CN116535215B - 一种非化学计量比多元碳化物陶瓷的制备方法 - Google Patents

一种非化学计量比多元碳化物陶瓷的制备方法 Download PDF

Info

Publication number
CN116535215B
CN116535215B CN202310504514.XA CN202310504514A CN116535215B CN 116535215 B CN116535215 B CN 116535215B CN 202310504514 A CN202310504514 A CN 202310504514A CN 116535215 B CN116535215 B CN 116535215B
Authority
CN
China
Prior art keywords
powder
ceramic
ball milling
carbide
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310504514.XA
Other languages
English (en)
Other versions
CN116535215A (zh
Inventor
陈招科
陈诗言
王金明
宋威龙
李兴超
李同起
熊翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Central South University
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University, Aerospace Research Institute of Materials and Processing Technology filed Critical Central South University
Priority to CN202310504514.XA priority Critical patent/CN116535215B/zh
Publication of CN116535215A publication Critical patent/CN116535215A/zh
Application granted granted Critical
Publication of CN116535215B publication Critical patent/CN116535215B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种非化学计量比多元碳化物陶瓷的制备方法,涉及碳化物陶瓷技术领域。该方法通过将两种及以上的过渡金属粉与碳粉高能球磨混匀,利用热压烧结技术,使元素粉末在高温下发生剧烈的化合反应,同时在压力的作用下烧结致密化,一步得到目标陶瓷块体。该方法制备的碳化物为具有面心立方结构的单相固溶体陶瓷,空间群为纯度高,孔隙率低,并且可以一步制备非化学计量比的陶瓷块,工艺简单,效率高。

Description

一种非化学计量比多元碳化物陶瓷的制备方法
技术领域
本发明涉及碳化物陶瓷技术领域,具体涉及一种非化学计量比多元碳化物陶瓷的制备方法。
背景技术
随着人类文明进步,人类对太空的探索不断深入,世界范围内对高性能高超声速飞行器的需求日益迫切,这就要求使用的热防护材料具有足够的机械抗氧化性,能够承受极高温度的恶劣环境。超高温陶瓷(UHTCs)通常被定义为熔点在3000℃以上的化合物,主要由过渡金属的硼、碳或氮化物组成,尤其是碳化物由于具有极高的熔点、优异的高温力学性能和良好的抗烧蚀性能,目前成为满足高温性能要求的最有前景的候选材料。
然而传统的超高温碳化物,如ZrC和HfC,氧化后通常会在表面形成疏松的氧化层,抗氧化性较差,因此其应用受到很大的限制。大量研究表明,加入IV-VB族金属元素以获得多组分碳化物固溶体是提高超高温碳化物陶瓷抗氧化性的有效途径,如国防科技大学的ZhangJian等人的研究(ZhangJ,Wa ngS,LiW,etal.UnderstandingtheoxidationbehaviorofTa–Hf–Cternaryceramicsathi ghtemperature[J].CorrosionScience,2020,164:108348.)表明(Hf,Ta)C的抗氧化性与单个HfC或TaC二元碳化物相比显著增强,这归因于(Hf0.75Ta0.25)C中形成了致密的Hf6Ta2O17内层以及Hf-Ta-O-C过渡层作为氧屏障阻碍氧的扩散。另外,近年来也有部分研究报导在多元固溶体碳化物中加入碳空位可进一步提升其抗氧化性能,如中南大学的LunHuilin等人发表文献(LunH,YuanJ,ZengY,etal.Mechanismsresponsibleforenhancinglow-temperatureoxidationresistanceofno nstoichiometric(Zr,Ti)C[J].JournaloftheAmericanCeramicSociety,2022,105(8):5309-5324.)表明,当碳浓度为0.8时,Zr0.8Ti0.2C0.8相较于化学计量比的Zr0.8Ti0.2C具有更优异的抗氧化性能,其原因是形成了致密的t-(Zr,Ti)O2氧化物固溶体,可以更有效地保护内部基体。
目前,制备多元碳化物陶瓷的方法主要包括机械合金化法、碳热还原法、溶胶-凝胶法、自蔓延高温合成法、二元碳化物高温固溶法等等。上述制备方法具备各自的优势,但是其共同点是只能获得对应的多元碳化物固溶体粉末,需要结合后续的热压烧结、热等静压烧结或放电等离子体烧结等方式才能获得对应陶瓷块体,整个流程所需设备多,工艺复杂且制备周期长。此外,上述制备方法只能实现化学计量比的多元碳化物陶瓷制备,难以完成含有碳空位的非化学计量比的多元碳化物陶瓷制备。
发明内容
本发明的目的是提供一种非化学计量比多元碳化物陶瓷的制备方法,该方法制备的碳化物为具有面心立方结构的单相固溶体陶瓷,空间群为纯度高,孔隙率低,并且可以一步制备非化学计量比的陶瓷块,工艺简单,效率高。
为实现上述目的,本发明提供了一种非化学计量比多元碳化物陶瓷的制备方法,具体包括以下步骤:
S1、根据一定比例称取过渡金属粉和碳粉备用;
S2、将称取好的元素粉放入行星球磨罐中,利用高能球磨将其混合均匀;
S3、将混合元素粉放入烘箱中充分干燥并过筛;
S4、在石墨模具内腔粘附石墨纸;
S5、将干燥后的元素粉倒入石墨模具,并预压排出空气;
S6、将装载了元素粉的石墨模具放入热压烧结炉,高温高压烧结;
S7、随炉冷却后脱模得到目标成分陶瓷块。
优选的,所述步骤S1中过渡金属为Hf、Zr、Ti、Ta、Nb中的至少两种,过渡金属粉和碳粉的纯度均≥99%,其粒度均为微米或纳米级。
优选的,所述步骤S2中球磨转速为150-300rpm,球磨时长6-12h,球磨介质为无水乙醇,球磨罐和球体材料为碳化钨,球料比为4~6:1。
优选的,所述步骤S3中烘箱温度为30-40℃,烘干时间≥20h,过筛目数≥200目。
优选的,真空烧结气氛,热压烧结炉中真空度小于5Pa,热压烧结炉以10℃/min的升温速率从室温升至800℃,以7℃/min从800℃升温至1500℃,以5℃/min从1500℃升温至1800-2100℃,并于设定温度保温0.5-2h。
因此,本发明提供了一种非化学计量比多元碳化物陶瓷的制备方法,针对现有制备方法有益效果如下:
(1)该方法制备的碳化物为具有面心立方结构的单相固溶体陶瓷,空间群为纯度高,孔隙率低,并且可以一步制备非化学计量比的陶瓷块,工艺简单,效率高;
(2)本方法工艺简单,周期短,组分设计灵活,可制备包含化学计量比/非化学计量比在内的宽范围元素比例的陶瓷;
(3)本方法包括但不限于多元碳化物陶瓷的制备,还可扩展至多元氮化物和硼化物等领域,极大扩宽了多元超高温陶瓷的成分设计范围,有利于优化多元超高温陶瓷中各组份含量,实现高性能超高温陶瓷的制备。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1是本发明实施例1、实施例2和实施例3制得的碳化物陶瓷块的XR D图谱;
图2是本发明实施例1制得的碳化物陶瓷块的宏观形貌图;
图3是本发明实施例1制得的碳化物陶瓷块的扫描电镜图;
图4是本发明实施例2制得的碳化物陶瓷块的宏观形貌图;
图5是本发明实施例2制得的碳化物陶瓷块的扫描电镜图;
图6是本发明实施例3制得的碳化物陶瓷块的宏观形貌图;
图7是本发明实施例3制得的碳化物陶瓷块的扫描电镜图。
具体实施方式
以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明提供了一种非化学计量比多元碳化物陶瓷的制备方法,包括以下步骤:
S1、将Hf粉、Ti粉、C粉分别称量17.6g、1.0g、1.4g备用,其中Hf粉和Ti粉的粒度为325目,纯度≥99.9%,碳粉的粒度为30nm,纯度≥99.5%;
S2、将称量好的元素粉放入碳化钨的行星球磨罐中,高能球磨10h将其混合均匀,其中球磨介质为乙醇,球料比为5:1,转速150rpm;
S3、将混合元素粉放入30℃烘箱中,充分干燥24h,并过200目筛;
S4、在石墨模具内腔粘附石墨纸;
S5、将干燥后的元素粉倒入石墨模具,并采用1T的压力预压排出尽可能多的空气;
S6、将装载了元素粉的石墨模具放入热压烧结炉,真空烧结气氛,热压烧结炉中真空度小于5Pa,以10℃/min的升温速率从室温升至800℃,以7℃/mi n从800℃升温至1500℃,以5℃/min从1500℃升温至1900℃,并于设定温度保温1h;
S7、随炉冷却后利用液压机脱模得到Hf0.83Ti0.17C陶瓷块。
实施例2
本发明提供了一种非化学计量比多元碳化物陶瓷的制备方法,包括以下步骤:
S1、将Hf粉、Ti粉、C粉分别称量17.8g、1.0g、1.2g备用,其中Hf粉和Ti粉的粒度为325目,纯度≥99.9%,碳粉的粒度为30nm,纯度≥99.5%;
S2、将称量好的元素粉放入碳化钨的行星球磨罐中,高能球磨10h将其混合均匀,其中球磨介质为乙醇,球料比为5:1,转速150rpm;
S3、将混合元素粉放入30℃烘箱中,充分干燥24h,并过200目筛;
S4、在石墨模具内腔粘附石墨纸;
S5、将干燥后的元素粉倒入石墨模具,并采用1T的压力预压排出尽可能多的空气;
S6、将装载了元素粉的石墨模具放入热压烧结炉,真空烧结气氛,热压烧结炉中真空度小于5Pa,以10℃/min的升温速率从室温升至800℃,以7℃/min从800℃升温至1500℃,以5℃/min从1500℃升温至1900℃,并于设定温度保温1h;
S7、随炉冷却后利用液压机脱模得到Hf0.83Ti0.17C0.83陶瓷块。
实施例3
本发明提供了一种非化学计量比多元碳化物陶瓷的制备方法,包括以下步骤:
S1、将Hf粉、Zr粉、Ti粉、Nb粉、C粉分别称量12.6g、4.3g、0.7g、0.7g、1.7g备用,其中Hf粉、Zr粉、Ti粉的粒度为325目,纯度≥99.9%,Nb粉的粒度为100nm,纯度≥99.9%,碳粉的粒度为30nm,纯度≥99.5%;
S2、将称量好的元素粉放入碳化钨的行星球磨罐中,高能球磨8h将其混合均匀,其中球磨介质为乙醇,球料比为5:1,转速250rpm;
S3、将混合元素粉放入30℃烘箱中,充分干燥24h,并过200目筛;
S4、在石墨模具内腔粘附石墨纸;
S5、将干燥后的元素粉倒入石墨模具,并采用1T的压力预压排出尽可能多的空气;
S6、将装载了元素粉的石墨模具放入热压烧结炉,真空烧结气氛,热压烧结炉中真空度小于5Pa,以10℃/min的升温速率从室温升至800℃,以7℃/min从800℃升温至1500℃,以5℃/min从1500℃升温至1900℃,并于设定温度保温1h;
S7、随炉冷却后利用液压机脱模得到Hf0.5Zr0.33Ti0.11Nb0.06C陶瓷块。
如图1所示,XRD图谱表明实施例1,实施例2和实施例3所制备的碳化物陶瓷块有且只有一组近似HfC的衍射峰,说明实施例1,实施例2和实施例3所获得的陶瓷块已经实现完全固溶,具有典型的单一相面心立方结构。
如图2、4、6所示,碳化物陶瓷块的宏观形貌图表明实施例1、2、3所制得的碳化物陶瓷块十分致密,未观察到大尺寸孔隙和裂纹。
如图3、5、7所示,碳化物陶瓷块的扫描电镜图表明实施例1、2、3制得的碳化物陶瓷块成分均匀,未观察到明显的元素偏聚,表明形成均一固溶体。
表1为实施例1、2、3所制得的碳化物陶瓷块的相对密度及开孔率统计,通过阿基米德排水法测量并计算所得。
表1
实施例1 实施例2 实施例3
相对密度% 96.02 97.68 95.07
开孔率% 0.76 0.94 0.86
如表1所示,实施例1、2、3所制得的碳化物陶瓷块的相对密度均大于95%,开孔率均保持在1%以下。
因此,本发明提供了一种非化学计量比多元碳化物陶瓷的制备方法,使用过渡金属元素粉末和碳粉末为原料,采用热压烧结技术使元素粉末在高温下发生剧烈的化合反应,同时在压力的作用下烧结致密化,一步得到多元碳化物陶瓷块体;本方法工艺简单、周期短、组分设计灵活,可以实现高致密度、低开孔率、高纯度的多元碳化物单一相固溶体陶瓷,为新一代超高温多元陶瓷在航天航空、核能等领域的应用提供创新高效的制备途径。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

Claims (2)

1.一种非化学计量比多元碳化物陶瓷的制备方法,其特征在于,具体包括以下步骤:
S1、根据一定比例称取过渡金属粉和碳粉备用;
S2、将称取好的元素粉放入行星球磨罐中,利用高能球磨将其混合均匀;
S3、将混合元素粉放入烘箱中充分干燥并过筛;
S4、在石墨模具内腔粘附石墨纸;
S5、将干燥后的元素粉倒入石墨模具,并预压排出空气;
S6、将装载了元素粉的石墨模具放入热压烧结炉,高温高压烧结;
S7、随炉冷却后脱模得到目标成分陶瓷块;
所述步骤S1中过渡金属为Hf、Zr、Ti、Ta、Nb中的至少两种,过渡金属粉和碳粉的纯度均≥99%,其粒度均为微米或纳米级;
所述步骤S6中热压烧结条件为:真空烧结气氛,烧结炉中真空度小于5Pa,热压烧结炉以10℃/min的升温速率从室温升至800℃,以7℃/min从800℃升温至1500℃,以5℃/min从1500℃升温至1800-2100℃,并于设定温度保温0.5-2h;
所述步骤S2中球磨转速为150-300rpm,球磨时长6-12h,球磨介质为无水乙醇,球磨罐和球体材料为碳化钨,球料比为4~6:1。
2.根据权利要求1所述的一种非化学计量比多元碳化物陶瓷的制备方法,其特征在于:所述步骤S3中烘箱温度为30-40℃,烘干时间≥20h,过筛目数≥200目。
CN202310504514.XA 2023-05-08 2023-05-08 一种非化学计量比多元碳化物陶瓷的制备方法 Active CN116535215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310504514.XA CN116535215B (zh) 2023-05-08 2023-05-08 一种非化学计量比多元碳化物陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310504514.XA CN116535215B (zh) 2023-05-08 2023-05-08 一种非化学计量比多元碳化物陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN116535215A CN116535215A (zh) 2023-08-04
CN116535215B true CN116535215B (zh) 2023-12-19

Family

ID=87443003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310504514.XA Active CN116535215B (zh) 2023-05-08 2023-05-08 一种非化学计量比多元碳化物陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116535215B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115177A2 (en) * 1982-12-30 1984-08-08 Corning Glass Works Reaction sintered multiphase ceramic body
US5470806A (en) * 1993-09-20 1995-11-28 Krstic; Vladimir D. Making of sintered silicon carbide bodies
JP2002187721A (ja) * 2000-12-19 2002-07-05 Honda Motor Co Ltd 多元系セラミックス粉末およびその製造方法
EP1714942A1 (en) * 2005-04-19 2006-10-25 Seoul National University Industry Foundation Solid-solution powder, method to prepare the solid-solution powder, ceramic using the solid-solution powder, method to prepare the ceramic, cermet powder including the solid-solution powder, method to prepare the cermet powder, cermet using the cermet powder and method to prepare the cermet
KR20100107478A (ko) * 2007-12-26 2010-10-05 재단법인서울대학교산학협력재단 고용체 탄화물 및 탄질화물 분말 제조방법
CN102181678A (zh) * 2011-04-12 2011-09-14 西安交通大学 一种(Fe,Cr)7C3碳化物的制备方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN109912313A (zh) * 2019-03-06 2019-06-21 中南大学 一种新型多元单相超高温陶瓷改性碳/碳复合材料及其制备方法
CN114605154A (zh) * 2022-03-31 2022-06-10 大连理工大学 一种基于金属预合金化的高熵陶瓷材料及其制备方法
CN114956826A (zh) * 2022-06-28 2022-08-30 燕山大学 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
CN115304378A (zh) * 2022-07-15 2022-11-08 西北工业大学 耐辐照高熵碳化物陶瓷的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528046B1 (ko) * 2003-08-26 2005-11-15 한국과학기술연구원 균일한 고용체 입자구조를 갖는 초미세 결정립 서메트제조 방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115177A2 (en) * 1982-12-30 1984-08-08 Corning Glass Works Reaction sintered multiphase ceramic body
US5470806A (en) * 1993-09-20 1995-11-28 Krstic; Vladimir D. Making of sintered silicon carbide bodies
JP2002187721A (ja) * 2000-12-19 2002-07-05 Honda Motor Co Ltd 多元系セラミックス粉末およびその製造方法
EP1714942A1 (en) * 2005-04-19 2006-10-25 Seoul National University Industry Foundation Solid-solution powder, method to prepare the solid-solution powder, ceramic using the solid-solution powder, method to prepare the ceramic, cermet powder including the solid-solution powder, method to prepare the cermet powder, cermet using the cermet powder and method to prepare the cermet
KR20100107478A (ko) * 2007-12-26 2010-10-05 재단법인서울대학교산학협력재단 고용체 탄화물 및 탄질화물 분말 제조방법
CN102181678A (zh) * 2011-04-12 2011-09-14 西安交通大学 一种(Fe,Cr)7C3碳化物的制备方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN109912313A (zh) * 2019-03-06 2019-06-21 中南大学 一种新型多元单相超高温陶瓷改性碳/碳复合材料及其制备方法
CN114605154A (zh) * 2022-03-31 2022-06-10 大连理工大学 一种基于金属预合金化的高熵陶瓷材料及其制备方法
CN114956826A (zh) * 2022-06-28 2022-08-30 燕山大学 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
CN115304378A (zh) * 2022-07-15 2022-11-08 西北工业大学 耐辐照高熵碳化物陶瓷的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity;Yan Xueliang 等;Journal of the American Ceramic Society;第101卷(第10期);4486-4491 *
Effect of carbon on microstructure, mechanical properties and wear resistance of non-equiatomic Fe70Co7.5Cr7.5Ni7.5V7.5 medium-entropy alloys fabricated by powder metallurgy;Yang Bao-zhen 等;Journal of Central South University;第29卷;1799-1810 *
Non-stoichiometry of (TiZrHfVNbTa)Cx and its significance to the microstructure and mechanical properties;Zhang Wen 等;Journal of the European Ceramic Society;第42卷;6347-6355 *
Structure and properties of (Ta1-хZrх)C and (Ta1-хHfх)C solid solutions produced by SHS and hot pressing;V.V. Kurbatkina 等;Ceramics International;第47卷;26205-26214 *
王恺.(Ti,Zr,Nb,Ta,Me)C(Me=Mo,V,Cr,W)高熵陶瓷的制备及组织性能.中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑.2020,(第2期),B015-501. *

Also Published As

Publication number Publication date
CN116535215A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
Li et al. Spark plasma sintering of TiC–ZrC composites
US20210317045A1 (en) Highly oriented nanometer max phase ceramic and preparation method for max phase in-situ autogenous oxide nanocomposite ceramic
CN114605154B (zh) 一种基于金属预合金化的高熵陶瓷材料及其制备方法
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
CN114956826A (zh) 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
CA1139791A (en) Sintered silicon carbide-aluminum nitride articles and method of making such articles
KR20190048811A (ko) 우수한 열전도도 및 열내구성을 가지는 탄화규소 소결체의 제조방법
CN108178636B (zh) 一种Si3N4/SiC复合吸波陶瓷及其制备方法
CN116535215B (zh) 一种非化学计量比多元碳化物陶瓷的制备方法
CN111747748A (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
Mishra et al. Microstructure evolution during sintering of self-propagating high-temperature synthesis produced ZrB2 powder
CN114349516B (zh) 一种低温合成高致密SiC陶瓷的方法
CN103938010A (zh) 一种制备多孔钼硅硼三相合金的方法
JPS632913B2 (zh)
CN116639980B (zh) 一种多元碳化物陶瓷涂层的制备方法
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
CN115594513B (zh) 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法
CN112899510B (zh) 一种TiC/Ni复合材料的原位反应合成方法
CN115353395B (zh) 一种制备Ti2AlC/B4C复相陶瓷的方法
Guan et al. Effect of Si2BC3N additions on the oxidation of Ta4HfC5 ceramics at 900–1100° C
CN115745620B (zh) 一种高致密度氮化钛陶瓷材料及其制备方法
CN116396090B (zh) 一种碳化硅/碳化硼陶瓷骨架增强碳基复合材料及制备方法和应用
CN117550610A (zh) 一种高熵二硅化物及其制备方法
CN117383944A (zh) 一种(TiCrVNbTa)(C0.66N0.33)高熵陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant