~50℃、电压-1.6~-1V的条件下进行电解反应2~6h,得到2,5-二羟甲基呋喃。
2.如权利要求1所述的铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法,其特征在于,PBS缓冲液为磷酸钾缓冲液、硼酸钾缓冲液或碳酸钾缓冲液,缓冲液浓度0.01~0.6mol/L,pH值范围4~12。
3.如权利要求1所述的铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法,其特征在于,阴极反应槽中含有5-羟甲基糠醛的PBS缓冲液中的5-羟甲基糠醛浓度为0.02~0.05mol/L。
4.如权利要求1所述的铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法,其特征在于,电解反应的温度为25℃,电压为-1.2V,时间为4h。
5.如权利要求1所述的铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法,其特征在于,阴极材料CuFe双金属的制备方法如下:
(1)铜基材料在硫酸铜溶液中经恒电流电沉积制得高比表面积铜材料;
铜基材料为泡沫铜;
电沉积电流为-0.1A,电沉积时间为300s;
(2)步骤(1)所得高比表面积铜材料在硫酸亚铁溶液中经恒电流电沉积制得CuFe双金属;
硫酸亚铁溶液中,硫酸亚铁的浓度范围在0.025~0.15M;
电沉积电流范围在-0.05~-0.2A,电沉积时间为90s。
CN202310543011.3A 2023-05-15 2023-05-15 一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法 Pending CN116590725A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310543011.3A CN116590725A (zh) 2023-05-15 2023-05-15 一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310543011.3A CN116590725A (zh) 2023-05-15 2023-05-15 一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法

Publications (1)

Publication Number Publication Date
CN116590725A true CN116590725A (zh) 2023-08-15

Family

ID=87604024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310543011.3A Pending CN116590725A (zh) 2023-05-15 2023-05-15 一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法

Country Status (1)

Country Link
CN (1) CN116590725A (zh)

Similar Documents

Publication Publication Date Title
Sánchez-Sánchez et al. Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation
Martínez et al. Paired electrolysis for simultaneous generation of synthetic fuels and chemicals
CN101649465B (zh) 一种基于双极膜技术同时制备糠醇和糠酸的方法
CN111672513B (zh) 碳基底负载不同形貌的镍催化剂及其应用
Xi et al. Electrochemical CO2 reduction coupled with alternative oxidation reactions: electrocatalysts, electrolytes, and electrolyzers
Dolle et al. Electrochemical hydrogen production from biomass
Chen et al. Co-electrolysis toward value-added chemicals
CN112169812B (zh) 一种用于全电解水的自支撑核壳纳米电催化剂的制备方法
CN113136597B (zh) 一种铜锡复合材料及其制备方法和应用
Zhao et al. Electrocatalytic hydrogenation of lignin-derived phenol into alkanes by using platinum supported on graphite
CN115505945A (zh) 二氧化碳电还原耦合醇氧化无隔膜共产甲酸盐的工艺方法
Li et al. Recent advances in hybrid water electrolysis for energy-saving hydrogen production
Liu et al. Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass
Fan et al. Recent Advances in Hydrogen Production from Hybrid Water Electrolysis through Alternative Oxidation Reactions
Cheng et al. A mini review of electrocatalytic upgrading of carbohydrate biomass—System, path, and optimization
CN109675545B (zh) 一种具有多层结构的SnOx催化剂、其制备方法和应用
CN116590725A (zh) 一种铜铁双金属催化剂电催化5-羟甲基糠醛加氢合成2,5-二羟甲基呋喃的方法
Zhang et al. Electrocatalysis Cα–Cβ and Cβ–O bond cleavage of lignin model compound using Ni-Co/C as catalyst electrode in deep eutectic solventx
CN111041518A (zh) 一种由乙酰丙酸电催化加氢制备戊酸的方法
CN113969410B (zh) 一种采用非贵金属氧化物将5-羟甲基糠醛电催化加氢合成2,5-二羟甲基呋喃的方法
CN110079821B (zh) 一种由低浓度己二酸溶液电解制备丙烷的方法
CN112921341B (zh) 高效小分子催化氧化与产氢耦合的反应系统
CN110860294B (zh) 铜铅复合金属作为电极用于二氧化碳的电化学还原反应制备甲酸的方法
Grimaldos-Osorio et al. 9 Electrolysis for coupling the production of pure hydrogen and the valorization of organic wastes
Beliaeva et al. Methanol Generation from Co-Electrolysis of Co2 and H2o, Using Ionic Liquid as Electrolyte and Solvent for Co2 Capture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination