CN116536043B - 一种近红外发光钙钛矿荧光粉及其制备方法和应用 - Google Patents

一种近红外发光钙钛矿荧光粉及其制备方法和应用 Download PDF

Info

Publication number
CN116536043B
CN116536043B CN202310508779.7A CN202310508779A CN116536043B CN 116536043 B CN116536043 B CN 116536043B CN 202310508779 A CN202310508779 A CN 202310508779A CN 116536043 B CN116536043 B CN 116536043B
Authority
CN
China
Prior art keywords
fluorescent powder
near infrared
powder
nir
sto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310508779.7A
Other languages
English (en)
Other versions
CN116536043A (zh
Inventor
邱建备
朱凤梅
丁俊杰
高源�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310508779.7A priority Critical patent/CN116536043B/zh
Publication of CN116536043A publication Critical patent/CN116536043A/zh
Application granted granted Critical
Publication of CN116536043B publication Critical patent/CN116536043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • C09K11/673Chalcogenides with alkaline earth metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/71Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/75Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth containing antimony
    • C09K11/751Chalcogenides
    • C09K11/753Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开一种近红外发光钙钛矿荧光粉及其制备方法和应用,按比例精确称量置于玛瑙研钵中,加入适量75%酒精研磨15min;待酒精完全挥发,粉体成干燥粉状,将粉体转移至刚玉坩埚中烧结两次,自然冷却至室温后取出研磨5~10min,即得。本发明的荧光粉被365nm紫外灯激发,产生1250nm的Ni2+离子特征发射,并成功地共掺杂了M5+离子作为电荷补偿剂,大幅度提升了NIR发射强度达到12倍,提升荧光量子效率从7.9%到19.7%,并改善了荧光热猝灭性能;将优化的NIR荧光粉封装在UVLED芯片得到NIRpc‑LED,探讨了其在光成像领域的应用前景。

Description

一种近红外发光钙钛矿荧光粉及其制备方法和应用
技术领域
本发明涉及宽带近红外荧光粉制备技术领域,具体涉及一种近红外发光钙钛矿荧光粉及其制备方法和应用。
背景技术
光学成像技术是一种无创、实时、高灵敏度和空间分辨率的医学成像手段。传统的光学成像技术会受到严重的组织散射、吸收和自体荧光得影响,从而导致辐射强度、空间分辨率、成像灵敏度和对比度的下降,不适合深层组织成像。为了克服这些局限性,近红外二区(NIR-II,1000-1500nm)光学成像引起了巨大的关注。与近红外一区(NIR-I,700-1000nm)光学成像相比,NIR-II光学成像可以减少生物组织的自体荧光和对光子的吸收及散射,实现更高的保真度和空间分辨率。但是,低的近红外荧光量子效率、高生物毒性、窄带发射等荧光特性却极大地限制了其在临床实践中中实现多模态成像和治疗诊断。所以,有必要进一步开发出一种具备宽带NIR-II发射、量子产率高、生物毒性低且易于封装制备成照明设备的材料。
近红外荧光粉转换发光二极管(Near-infrared phosphor-converted light-emitting diode,NIR pc-LED)是通过将近红外荧光粉与高效半导体芯片组合实现近红外发射,这种方式产生的近红外光可以通过调节近红外荧光粉的种类来调控发射峰的峰位和宽度。相对于传统的NIR光源发生器,近红外荧光粉转换发光二极管(NIRpc-LED)是目前宽带近红外光源的最佳解决方案,特别是其小尺寸、低电压、低能耗等特性为紧凑型宽带NIRpc-LED带来了可能。但目前NIRpc-LED存在着发射谱带不够宽、光电转化效率较低、热稳定性不够好等问题,不能满足所有应用的要求。因此,研制新型高效且热稳定性好的宽带近红外荧光粉是开发NIRpc-LED的关键。
Ni2+掺杂的近红外发光荧光粉很可能弥补其他激活离子掺杂荧光粉的不足,成为新一代用于NIR-II窗口成像的超宽带荧光材料。近年来,钙钛矿结构的材料以其优异的相容性掀起了一股研究热潮。钛酸锶(SrTiO3)具有高介电常数、低介电损耗和卓越的热稳定性,使其在光催化、氧化物电子器件、电容器等方面具有广泛的应用。在之前的研究中,Ni2+掺杂SrTiO3材料在近紫外365nm光激发下展现出1000-1500nm的NIR-II波段荧光发射,但因荧光量子效率低于8%而难以达到制备成为荧光照明的要求。所以,一个紧迫的问题是Ni2+的发射强度较弱,荧光量子效率普遍较低,且热阻抗较差。
为了解决上述问题,本发明提供有一种近红外发光钙钛矿荧光粉及其制备方法和应用。
发明内容
本发明提供的一种近红外发光钙钛矿荧光粉及其制备方法和应用,通过高温固相法合成了一系列NIR激活剂Ni2+离子与电荷补偿剂M5+(M=Ta,Sb,Nb,P)共掺杂的SrTiO3宽带NIR发射荧光粉,并将所制备的优化的荧光粉封装在UV LED芯片得到NIRpc-LED器件,探索了高效NIR荧光粉用于静脉血管显像中的应用,拓展了近红外荧光技术的应用范围。
为了达到上述技术效果,本发明是通过以下技术方案实现的:一种近红外发光钙钛矿荧光粉,其特征在于,化学式为:SrTi0.99-xNi0.01MxO3,其中M为Ta5+、Sb5+、P5+、Nb5+,x=0-0.02。
本发明的另一目的在于提供一种近红外发光钙钛矿荧光粉的制备方法,其特征在于,包括以下步骤:
Step1:原料准备,以摩尔百分比计,包括以下组分:SrCO379~81mol%、TiO240~44mol%、NiO 0.3~0.6mol%、M2O50.5~3mol%;其中,M2O5为Ta2O5、Sb2O5、P2O5、Nb2O5中的一种;
Step2:上述原料按比例精确称量置于玛瑙研钵中,加入适量75%酒精研磨15min;
Step3:待酒精完全挥发,粉体成干燥粉状,将粉体转移至刚玉坩埚中烧结两次,自然冷却至室温后取出研磨5~10min,即得。
进一步的,所述Step3中,第一次烧结温度为900~1000℃,时间为180min;第二次烧结温度为1300~1400℃,时间为120min。
本发明的另一目的在于提供一种近红外发光钙钛矿荧光粉的应用,其特征在于,将所述的近红外发光钙钛矿荧光粉封装在UV LED芯片得到NIRpc-LED器件,应用于静脉血管显像。
本发明的有益效果:
本发明荧光粉体在紫外灯(365nm)激发下,样品均具有位于1250nm的特征NIR发射宽峰,通过电荷补偿剂M5+(M=Ta,Sb,Nb,P)共掺杂,可以显著提高Ni2+特征发射强度,荧光量子效率从7.9%提升到19.7%。热稳定性是荧光粉实际应用过程中的一个重要参数,特别是大功率LED器件的工作温度达到423K时,荧光粉的发光强度严重影响着LED器件的性能,本发明荧光粉体荧光热猝灭性能得到改善;由于人体血液中的生色团吸收了NIR波段的光,明暗对比可以清晰地观察到人体手指的血管形态和走势,提高了静脉血管定位的精准度,从而大幅度提高医护人员的诊断效率,在生物医学成像领域有着广阔的发展前景和重要的应用价值,因此将荧光粉封装在UV LED芯片得到NIRpc-LED器件,拓展了近红外荧光技术的应用范围。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例荧光粉体材料SrTiO3的晶体结构图(a),STO、STO-Ni、STO-Ni-Ta、STO-Ni-Sb、STO-Ni-Nb和STO-Ni-P荧光粉样品的X射线衍射(X-ray diffraction,XRD)谱图(b);
图2展示的是STO、STO-Ni、STO-Ni-Ta、STO-Ni-Sb、STO-Ni-Nb和STO-Ni-P荧光粉样品的漫反射(Diffuse Reflection,DR)谱图(a);STO-Ti宽带近红外荧光粉的激发(Photoluminescence excitation,PLE)和发射(Photoluminescence,PL)光谱(b);进行电荷补偿后的发射(PL)光谱(c);Ni2+在八面体场中能级分裂可以用Tanabe-Sugano能级图(d);
图3为本发明实施例荧光粉体STO-Ni-xNb(x=0,0.0025,0.005,0.01,0.0125,0.015,and 0.02)的XRD图谱(a-b)Nb离子掺杂量与STO晶格常数a、v的关系图(c)。STO-Ni-xNb(0≤x≤0.02)的浓度依赖发射光谱(d);STO-Ni和STO-Ni-0.01Nb荧光粉的荧光量子效率(Photoluminescence Quantum yield,PLQY)(e);
图4为本发明实施例荧光粉体303K-483K的波长-温度(λ-T)近红外二维光谱图(a);STO-Ni-Nb于303K至573K变温光谱图(b);STO-Ni与STO-Ni-Nb抗热猝灭性能对比图(c);根据Arrhenius公式,计算STO-Ni与STO-Ni-Nb活化能对比图(d);
图5为本发明实施例荧光粉体材料制作成NIRpc-LED,并将其应用于静脉血管显像的实际应用图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种近红外发光钙钛矿荧光粉的制备方法,其特征在于,包括以下步骤:原料准备,以摩尔百分比计,包括以下组分:SrCO379~81mol%、TiO240~44mol%、NiO 0.3~0.6mol%、M2O50.5~3mol%;其中,M2O5为Ta2O5、Sb2O5、P2O5、Nb2O5中的一种;按原料比例精确称量置于玛瑙研钵中,加入适量酒精进行研磨;待酒精完全挥发,粉体成干燥粉状,将粉体转移至刚玉坩埚中烧结两次,一次烧结温度为900℃,二次烧结温度为1300℃,然后冷却至室温取出后研磨,得到NIR发射荧光材料。
通过上述步骤得到的M5+(M=Ta,Sb,Nb,P)离子作为电荷补偿剂掺杂的SrTiO3:Ni2+钙钛矿结构的荧光粉,在365nm紫外光激发下,在1000-1600nm范围内具有宽带NIR-II发射(FWHM~220nm)。通过引入电荷补偿剂的策略,使得优化后的STO-Ni-Nb荧光粉的NIR发射强度增加了12倍,高温荧光热猝灭相比STO-Ni荧光粉提高了16.4%(在423K时仍保持39.7%),PLQY提高到19.7%,使获得的NIR荧光粉适合于宽带NIRpc-LED应用。
结合系统性实验和模拟结果,揭示了电荷补偿剂在SrTiO3晶体八面体位置的占位、电荷补偿剂和八面体畸变的作用,结果表明电荷补偿剂的添加是改善Ni2+离子掺杂NIR荧光粉性能的有效策略。将获得的STO-Ni-Nb荧光粉封装在商业UV LED芯片,得到宽带NIRpc-LED器件,其人体组织成像效果表明此荧光粉具备在血管成像方面的应用前景。
实施例2
图1为本发明实施例荧光粉体材料SrTiO3的晶体结构图(a),STO、STO-Ni、STO-Ni-Ta、STO-Ni-Sb、STO-Ni-Nb和STO-Ni-P荧光粉样品的X射线衍射(X-ray diffraction,XRD)谱图(b)。可以看出,所有荧光粉样品的衍射峰均与SrTiO3(PDF#35-0734)标准卡片均吻合良好,没有产生二次相。另外,从图1b局域放大的XRD图谱(32°-33°)可以看出,Ni2+离子的掺入导致XRD峰向小角度偏移,且Ta5+、Sb5+、Nb5+离子的掺入进一步加剧了XRD峰位的偏移,而P5+的掺入使得XRD峰位往高角度进行移动,由于掺杂的离子更倾向于替换Ti4+格位,根据Bragg定律2dsinθ=nλ,上述衍射角位移是由于替换离子半径差异所导致的。
图2展示的是STO、STO-Ni、STO-Ni-Ta、STO-Ni-Sb、STO-Ni-Nb和STO-Ni-P荧光粉样品的漫反射(Diffuse Reflection,DR)谱图(a);STO-Ti宽带近红外荧光粉的激发(Photoluminescence excitation,PLE)和发射(Photoluminescence,PL)光谱(b);进行电荷补偿后的发射(PL)光谱(c);Ni2+在八面体场中能级分裂可以用Tanabe-Sugano能级图(d)。基质的DR光谱在400-2000nm范围内反射率处于较低水平,Ni2+离子掺杂的DR光谱与基质相比,存在三个明显的吸收峰,分别位于360nm、487nm和1044nm,分别归因于Ni2+的三个跃迁。从光谱分析可见,在365nm激发下,发射光谱呈现出1000-1600nm的宽带近红外发射,半峰宽为211nm。共掺M5+电荷补偿剂后发光明显提升。根据计算结果显示本发明荧光粉属于弱晶体场。
图3为本发明实施例荧光粉体STO-Ni-xNb(x=0,0.0025,0.005,0.01,0.0125,0.015,and 0.02)的XRD图谱(a-b),不同浓度Nb5+离子掺杂的样品的衍射峰均与SrTiO3(PDF#35-0734)标准卡片均吻合良好。随着Nb5+离子浓度的增加,XRD射线衍射峰呈现出小角度偏移的趋势。说明离子半径较大的Nb5+(CN=6)离子取代了半径较小的Ti4+(CN=6),导致晶格的膨胀。(c)图显示Nb离子掺杂量与STO晶格常数a、V的关系图,从XRD精修中可以得到掺杂不同浓度Nb离子的晶格中,[TiO6]八面体为了平衡晶格膨胀的变化而被迫压缩产生畸变来补偿晶体结构的稳定性。STO-Ni-xNb(0≤x≤0.02)的浓度依赖发射光谱(d),可见随着Nb5+掺杂浓度的增加,STO-Ni-Nb近红外荧光发射强度呈现先增后减的趋势,在Nb5+离子浓度为0.15mol%时达到最高,而不是电荷平衡点0.01mol%Nb2O5的理论掺杂浓度,这一现象说明电荷补偿的策略并不是影响发光增强的唯一因素,而是电荷补偿机制和晶格畸变两个因素共同影响的。而电荷补偿为荧光增强的主要变量。STO-Ni和STO-Ni-0.01Nb荧光粉的荧光量子效率(Photoluminescence Quantum yield,PLQY)(e)显示STO-Ni和STO-Ni-0.01Nb荧光粉的PLQY分别为7.9%和19.7%,有力地验证了电荷补偿增强荧光的效果;
图4以电荷补偿效果最好的STO-Ni-Nb荧光粉样品为例,研究了该荧光粉的荧光热稳定性,实验证明Nb5+对提高热猝灭性能具有有效的贡献。
图5为本发明实施例荧光粉体材料制作成NIRpc-LED,并将其应用于静脉血管显像的实际应用图。由于人体血液中的生色团吸收了NIR波段的光,明暗对比可以清晰地观察到人体手指的血管形态和走势,提高了静脉血管定位的精准度,从而大幅度提高医护人员的诊断效率,在生物医学成像领域有着广阔的发展前景和重要的应用价值。

Claims (4)

1.一种近红外发光钙钛矿荧光粉,其特征在于,化学式为:SrTi0.99-xNi0.01MxO3,其中M为Ta5+、Sb5+、P5+、Nb5+,x=0-0.02。
2.权利要求1所述的一种近红外发光钙钛矿荧光粉的制备方法,其特征在于,包括以下步骤:
Step1:原料准备,以摩尔百分比计,包括以下组分:SrCO379~81mol%、TiO240~44mol%、NiO 0.3~0.6mol%、M2O50.5~3mol%;其中,M2O5为Ta2O5、Sb2O5、P2O5、Nb2O5中的一种;
Step2:上述原料按比例精确称量置于玛瑙研钵中,加入适量75%酒精研磨10~15min;
Step3:待酒精完全挥发,粉体成干燥粉状,将粉体转移至刚玉坩埚中烧结两次,自然冷却至室温后取出研磨5~10min,即得。
3.权利要求2所述的一种近红外发光钙钛矿荧光粉的制备方法,其特征在于,所述Step3中,第一次烧结温度为900~1000℃,时间为150~180min;第二次烧结温度为1300~1400℃,时间为100~120min。
4.权利要求1所述的一种近红外发光钙钛矿荧光粉的应用,其特征在于,将所述的近红外发光钙钛矿荧光粉封装在UV LED芯片得到NIR pc-LED器件,应用于静脉血管显像。
CN202310508779.7A 2023-05-08 2023-05-08 一种近红外发光钙钛矿荧光粉及其制备方法和应用 Active CN116536043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310508779.7A CN116536043B (zh) 2023-05-08 2023-05-08 一种近红外发光钙钛矿荧光粉及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310508779.7A CN116536043B (zh) 2023-05-08 2023-05-08 一种近红外发光钙钛矿荧光粉及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116536043A CN116536043A (zh) 2023-08-04
CN116536043B true CN116536043B (zh) 2024-03-12

Family

ID=87446549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310508779.7A Active CN116536043B (zh) 2023-05-08 2023-05-08 一种近红外发光钙钛矿荧光粉及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116536043B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116948643A (zh) * 2023-08-09 2023-10-27 昆明理工大学 一种人体组织无损成像近红外荧光粉及其制备方法
CN117025220A (zh) * 2023-08-10 2023-11-10 昆明理工大学 一种超宽带短波近红外荧光粉及其制备方法
CN117089348A (zh) * 2023-08-28 2023-11-21 昆明理工大学 一种蓝光激发近红外发光荧光粉及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567232A (zh) * 2016-01-25 2016-05-11 深圳市聚飞光电股份有限公司 一种led用钛酸盐荧光粉的制备方法
CN105623659A (zh) * 2016-01-25 2016-06-01 深圳市聚飞光电股份有限公司 一种led用钛酸盐荧光粉的制备方法
CN114656955A (zh) * 2022-03-23 2022-06-24 中山大学 一种Cr3+/Ni2+共掺杂的宽带近红外荧光粉及其制备方法与转换型LED发光装置
CN115717073A (zh) * 2022-11-30 2023-02-28 湘潭大学 一种宽带近红外发光材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567232A (zh) * 2016-01-25 2016-05-11 深圳市聚飞光电股份有限公司 一种led用钛酸盐荧光粉的制备方法
CN105623659A (zh) * 2016-01-25 2016-06-01 深圳市聚飞光电股份有限公司 一种led用钛酸盐荧光粉的制备方法
CN114656955A (zh) * 2022-03-23 2022-06-24 中山大学 一种Cr3+/Ni2+共掺杂的宽带近红外荧光粉及其制备方法与转换型LED发光装置
CN115717073A (zh) * 2022-11-30 2023-02-28 湘潭大学 一种宽带近红外发光材料及其制备方法和应用

Also Published As

Publication number Publication date
CN116536043A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN116536043B (zh) 一种近红外发光钙钛矿荧光粉及其制备方法和应用
Miao et al. Broadband short-wave infrared light-emitting diodes based on Cr3+-doped LiScGeO4 phosphor
Bai et al. Broadband near-infrared emitting Ca2LuScGa2Ge2O12: Cr3+ phosphors: luminescence properties and application in light-emitting diodes
US10683454B2 (en) Phosphor, method for preparing phosphor, optoelectronic component, and method for producing optoelectronic component
Zhao et al. Cr 3+-Doped double perovskite antimonates: efficient and tunable phosphors from NIR-I to NIR-II
Wang et al. Efficient Cr 3+-activated NaInP 2 O 7 phosphor for broadband near-infrared LED applications
Pushpendra et al. NaBi0. 9Eu0. 1 (MoO4) 2 nanomaterials: tailoring the band gap and luminescence by La3+ substitution for light-emitting diodes
CN114656955A (zh) 一种Cr3+/Ni2+共掺杂的宽带近红外荧光粉及其制备方法与转换型LED发光装置
Ahemen et al. Luminescence and energy transfer mechanism in Eu 3+/Tb 3+-co-doped ZrO 2 nanocrystal rods
CN113201342A (zh) Ce3+激活的硅酸盐宽带绿色荧光粉及制备方法和应用
Głuchowski et al. Impact of the Synthesis Method on the Conventional and Persistent Luminescence in Gd3–x Ce x Ga3Al2O12
CN114196404A (zh) 一种双钙钛矿型近红外发光材料及其制备方法
CN114106827A (zh) 一种Mn4+掺杂红色荧光材料及其制备方法和应用
CN114940904B (zh) 一种Yb基短波红外发光材料及制备方法和应用
Huang et al. From Ancient Blue Pigment to Unconventional NIR Phosphor: A Thermal-Stable Near-Infrared I/II Broadband Emission from Ca1–x Sr x CuSi4O10 Solid Solution
CN116083087A (zh) 一种蓝光激发的近红外荧光粉及其制备方法
TWI717185B (zh) 近紅外線螢光體、包含其之光電子裝置、及製造光電子裝置之方法
CN112831321A (zh) 荧光材料及光电子器件
Wei et al. Realization of multiple luminescence manipulation in tungsten bronze oxides based on photochromism toward real-time, reversible, and fast processes
CN113698926A (zh) 一种窄带发射荧光粉及其制备方法和应用
CN116970393A (zh) 一种近红外协同增强钙钛矿荧光粉及其制备方法和应用
CN112694890A (zh) 一种四价锰离子掺杂的红色荧光材料及其制备方法和应用
Li et al. A novel M2Ga2GeO7: N3+ (M= Ca, Ba, Sr; N= Cr, Nd, Er) sub-micron phosphor with multiband NIR emissions: preparation, structure, properties, and LEDs
CN115746849B (zh) 一种窄带b区紫外长余辉发光材料及其制备方法和应用
CN116925759A (zh) 一种铬激活宽带近红外氧化物荧光粉及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant