CN116497311A - 一种金属化电容器薄膜的制备方法 - Google Patents

一种金属化电容器薄膜的制备方法 Download PDF

Info

Publication number
CN116497311A
CN116497311A CN202310453202.0A CN202310453202A CN116497311A CN 116497311 A CN116497311 A CN 116497311A CN 202310453202 A CN202310453202 A CN 202310453202A CN 116497311 A CN116497311 A CN 116497311A
Authority
CN
China
Prior art keywords
film
metallized capacitor
capacitor film
metallized
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310453202.0A
Other languages
English (en)
Inventor
张旭海
谢文浩
白雪冰
蔡群
曾宇乔
张洁
赵新怡
蒋建清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202310453202.0A priority Critical patent/CN116497311A/zh
Publication of CN116497311A publication Critical patent/CN116497311A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明公开了一种金属化电容器薄膜的制备方法,具体为:设置脉冲电源参数:脉冲电源的平均功率密度设置为1~6W/cm2,脉冲宽度为30~60μs,频率为300~700Hz;薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,往真空室内通入氩气,在对应工作气压下进行金属膜沉积,沉积完成后,取出制得的金属化电容器薄膜。本发明方法可以有效提高金属薄膜的致密度,致密度可达到97%,从而降低金属薄膜的方阻,进而有利于减小充放电过程的发热行为,一方面使金属化电容器薄膜能够应用在更高的环境温度下,提高其耐热性,另一方面也能够有效提高金属化电容器薄膜的使用寿命和可靠性。

Description

一种金属化电容器薄膜的制备方法
技术领域
本发明涉及一种金属化电容器薄膜的制备方法。
背景技术
随着混合动力汽车技术的快速发展,对电驱系统逆变器的性能要求越来越高,提高逆变器的功率密度,需要提高元器件和相关材料的高温、高压耐受性并实现元器件的高度集成化。逆变器主要由半导体器件和以电容为主的无源器件构成。对半导体而言,新一代宽禁带碳化硅(SiC)基元件相对传统硅基元器件可耐受更高工作温度和更高电压。但与之匹配的耐高温、高压直流支撑薄膜电容器尚未被开发出来。一方面,系统仍需牺牲大量空间来满足散热需求,一方面,高压会导致目前商用电容器击穿,这为逆变器的高度集成化和高功率化设置了严重障碍。金属化薄膜是薄膜电容器的核心部件,也是其中体积占比最高,高温、高压耐受性最差的部分。因此,提高金属化薄膜的耐温、耐压性能及储能密度,降低其体积占比是实现逆变器系统高度集成化和高功率化的必要途径。
传统聚合物介质表面金属化工艺一般为真空蒸镀工艺,由于蒸镀原子能量低,基体温度低,使得薄膜微观结构组织疏松,薄膜晶粒细小,从而薄膜电阻率高。同时该工艺对介质膜耐压性能有显著损伤,这使得工业生产中尽量采用低金属化薄膜,业界称之为高方阻膜。金属薄膜的高方阻会带来材料的介电损耗高、波纹电流通过时发热大等问题,影响了电容使用的可靠性。此外,真空蒸镀高方阻膜时仍会导致介质膜耐压性能出现较大的损伤,一般聚丙烯薄膜在金属化前的耐压能力在600~700V/μm,而金属化后耐压能力会下降到200~300V/μm,性能劣化达到50%以上。
发明内容
发明目的:本发明目的旨在提供一种金属化电容器薄膜的制备方法,该方法得到的金属化电容器薄膜表面金属膜层结构致密,晶粒细小,使金属化电容器薄膜具有良好的耐温、耐压性能以及高的储能密度,在相同储能值下能够有效降低金属化电容器薄膜在逆变器中的体积占比。
技术方案:本发明所述的金属化电容器薄膜的制备方法,包括如下步骤:
(1)设置脉冲电源参数:脉冲电源的平均功率设置为1~6W/cm2,脉冲宽度为30-60μs,频率为300-700Hz;
(2)薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,往真空室内通入氩气,在对应工作气压下进行金属膜沉积,沉积完成后,取出制得的金属化电容器薄膜。
其中,步骤(2)中,待真空室内气压降至5*10-4Pa时通入氩气,以保证良好的真空度,避免引入氧气等杂质。
其中,步骤(2)中,溅射时间为3~7min。
其中,步骤(2)中,聚丙烯薄膜的预处理是指:将双向拉伸聚丙烯薄膜放入等离子清洗机中,抽真空,往真空室中通入高纯O2,施加高电压产生等离子体,预处理目的是清洗基底表面,提高薄膜与基底的结合性。
其中,聚丙烯薄膜在等离子清洗机中的清洗时间为10min,在保证基底无损伤的情况下达到清洗的效果。
其中,步骤(2)中,金属化电容器薄膜中,聚丙烯薄膜上沉积的铝膜厚度为50~120nm,铝膜中晶粒的直径为60~120nm,致密度为85~97%。
有益效果:与现有技术相比,本发明具有如下显著的优点:(1)本发明制备的Al薄膜致密度可达到97%,能够降低金属薄膜的方阻,进而有利于减小充放电过程的发热行为,甚至可以提高纹波电流、浪涌电流和峰值电流,一方面使金属化电容器薄膜能够应用在更高的环境温度下,提高其耐热性,另一方面也能够有效防止介质薄膜因过热而被击穿的问题,从而提高金属化电容器薄膜的使用寿命和可靠性;(2)本发明方法对介质膜耐压性能基本无损伤,聚丙烯薄膜在金属化前的耐压能力为637.13V/μm,金属化后金属化薄膜的耐压强度可达631.74V/μm,相比于金属化前耐压性能仅下降0.85%;(3)由于耐压性能的提升,因此储能密度也大幅提升,本发明方法制得的金属化电容器薄膜能够在铝膜低厚度下(厚度为50~120nm)仍具有低的电阻率以及高的耐压性能,从而具有高的储能密度,并且也能在发生短路时实现快速的自我保护。
附图说明
图1是高功率脉冲磁控溅射在聚丙烯薄膜上制备Al薄膜的表面形貌;
图2是不同参数下的金属化薄膜的耐压强度。
具体实施方式
实施例1
本发明金属化电容器薄膜的制备方法,包括如下步骤:
(1)基底薄膜预处理:使用6μm厚的双向拉伸聚丙烯薄膜作为基底薄膜,将聚丙烯薄膜放入等离子清洗机中,抽真空,往真空室中通入高纯O2,施加高电压产生等离子体,清洗聚丙烯薄膜10min;
(2)设置脉冲电源参数:脉冲电源的平均功率设置为2W/cm2,脉宽为30us,频率为500Hz;
(3)薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,待真空室内气压降至5*10-4Pa时,通入流量为30sccm的Ar,调节工作气压为0.5Pa,溅射时间7min;沉积完成后10min,取出制备好的金属化电容器薄膜。
所得的金属化电容器薄膜,其聚丙烯薄膜在金属化前的耐压能力为637V/μm,金属化后金属化薄膜的耐压强度达590V/μm,相比于金属化前耐压性能约下降7.38%,沉积的铝膜厚度约为80nm,铝膜中晶粒的直径为80nm,致密度约为95%。
实施例2
本发明金属化电容器薄膜的制备方法,包括如下步骤:
(1)基底薄膜预处理:使用6μm厚的双向拉伸聚丙烯薄膜作为基底薄膜,将聚丙烯薄膜放入等离子清洗机中,抽真空,往真空室中通入高纯O2,施加高电压产生等离子体,清洗聚丙烯薄膜10min;
(2)设置脉冲电源参数:脉冲电源的平均功率设置为2.4W/cm2,脉宽为40us,频率为500Hz;
(3)薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,待真空室内气压降至5*10-4Pa时,通入流量为30sccm的Ar,调节工作气压为0.5Pa,溅射时间6min;沉积完成后10min,取出制备好的金属化电容器薄膜。
所得的金属化电容器薄膜,其聚丙烯薄膜在金属化前的耐压能力为637V/μm,金属化后金属化薄膜的耐压强度可达631V/μm,相比于金属化前耐压性能仅下降0.85%,沉积的铝膜厚度为85nm,铝膜中晶粒的直径为80-120nm,致密度为97%。
实施例3
本发明金属化电容器薄膜的制备方法,包括如下步骤:
(1)基底薄膜预处理:使用6μm厚的双向拉伸聚丙烯薄膜作为基底薄膜,将聚丙烯薄膜放入等离子清洗机中,抽真空,往真空室中通入高纯O2,施加高电压产生等离子体,清洗聚丙烯薄膜10min;
(2)设置脉冲电源参数:脉冲电源的平均功率设置为2.6W/cm2,脉宽为50us,频率为500Hz;
(3)薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,待真空室内气压降至5*10-4Pa时,通入流量为30sccm的Ar,调节工作气压为0.5Pa,溅射时间5min;沉积完成后10min,取出制备好的金属化电容器薄膜。
所得的金属化电容器薄膜,其聚丙烯薄膜在金属化前的耐压能力为637V/μm,金属化后金属化薄膜的耐压强度可达605V/μm,相比于金属化前耐压性能下降3.01%,沉积的铝膜厚度约为87nm,铝膜中晶粒的直径为100~120nm,致密度为96%。
实施例4
本发明金属化电容器薄膜的制备方法,包括如下步骤:
(1)基底薄膜预处理:使用6μm厚的双向拉伸聚丙烯薄膜作为基底薄膜,将聚丙烯薄膜放入等离子清洗机中,抽真空,往真空室中通入高纯O2,施加高电压产生等离子体,清洗聚丙烯薄膜10min;
(2)设置脉冲电源参数:脉冲电源的平均功率设置为3W/cm2,脉宽为60us,频率为500Hz;
(3)薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,待真空室内气压降至5*10-4Pa时,通入流量为30sccm的Ar,调节工作气压为0.5Pa,溅射时间3min;沉积完成后10min,取出制备好的金属化电容器薄膜。
所得的金属化电容器薄膜,其聚丙烯薄膜在金属化前的耐压能力为637.13V/μm,金属化后金属化薄膜的耐压强度可达592V/μm,相比于金属化前耐压性能下降6.9%,沉积的铝膜厚度约为90nm,铝膜中晶粒的直径为100~120nm,致密度为95%。
实施例5
本发明金属化电容器薄膜的制备方法,包括如下步骤:
(1)基底薄膜预处理:使用6μm厚的双向拉伸聚丙烯薄膜作为基底薄膜,将聚丙烯薄膜放入等离子清洗机中,抽真空,往真空室中通入高纯O2,施加高电压产生等离子体,清洗聚丙烯薄膜10min;
(2)设置脉冲电源参数:脉冲电源的平均功率设置为1W/cm2,脉宽为60us,频率为300Hz;
(3)薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,待真空室内气压降至5*10-4Pa时,通入流量为30sccm的Ar,调节工作气压为0.5Pa,溅射时间7min;沉积完成后10min,取出制备好的金属化电容器薄膜。
所得的金属化电容器薄膜,其聚丙烯薄膜在金属化前的耐压能力为637V/μm,金属化后金属化薄膜的耐压强度可达599V/μm,相比于金属化前耐压性能下降6%,沉积的铝膜厚度约为50nm,铝膜中晶粒的直径为60~90nm,致密度为85%。
实施例6
本发明金属化电容器薄膜的制备方法,包括如下步骤:
(1)基底薄膜预处理:使用6μm厚的双向拉伸聚丙烯薄膜作为基底薄膜,将聚丙烯薄膜放入等离子清洗机中,抽真空,往真空室中通入高纯O2,施加高电压产生等离子体,清洗聚丙烯薄膜10min;
(2)设置脉冲电源参数:脉冲电源的平均功率设置为6W/cm2,脉宽为30us,频率为700Hz;
(3)薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,待真空室内气压降至5*10-4Pa时,通入流量为30sccm的Ar,调节工作气压为0.5Pa,溅射时间4min;沉积完成后10min,取出制备好的金属化电容器薄膜。
所得的金属化电容器薄膜,其聚丙烯薄膜在金属化前的耐压能力为637V/μm,金属化后金属化薄膜的耐压强度可达580V/μm,相比于金属化前耐压性能下降9%,沉积的铝膜厚度为130nm,铝膜中晶粒的直径为100-120nm,致密度为95%。
如图1所示,实施例2制得的金属化电容器薄膜具有表面致密的结构,致密度约为97%,晶粒细小,高致密的金属薄膜具有低的方阻,可以减少工作过程中薄膜发热造成的能量损失。
如图2所示,通过高功率脉冲磁控溅射技术在2W/cm2、2.4W/cm2、2.6W/cm2和3W/cm2溅射功率下制备的金属化薄膜的耐压强度与未金属化聚丙烯薄膜的耐压强度对比以及耐压强度下降百分比,测量结果表明,通过本发明制备的金属化电容器薄膜的耐压强度相比于未金属化聚丙烯薄膜的耐压强度,分别降低了7.38%、0.85%、3.01%、6.9%,说明本发明方法能够很好的保护聚合物基底,从而使制得的金属化电容器薄膜具有良好的耐压强度。本发明方法对聚合物基底膜热损伤性小,同时制备的铝薄膜致密度高,缺陷少,薄膜质量均匀。

Claims (7)

1.一种金属化电容器薄膜的制备方法,其特征在于,包括如下步骤:
(1)设置脉冲电源参数:脉冲电源的平均功率设置为1~6W/cm2,脉冲宽度为30~60μs,频率为300~700Hz;
(2)薄膜沉积:将预处理后的聚丙烯薄膜固定在样品台上,依次打开机械泵和分子泵,往真空室内通入氩气,在对应工作气压下进行金属膜沉积,沉积完成后,取出制得的金属化电容器薄膜。
2.根据权利要求1所述的金属化电容器薄膜的制备方法,其特征在于:步骤(2)中,待真空室内气压降至5*10-4Pa时通入氩气。
3.根据权利要求1所述的金属化电容器薄膜的制备方法,其特征在于:步骤(2)中,溅射时间为3~7min。
4.根据权利要求1所述的金属化电容器薄膜的制备方法,其特征在于:步骤(2)中,聚丙烯薄膜的预处理是指:将双向拉伸聚丙烯薄膜放入等离子清洗机中,抽真空,往真空室中通入高纯O2,施加高电压产生等离子体进行处理。
5.根据权利要求4所述的金属化电容器薄膜的制备方法,其特征在于:聚丙烯薄膜在等离子清洗机中的清洗时间为不低于10min。
6.根据权利要求1所述的金属化电容器薄膜的制备方法,其特征在于:步骤(2)中,金属化电容器薄膜中,聚丙烯薄膜上沉积的铝膜厚度为50~120nm。
7.根据权利要求6所述的金属化电容器薄膜的制备方法,其特征在于:铝膜中晶粒的直径为60~120nm;铝膜的致密度在85~97%。
CN202310453202.0A 2023-04-25 2023-04-25 一种金属化电容器薄膜的制备方法 Pending CN116497311A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310453202.0A CN116497311A (zh) 2023-04-25 2023-04-25 一种金属化电容器薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310453202.0A CN116497311A (zh) 2023-04-25 2023-04-25 一种金属化电容器薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN116497311A true CN116497311A (zh) 2023-07-28

Family

ID=87324145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310453202.0A Pending CN116497311A (zh) 2023-04-25 2023-04-25 一种金属化电容器薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN116497311A (zh)

Similar Documents

Publication Publication Date Title
Wang et al. Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage
Zhang et al. Improved High‐Temperature Energy Storage Performance of PEI Dielectric Films by Introducing an SiO2 Insulating Layer
CN112376024B (zh) 一种氧化物薄膜的制备方法
US8236388B2 (en) Method of producing gas barrier film
CN110349750B (zh) 一种提高强电场下电介质薄膜器件工作电压的方法
KR101722903B1 (ko) 광전 변환장치의 제조방법
CN116497311A (zh) 一种金属化电容器薄膜的制备方法
CN112063985B (zh) 玻璃基材真空磁控溅射镀铜方法
CN112151357B (zh) 一种钛酸钡基超顺电膜及其中低温溅射制备方法与应用
JP2007180398A (ja) コンデンサの製造方法
Yializis A disruptive dc-link capacitor technology for use in electric drive inverters
CN116825542A (zh) 一种提高高比容铝复合阳极箔耐压的预处理方法
JP2011238747A (ja) プラズマcvd成膜装置および高周波電圧の印加方法
CN111710527B (zh) 有机无机纳米复合电介质及其制备方法
CN105803407B (zh) 一种相对介电系数可调氮化铝涂层的制备方法
TWI241603B (en) Coating material for green sheet, green sheet, method for producing green sheet and method for producing electronic component
CN114864283B (zh) 一种高储能柔性无机薄膜及其制备方法
CN103643085A (zh) 埋入式薄膜电阻材料及其制备方法
CN113496820A (zh) 储能聚合物电介质及其制备方法和应用
JPH11273990A (ja) 耐熱コンデンサ用ポリプロピレンフィルム
TWI737571B (zh) 電容器之高比容正負極薄膜製造方法
CN210826346U (zh) 一种金属化金刚石纳米复镀薄膜
KR102659491B1 (ko) 배선 재료용 저저항 필름의 제조 방법
CN111223776B (zh) 一种晶硅片镀膜方法及装置
CN114672783B (zh) 连续真空镀膜系统及其功能单元和运行方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination