CN116570564B - 叶酸修饰n-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒及其制备方法与应用 - Google Patents

叶酸修饰n-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒及其制备方法与应用 Download PDF

Info

Publication number
CN116570564B
CN116570564B CN202310281300.0A CN202310281300A CN116570564B CN 116570564 B CN116570564 B CN 116570564B CN 202310281300 A CN202310281300 A CN 202310281300A CN 116570564 B CN116570564 B CN 116570564B
Authority
CN
China
Prior art keywords
ncs
folic acid
nps
chitosan
fluorouracil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310281300.0A
Other languages
English (en)
Other versions
CN116570564A (zh
Inventor
严想元
章尹岗
李伟
韩露
袁华兵
陶晓军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianmen First People's Hospital
Original Assignee
Tianmen First People's Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianmen First People's Hospital filed Critical Tianmen First People's Hospital
Publication of CN116570564A publication Critical patent/CN116570564A/zh
Application granted granted Critical
Publication of CN116570564B publication Critical patent/CN116570564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种叶酸修饰N‑琥珀酰壳聚糖负载5‑氟尿嘧啶纳米粒,其制备方法包括如下步骤:通过壳聚糖的琥珀酰化制备N‑琥珀酰壳聚糖,然后将叶酸与N‑琥珀酰壳聚糖化学连接,合成FA‑NCS,最后将5‑氟尿嘧啶通过超声自组装法负载在FA‑NCS制得5FU‑FA‑NCS NPs。本发明的叶酸修饰N‑琥珀酰壳聚糖负载5‑氟尿嘧啶纳米粒具有良好的稳定性和生物相容性,可以通过EPR效应被动靶向肿瘤组织,并通过叶酸结合叶酸受体主动靶向肿瘤细胞,可应用于制备肿瘤靶向治疗药物。

Description

叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒及其制备方 法与应用
技术领域
本发明属于生物医药技术领域,具体涉及叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒及其制备方法与应用。
背景技术
结肠癌是世界上最常见的恶性肿瘤之一,是世界上第三大最致命和最广泛诊断的癌症,占所有癌症的10%。据统计,结肠癌的发病率和死亡率正在逐年上升。
化疗、放疗、手术和靶向治疗是目前结肠癌的主要治疗策略。其中,化疗是目前治疗结肠癌最常用和最有效的策略。5-氟尿嘧啶(5-Fluorouracil,5-FU)是一种嘧啶抗代谢药,通过抑制胸苷酸合酶发挥抗肿瘤作用,是一种广泛用于结肠癌的化疗药物。然而,在应用5FU治疗结肠癌的过程中,由于体内药物选择性差,患者经常会出现一系列不良反应,包括中性粒细胞减少、贫血、手足综合征、腹泻、胃肠道毒性、粘膜炎、恶心、呕吐、疲劳和血液病。因此,提高化疗药物的选择性、靶向给药到肿瘤部位以及提高生物利用度显得至关重要。
靶向药物的开发已成为研究热点。纳米药物递送系统可以通过EPR效应实现对肿瘤组织的被动靶向,并降低药物对正常组织的毒性。同时,可提高药物溶解度,延长体内药物循环时间,是一种很有前景的药物输送系统。一些研究表明,纳米粒子载体的特定修饰可以改变纳米药物递送系统的性质。
叶酸(Folic Acid,FA)是一种维生素,在细胞增殖中发挥重要作用,并与叶酸受体(FR)具有高结合亲和力。FR是一种膜糖蛋白,在多种癌细胞中高度表达,包括乳腺癌、卵巢癌、宫颈癌和结肠癌,是一种高度选择性的肿瘤标志物。因此,叶酸修饰纳米给药系统在肿瘤研究领域具有良好的应用前景。
壳聚糖(Chitosan,CS)是一种具有良好生物相容性和低毒性的天然高分子化合物。然而,CS不溶于中性和碱性,因此限制了其在生物医学领域的应用。N-琥珀酰壳聚糖(N-succinyl-chitosan,NCS)是CS的衍生物,具有比CS更好的水溶性。研究表明,NCS还具有良好的生物相容性、低毒性、缓慢的体内降解率和较长的体内半衰期,是一种性能优良、前景广阔的纳米药物载体。
目前尚未见有以叶酸修饰的N-琥珀酰壳聚糖纳米粒负载5FU构建基于5-FU-FA-NCS-NPs双靶向纳米给药系统用于治疗肿瘤的报道。
发明内容
本发明的第一个目的在于提供一种叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒,以解决上述技术问题中的至少一个。
本发明的第二个目的在于提供上述叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒的制备方法,以解决上述技术问题中的至少一个。
本发明的第三个目的在于提供上述叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒在制备肿瘤靶向治疗药物中的应用,以解决上述技术问题中的至少一个。
根据本发明的第一个方面,提供了一种叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒的制备方法,包括如下步骤:
(1)将壳聚糖(CS)溶解于乙酸溶液或甲酸溶液中并用二甲基亚砜(DMSO)稀释,加入琥珀酸酐在温度为55-65℃的条件下反应6-10小时,反应产物用去离子水透析,冷冻干燥,得N-琥珀酰壳聚糖(NSC);
(2)将NSC、N,N-羰基二咪唑(CDI)和三乙胺(TEA)溶解于吡啶中,在温度为20-30℃、避光、氮气保护的条件下反应4-8小时,然后加入叶酸的DMSO溶液,在温度为20-30℃、避光、氮气保护的条件下反应18-30小时,反应产物用去离子水透析,冷冻干燥,得叶酸修饰的N-琥珀酰壳聚糖(FA-NSC);
(3)将FA-NSC溶解于磷酸盐缓冲液中,在温度为36-38℃的条件下搅拌20-45分钟,然后加入5-氟尿嘧啶(5FU),搅拌18-30小时,接着超声处理30-45分钟,最后用去离子水透析,冷冻干燥,得叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒(5FU-FA-NCS NPs)。
本发明通过CS的琥珀酰化制备NCS,然后将FA与NCS化学连接,合成FA-NCS(合成路线参见图1),最后将5FU通过超声自组装法负载在FA-NCS制得5FU FA-NCS NPs。在透射电子显微镜(TEM)下,本发明提供的5FU-FA-NCS NPs几乎是球形的。动态光散射(DLS)结果表明,5FU-FA-NCS纳米粒径为204.7±3.23nm,zeta电位为-24.3±1.57mV,多分散指数(PDI)为0.278±0.017。5FU-FA-NCS纳米粒的载药量(LC%)和包封率(EE%)分别为15.90%和47.27%。在pH5.0和pH7.4中,5FU-FA-NCS纳米粒在48h的释放效率分别达到85.16%和85.05%,表明本发明的5FU-FA-NCS纳米粒具有缓释特性。MTT分析、流式细胞仪和细胞迁移分析表明,与游离5FU和5FU负载壳聚糖纳米粒(5FU-NCS NPs)相比,5FU-FA-NCS NPs更能抑制RKO细胞的细胞活力和细胞迁移,并诱导细胞凋亡。在摄取试验中,在RKO细胞中观察到5FU-FA-NCS NPs的最高摄取效率。在动物实验中,5FU-FA-NCS NPs对肿瘤生长的抑制作用高于游离5FU和5FU-NCS NPs,组织学染色结果进一步证实5FU-FA-NCS NPs对肿瘤生长具有最高的抑制作用。体内荧光成像结果显示,5FU-FA-NCS纳米粒具有更强的靶向性。
本发明提供的5FU-FA-NCS纳米粒可以通过EPR效应被动靶向肿瘤组织,并通过叶酸(FA)结合叶酸受体(FR)主动靶向肿瘤细胞,可应用于制备肿瘤靶向治疗药物,构建一种稳定且生物相容的双靶向纳米药物递送系统。
在一些实施方式中,当该纳米药物递送系统应用于治疗结肠癌时,可通过EPR效应被动靶向实体肿瘤组织,并对FR活性靶向RKO细胞进行高选择性识别,实现纳米颗粒在肿瘤部位的聚集,增强抗肿瘤效果,减少化疗药物的不良反应。
在一些实施方式中,步骤(1)中,壳聚糖与琥珀酸酐的摩尔比可以为1:4。
在一些实施方式中,步骤(1)中,壳聚糖与DMSO的质量体积比可以为0.05g/mL。
在一些实施方式中,乙酸溶液的浓度可以为5%(w/v),壳聚糖与乙酸溶液的质量体积比可以为50mg/mL。
在一些实施方式中,步骤(2)中,N-琥珀酰壳聚糖、N,N-羰基二咪唑、三乙胺和叶酸的摩尔比可以为1:1:1:1.43。
在一些实施方式中,步骤(3)中,叶酸修饰的N-琥珀酰壳聚糖和5-氟尿嘧啶的质量比可以为5:2。
在一些实施方式中,步骤(3)中,磷酸盐缓冲液的pH可以为9。
在一些实施方式中,步骤(3)中,搅拌的转速可以为1500r/min。
在一些实施方式中,步骤(3)中,超声处理的功率可以为600W。
附图说明
图1为5FU-FA-NCS纳米粒的合成路线参考图;
图2为CS、NCS和FA-NCS的傅里叶变换红外光谱图(A)和核磁共振氢谱图(B);
图3从上至下依次为NCS NPs的粒度分布图、电势分布图和透射电子显微镜成像图;
图4从上至下依次为5FU-NCS NPs的粒度分布图、电势分布图和透射电子显微镜成像图;
图5从上至下依次为5FU-FA-NCS NPs的粒度分布图、电势分布图和透射电子显微镜成像图;
图6为5FU-NCS NPs和5FU-FA-NCS NPs在pH=7.4、pH=5的PBS缓冲液中在48小时内的5FU释放曲线;
图7为5FU-NCS NPs15天内的粒径、zeta电位和PDI值变化趋势图;
图8为5FU-FA-NCS NPs15天内的粒径、zeta电位和PDI值变化趋势图;
图9为MTT法测定的不同浓度NCS和FA-NCS对RKO细胞活性的影响;
图10为MTT法测定的不同浓度游离5FU、5FU-NCS NPs和5FU-FA-NCS NPs对RKO细胞活性的影响;
图11为体外4小时,RKO细胞摄取FITC标记的游离5FU、5FU NCS NPs和5FU FA NCSNP的结果图;
图12-13为PBS、游离5FU、5FU NCS NPs和5FU FA NCS NP在12和24小时对RKO细胞迁移的抑制效果图;
图14-15为流式细胞仪检测RKO细胞凋亡结果图;
图16-19依次为尾静脉注射PBS、游离5FU、5FU NCS NPs和5FU FA NCS NPs后18天内裸鼠的体重、肿瘤体积、肿瘤组织图像和肿瘤重量的变化图;
图20A为游离FITC(a)、FITC标记的5FU NCS NPs(b)和FITC标记5FU FA NCS NPs(c)在2、8和24小时后尾静脉注射的荧光图像;图20B为尾静脉注射游离FITC(a)、FITC标记的5FU-NCS NPs(b)和FITC标记5FU-FA-NCS NPs(c)24小时后,获得器官和肿瘤的离体荧光图像;
图21为尾静脉注射PBS、游离5FU、5FU NCS NPs和5FU FA NCS NPs24小时后裸鼠心脏、肝脏、脾脏、肺、肾和肿瘤组织的H&E染色图(A);肿瘤组织的TUNEL和Ki67染色图(B)。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明,但本发明的实施方式不限于此。
下述实施例中涉及的材料,除特别注明的材料外,均可从商业渠道获得。对于未特别注明的工艺参数,可参照常规技术进行。
实施例1叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒(5FU-FA-NCS NPs)的制备
包括如下步骤:
(1)N-琥珀酰壳聚糖(NSC)的合成:
将1g(0.0062mol)CS溶解于20mL 5%(w/v)乙酸溶液中,并用20mL二甲基亚砜(DMSO)稀释。向上述溶液中加入3.18g(0.0248mol)琥珀酸酐,并在60℃下反应8小时。反应完成后,反应产物用去离子水透析2天,冷冻干燥,得NSC。
(2)叶酸修饰的N-琥珀酰壳聚糖(FA-NSC)的合成:
将1g(0.0035mol)NCS、0.567g(0.0035mol)N,N-羰基二咪唑(CDI)和0.5635g(0.0035mol)三乙胺(TEA)溶解在25mL吡啶中,并在25℃下在氮气保护下避光反应6小时。反应结束时,缓慢滴加50mL0.044%(w/v)的叶酸的DMSO溶液,并在氮气保护和避光下在25℃继续反应24小时。最后,溶液用去离子水透析2天并冷冻干燥,得FA-NCS。
分别取CS、NCS和FA-NCS各2mg与2mg干燥溴化钾固体混合研磨。粉末充分混合,细磨并压制成薄片,用于测定红外光谱(FTIR)。
分别取CS、NCS和FA-NCS各0.5mg,D2O作为样品溶剂,四甲基硅烷(TMS)作为测定NMR氢谱的内标,测定样品的核磁共振氢谱(H-NMR)。
结果如图2所示。CS、NCS和FA-NCS的傅里叶变换红外光谱如图2(A)所示。与CS相比,NCS在1720cm-1(C=O)和1560cm-1处(N-H)显示出新的吸收峰,表明反应形成了酰胺键。在1405cm-1(-COOH)处,NCS的吸收峰增加并加宽,表明产物中存在羧基。FA-NCS在1610cm-1和1471cm-1处具有额外的峰,这是叶酸上方苯环的特征吸收峰(C-H)。
CS、NCS和FA-NCS的核磁共振氢谱如图2(B)所示。与CS相比,NCS在12-13ppm处出现一个新的峰值(-COOH)。FA-NCS在6-9ppm处出现一个新的峰,这是由FA(-C-H)中苯环的振动产生的峰,而羧基峰在12-13ppm处消失,这表明FA-NCS是通过FA与NCS的羧基的酰胺化反应合成的。综上所述,成功地合成了NCS和FA-NCS。
(3)叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒(5FU-FA-NCS NPs):
将0.05g FA-NSC溶解于20mL pH为9的PBS中,在温度为37℃、搅拌速度为1500r/min的条件下搅拌30分钟,然后将0.02g 5-氟尿嘧啶(5FU)缓慢加入溶液中,在搅拌速度为1500r/min的条件下继续搅拌24小时,接着在超声功率为600W的条件下超声处理40分钟,最后用去离子水透析,冷冻干燥,得5FU-FA-NCS NPs。
对比例1NCS NPs的制备
通过超声自组装制备NCS NPs:将20mg NCS溶解在20mL pH为9的PBS中,并在37℃水浴中以1500r/min的搅拌速度强烈搅拌24小时;然后用超声波粉碎机在超声功率为600W的条件下将溶液超声处理40分钟,得NCS NPs。
对比例2 5FU-NCS NPs的制备
5FU通过自组装的NCS加载。将0.05g NSC溶解于20mL pH为9的PBS中,在温度为37℃、搅拌速度为1500r/min的条件下搅拌30分钟,然后将0.02g 5FU缓慢加入溶液中,在搅拌速度为1500r/min的条件下继续搅拌24小时,接着在超声功率为600W的条件下超声处理40分钟,最后用去离子水透析,冷冻干燥,得5FU-FA-NCS NPs。
试验例一、NPs的表征
将实施例1、对比例1和对比例2制得的NPs溶解在纯水中,并通过动态光散射(DLS)测量其尺寸和zeta电位。
将实施例1、对比例1和对比例2制得的NPs溶解在纯水中,滴在涂覆有碳支撑膜的铜网上,并在自然空气干燥后通过透射电子显微镜(TEM)检测纳米颗粒的形态。
结果如图3-5所示。通过DLS测量了NCS NPs、5FU-NCS NPs和5FU-FA-NCS NPs的粒度分布和电势分布。所有三种纳米颗粒的粒径接近200nm,PDI值接近或低于0.3,具有相对均匀的分布。电位分布在-22和-25mV之间。通过透射电镜观察了三种纳米颗粒的表面形貌。发现纳米颗粒接近球形,平均粒径略小于DLS。推测TEM测量的颗粒尺寸为高真空干燥状态,DLS测量介质为溶液,且纳米颗粒在其中溶胀,因此测量的颗粒大小较大。
试验例二、NPs的包封效率(LC)和载药量(EE)
试验样品为实施例1和对比例2制得的NPs。
通过紫外分光光度计测定纳米颗粒的LC和EE。称取适量的载药纳米颗粒并超声溶解于适量的乙酸溶液中。在265nm处测量溶液的UV吸光度,以获得溶液中5FU的浓度。根据以下公式计算纳米颗粒的载药量和包封效率:
结果如表1所示,本发明提供的5FU-FA-NCS NPs显示出较高的载药力和包封率。
表1 5FU-NCS NPs和5FU-FA-NCS NPs的载药量和包封效率
载药量 包封效率
5FU-NCS NPs 13.04% 37.47%
5FU-FA-NCS NPs 15.90% 47.27%
试验例三、NPs的体外药物释放
进行两个pH值(pH 5.0、7.4)的体外药物释放研究。试验样品为实施例1和对比例2制得的NPs。
将10mg纳米颗粒溶解在10mLPBS(pH=7.4)中,然后将其移入透析袋(MWCO=3500)。然后将透析袋放入20mL pH=7.4或pH=5的PBS缓冲液中,并在37℃和100rpm下摇动以避光。以预定时间间隔取样,除去所有20mL释放溶液并补充等量的PBS缓冲液。通过紫外分光光度计测量溶液的吸光度,计算纳米颗粒的药物释放效率。
结果如图6所示。
为了模拟肿瘤组织和正常组织的微环境,并研究5FU-NCS纳米粒和5FU-FA-NCS纳米粒的释放效率,本发明设计了纳米粒在pH5.0和pH7.4的PBS中的释放。在pH5.0和pH7.4中,5FU-FA-NCS纳米粒的释放效率高于5FU-NCS纳米粒,在pH5.0和pH 7.4的48h,5FU-FA-NCS纳米粒释放效率分别达到85.16%和85.05%,5FU-NCS纳米粒在48h时分别达到68.1%和64.41%。
试验例四、NPs的稳定性试验
将实施例1和对比例2制得的NPs置于常温下。在第1、3、5、7、11和15天,通过DLS测量纳米颗粒的粒径、zeta电位和PDI值。每次测量使用至少三组10次运行进行。
结果如图7-8所示。
通过在15天内测量粒径、zeta电位和PDI值来评估5FU-NCS NPs和5FU-FA-NCS NPs的稳定性。由图7-8可以看出,5FU-NCS NPs的粒度、PDI值和电势在15天内显示出良好的稳定性。5FU-FA-NCS NPs的电势在15天内也显示出良好的稳定性,颗粒尺寸和PDI值从第3天到第7天显著增加,并且在第7天之后保持稳定,这可能是因为一些纳米颗粒可能聚集。这两种纳米颗粒在15天内保持良好的稳定性,表明这两种纳米粒子具有稳定发挥抗肿瘤作用的潜力。
试验例五、药效学评价
1、细胞系和培养
结肠癌RKO细胞由湘雅医院提供。RKO细胞在37℃的5%CO2中培养,使用补充10%胎牛血清(FBS)和1%(v/v)青霉素和链霉素的DMEM。
2、细胞毒性
MTT法计算细胞存活率。将RKO细胞接种到96孔板中,每个孔中有4×103个细胞。24小时后,添加不同浓度的NCS、FA-NCS、游离5FU、5FU-NCS NPs、5FU-FA-NCS NPs(基于5FU浓度)。孵育48小时后,移除培养基,加入溶于PBS的20μL MTT溶液(5μg/mL)。孵育4小时后加入150μL DMSO,振荡10分钟后通过酶标记测定490nm处的吸光度值(A)。
3、体外细胞摄取
RKO细胞在6孔板(1×106细胞/孔)中培养24小时,底部有爬板。然后移除旧培养基,并添加200μL标记有游离5FU、5FU-NCS NPs或5FU-FA-NCS NPs的新鲜培养基。4小时后,用PBS洗涤细胞并用4%多聚甲醛溶液固定。用PBS洗涤细胞并用DAPI染色。暗孵育后,用共焦激光扫描显微镜(CLSM)观察和拍摄胶束。
4、细胞迁移
RKO细胞在6孔板(6×105细胞/孔)中培养。24小时后,用1000μL无菌枪头垂直刮除每个孔,并用PBS清洗三次。移除旧培养基并添加无血清培养基,然后添加游离5FU、5FU-NCSNPs和5FU-FA-NCS NPs(5FU浓度为10μg/ml)溶液,并建立PBS对照组。在0、12和24小时使用显微镜观察划痕愈合。
5、细胞凋亡
膜联蛋白V-FITC/PI双染色法检测细胞凋亡。RKO细胞在6孔板(1.5×105细胞/孔)中培养24小时,然后更换培养基。添加200μL NCS、FA-NCS、游离5FU、5FU-NCS NPs和5FU-FA-NCS NPs(5FU浓度为10μg/mL)溶液,继续孵育72小时。孵育后,收集6孔板中的所有细胞,并通过流式细胞术检测细胞凋亡。
6、动物模型
所有动物均购自湖南SJA实验动物,并在SPF设备中饲养。将0.2mL(1×107细胞/mL)处于对数生长期的RKO细胞皮下注射到BALB/c小鼠的右后腿。每日观察和游标卡尺测量肿瘤直径。当肿瘤为50-100mm3时,成功构建肿瘤模型。
7、体内抗肿瘤效率
选择荷瘤小鼠,每3天在尾静脉注射PBS、游离5FU、5FU-NCS NPs和5FU-FA-NCSNPs,共21天。每次给药时记录荷瘤小鼠的肿瘤体积和体重。在第21天对小鼠实施安乐死,通过尸检分离心脏、肝脏、脾脏、肺、肾和肿瘤组织。记录肿瘤生长曲线和体重变化曲线。
8、体内荧光成像
将游离FITC、FITC标记的5FU-NCS NPs和FITC标记5FU-FA-NCS NPs注射到荷瘤小鼠的尾静脉中。在注射后2小时、8小时和24小时通过荧光成像系统观察药物在体内的分布。注射后24小时处死裸鼠,立即解剖以分离心脏、肝脏、脾脏、肺、肾和肿瘤组织。通过荧光成像系统分析每个器官的平均荧光强度。
9、H&E、TUNEL和Ki67分析
解剖和分离的主要器官和肿瘤组织用PBS冲洗三次,固定在4%多聚甲醛中,石蜡包埋并切片。通过组织学染色分析组织。
10、统计分析
使用t检验或单因素方差分析进行统计分析(*P<0.05,**P<0.01,***P<0.001,****P<0.0001)。
11、试验结果
(1)细胞毒性
结果如图9-10所示。
在MTT实验中,本发明设计了材料组的NCS和FA-NCS以及药物组的游离5FU、5FU-NCS NPs和5FU-FA-NCS NPs,以研究纳米颗粒的抗肿瘤活性。如图9所示,MTT测定结果显示NCS和FA-NCS对RKO细胞没有细胞毒性,表明合成的纳米材料NCS和FA-NCS具有良好的生物相容性。游离5FU、5FU-NCS NPs和5FU-FA-NCS NPs对RKO细胞具有明显的细胞毒性,且毒性与浓度呈剂量-效应关系(图10)。其中,5FU-FA-NCS NPs对RKO的细胞毒性最强,这可能与FA结合FR介导RKO细胞主动摄取5FU-FA-NCS NPs有关。
(2)体外细胞摄取
结果如图11所示。
FITC标记的游离5FU、5FU-NCS NPs和5FU-FA-NCS NPS与RKO细胞共孵育4小时。通过荧光倒置显微镜观察RKO在纳米颗粒上的摄取性能。FITC标记的游离5FU、5FU-NCS NPs和5FU-FA-NCS NPs显示绿色荧光,DAPI染色显示细胞核中的蓝色荧光。两者的重合表示细胞摄取。图11显示了摄取实验的结果。两个纳米颗粒组的摄取效率均高于游离5FU组,且纳米颗粒组中5FUFANCS NPs的荧光强度更强,证实叶酸修饰可显著改善肿瘤细胞对纳米颗粒的摄取,显示其在肿瘤治疗中的潜在应用。
(3)细胞迁移
结果如图12-13所示。
结果显示,对照组的划痕逐渐愈合,而游离5FU、5FU-NCS NPs和5FU-FA-NCS NPs的愈合能力减弱,可显著抑制RKO细胞的迁移。游离5FU和5FU-NCS NPs的抑制效果相似,5FU-NCS NPs略高于游离5FUs,而5FU FA-NCS NPs具有最高的抑制效果。游离5FU、5FU-NCS NPs的统计结果与PBS无显著差异,与5FU-FA-NCS NPs有显著差异,表明叶酸修饰的纳米颗粒对RKO细胞迁移具有更强的抑制作用。
(4)细胞凋亡
结果如图14-15所示。
通过流式细胞术进一步评估了纳米颗粒的抗肿瘤功效。与MTT试验结果一致,NCS和FA-NCS组诱导的细胞凋亡率与对照组无显著差异。游离5FU、5FU-NCS NPs和5FU-FA-NCSNPs组与对照组显著不同,凋亡率依次为62.42%、66.17%、75.09%。5FU-FA-NCS-NPs组诱导的RKO细胞凋亡率最高,表明叶酸修饰有利于5FU负载纳米颗粒诱导的RKO细胞凋亡。
(5)体内抗肿瘤效率
结果如图16-19所示。
如图16所示,给药后各组小鼠的体重没有显著差异,表明制备的纳米颗粒在体内没有明显的不良反应,并显示出良好的生物相容性。图17-19结果显示,药物组游离5FU、5FU-NCS NPs和5FU-FA-NCS NPs均可抑制肿瘤生长,其中纳米颗粒组比游离药物组具有更高的抑制效力,而5FU-FA-NCS NPs对肿瘤具有最强的抑制作用。实验结果表明纳米粒在体内通过EPR效应被动靶向并聚集在肿瘤组织中,5FU-FA-NCS纳米粒也通过FA识别FR靶向主动靶向肿瘤组织。
(6)体内荧光成像
结果如图20所示。
通过体内荧光成像系统观察游离FITC和FTIC标记的5FU-NCS NPs和5FU-FA-NCSNPs在2小时、8小时和24小时的分布。如图20(A)所示,游离FITC组的荧光分布在裸鼠全身,FTIC标记的5FU-NCS NPs组和FTIC标记5FU-FA-NCS NPs组的荧光主要集中在肿瘤组织。两个纳米颗粒组在肿瘤部位的荧光强度均高于游离FITC组。这可能是由于EPR效应以及FA和FR之间的相互作用导致纳米颗粒在肿瘤组织中累积。图20(B)显示游离FITC组在肾脏中的荧光强度显著高于其他两个纳米颗粒组,在肿瘤组织中没有显著的荧光强度;而两个纳米颗粒组在肿瘤中具有高荧光强度和相对较高的FTIC标记的5FU FA NCS NPs。这些结果表明纳米颗粒在体内具有肿瘤组织靶向性。
(7)H&E、TUNEL和Ki67分析
结果如图21所示。
H&E染色、TUNEL染色和Ki67染色用于评估纳米颗粒对主要器官和肿瘤组织的影响。H&E染色结果如图21(A)所示。在PBS组、5FU-NCS NPs组和5FU-FA-NCS NPs组中,对小鼠的心脏、肝脏、脾脏、肺和肾脏没有明显损伤,表明纳米粒在体内没有损伤正常组织。在游离5FU组中观察到肝损伤,推测5FU可能导致急性肝损伤。PBS组无明显肿瘤坏死。纳米颗粒组诱导的肿瘤坏死高于游离药物组,5FU-FA-NCS NPs组的肿瘤坏死最高。肿瘤组织TUNEL染色和Ki67染色结果与HE染色结果一致。结果表明,纳米颗粒组比游离药物组诱导更高的肿瘤组织坏死,与其他组相比,5FU-FA-NCS NPs具有最佳的体内抗肿瘤活性(图21(B))。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (6)

1.叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒的制备方法,其特征在于,包括如下步骤:
(1)将壳聚糖溶解于乙酸溶液或甲酸溶液中并用DMSO稀释,加入琥珀酸酐在温度为55-65℃的条件下反应6-10小时,反应产物用去离子水透析,冷冻干燥,得N-琥珀酰壳聚糖;所述壳聚糖与琥珀酸酐的摩尔比为1:4;
(2)将N-琥珀酰壳聚糖、N,N-羰基二咪唑和三乙胺溶解于吡啶中,在温度为20-30℃、避光、氮气保护的条件下反应4-8小时,然后加入叶酸的DMSO溶液,在温度为20-30℃、避光、氮气保护的条件下反应18-30小时,反应产物用去离子水透析,冷冻干燥,得叶酸修饰的N-琥珀酰壳聚糖;所述N-琥珀酰壳聚糖、N,N-羰基二咪唑、三乙胺和叶酸的摩尔比为1:1:1:1.43;
(3)将叶酸修饰的N-琥珀酰壳聚糖溶解于磷酸盐缓冲液中,在温度为36-38℃的条件下搅拌20-45分钟,然后加入5-氟尿嘧啶,搅拌18-30小时,接着超声处理30-45分钟,最后用去离子水透析,冷冻干燥,得叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒;所述叶酸修饰的N-琥珀酰壳聚糖和5-氟尿嘧啶的质量比为5:2;所述磷酸盐缓冲液的pH为9。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述壳聚糖与DMSO的质量体积比为0.05g/mL。
3.根据权利要求1或2所述的制备方法,其特征在于,步骤(3)中,搅拌的转速为1500r/min。
4.根据权利要求1-3任一项所述的制备方法制得的叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒。
5.根据权利要求4所述的叶酸修饰N-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒在制备肿瘤靶向治疗药物中的应用。
6.根据权利要求5所述的应用,其特征在于,所述肿瘤为结肠癌。
CN202310281300.0A 2022-12-16 2023-03-21 叶酸修饰n-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒及其制备方法与应用 Active CN116570564B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211645864X 2022-12-16
CN202211645864 2022-12-16

Publications (2)

Publication Number Publication Date
CN116570564A CN116570564A (zh) 2023-08-11
CN116570564B true CN116570564B (zh) 2024-02-02

Family

ID=87544227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310281300.0A Active CN116570564B (zh) 2022-12-16 2023-03-21 叶酸修饰n-琥珀酰壳聚糖负载5-氟尿嘧啶纳米粒及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116570564B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103393622A (zh) * 2013-07-29 2013-11-20 苏州大学 低密度脂蛋白偶联的n-琥珀酰壳聚糖纳米粒载体、制备方法及应用
CN108201533A (zh) * 2016-12-16 2018-06-26 南京理工大学 一种荷载小干扰rna的n-琥珀酰壳聚糖纳米粒药物递送系统及其制备方法和应用
CN110123787A (zh) * 2019-06-10 2019-08-16 桂林医学院 以叶酸及小分子多肽修饰的n-琥珀酰壳聚糖为载体包载紫杉醇的纳米粒及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009469A1 (en) * 2007-07-06 2009-01-15 University Of Central Florida Research Foundation, Inc. Ultra-small chitosan nanoparticles useful as bioimaging agents and methods of making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103393622A (zh) * 2013-07-29 2013-11-20 苏州大学 低密度脂蛋白偶联的n-琥珀酰壳聚糖纳米粒载体、制备方法及应用
CN108201533A (zh) * 2016-12-16 2018-06-26 南京理工大学 一种荷载小干扰rna的n-琥珀酰壳聚糖纳米粒药物递送系统及其制备方法和应用
CN110123787A (zh) * 2019-06-10 2019-08-16 桂林医学院 以叶酸及小分子多肽修饰的n-琥珀酰壳聚糖为载体包载紫杉醇的纳米粒及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nanoparticles of 5-fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) for cancer chemotherapy: preparation, characterization — in-vitro drug release and anti-tumour activity;Chengyun Yan等;《Journal of Pharmacy and Pharmacology》;第58卷;第1177-1181页 *

Also Published As

Publication number Publication date
CN116570564A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
Narmani et al. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies
Chang et al. Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery
Luo et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors
He et al. pH/redox dual-sensitive platinum (IV)-based micelles with greatly enhanced antitumor effect for combination chemotherapy
Huang et al. Amphiphilic prodrug-decorated graphene oxide as a multi-functional drug delivery system for efficient cancer therapy
US9980919B2 (en) Preparation of pH-responsive nanoparticles and promoted delivery of anticancer drugs into deep tumor tissues and application thereof
Song et al. Erythrocyte-biomimetic nanosystems to improve antitumor effects of paclitaxel on epithelial cancers
CN114796491B (zh) 一种抗体修饰的抗肿瘤靶向递药与联合治疗系统及其制备方法和应用
CN108339124B (zh) 一种双级脑靶向聚合物胶束递药系统的制备方法和应用
Zhang et al. Morphology tunable and acid-sensitive dextran–doxorubicin conjugate assemblies for targeted cancer therapy
WO2022052413A1 (zh) 具有不对称膜结构的载药聚合物囊泡及其制备方法与在制备治疗急性髓系白血病药物中的应用
Nie et al. In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy
CN108310394B (zh) 用于治疗肿瘤的纳米粒制剂及其制备方法
Liu et al. Improved druggability of gambogic acid using core–shell nanoparticles
Ye et al. Verteporfin-loaded supramolecular micelles for enhanced cisplatin-based chemotherapy via autophagy inhibition
Khoshnood et al. N doped-carbon quantum dots with ultra-high quantum yield photoluminescent property conjugated with folic acid for targeted drug delivery and bioimaging applications
Yang et al. Polydopamine-modified ROS-responsive prodrug nanoplatform with enhanced stability for precise treatment of breast cancer
KR101797829B1 (ko) 표면전하 전환형 약물전달용 나노입자 및 이의 제조방법
Shi et al. Fabrication and characterization of a folic acid-bound 5-fluorouracil loaded quantum dot system for hepatocellular carcinoma targeted therapy
Gu et al. Construction of multifunctional targeted nano-prodrugs based on PAMAM dendrimers for tumor therapy
Wang et al. Dendron‐Functionalized Polyglutamate‐Pyropheophorbide‐a Conjugates as Nanomedicines for Breast Cancer Photodynamic Therapy
CN107007550B (zh) 一种氧化还原响应性两亲性共聚物及其制备方法和应用
Hu et al. Sustained-release behavior and the antitumor effect of charge-convertible poly (amino acid) s drug-loaded nanoparticles
CN110511387B (zh) 透明质酸-g-聚酪氨酸-硫辛酸共聚物、聚多肽纳米粒及其制备方法与应用
Huang et al. Black phosphorus assisted polyionic micelles with efficient PTX loading for remotely controlled release and synergistic treatment of drug-resistant tumors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant