CN105803407B - 一种相对介电系数可调氮化铝涂层的制备方法 - Google Patents

一种相对介电系数可调氮化铝涂层的制备方法 Download PDF

Info

Publication number
CN105803407B
CN105803407B CN201610399691.6A CN201610399691A CN105803407B CN 105803407 B CN105803407 B CN 105803407B CN 201610399691 A CN201610399691 A CN 201610399691A CN 105803407 B CN105803407 B CN 105803407B
Authority
CN
China
Prior art keywords
aln
targets
metal
sputtering
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610399691.6A
Other languages
English (en)
Other versions
CN105803407A (zh
Inventor
王周成
吴正涛
张东方
魏斌斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201610399691.6A priority Critical patent/CN105803407B/zh
Publication of CN105803407A publication Critical patent/CN105803407A/zh
Application granted granted Critical
Publication of CN105803407B publication Critical patent/CN105803407B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种相对介电系数可调氮化铝涂层的制备方法,涉及铜‑碳合金表面处理。包括以下步骤:(1)在铜‑碳合金表面用脉冲直流溅射沉积Cr过渡层;(2)用中频电源共溅射双生阴极Al及BN靶,制备AlN‑BN纳米复合结构涂层;(3)交替反应溅射沉积AlN及BN单层膜,完成铜‑碳合金基体表面制备相对介电系数可调AlN涂层。制备的相对介电系数可调氮化铝涂层具有相对介电系数可调、低介电损耗、高绝缘、高导热且膜‑基结合良好等性能。

Description

一种相对介电系数可调氮化铝涂层的制备方法
技术领域
本发明涉及铜-碳合金表面处理,尤其是涉及一种在铜-碳合金基体表面制备相对介电系数可调AlN涂层的方法。
背景技术
在集成电路领域,由于集成度迅猛增加,导致芯片发热量急剧上升,使得芯片寿命迅速下降,其原因是因为在微电子集成电路以及大功率整流器件中,材料之间散热性能不佳而导致的热疲劳,以及热膨胀系数不匹配而引起的热应力造成的,因此要求封装材料必须满足散热优异、与硅材料热膨胀系数匹配等要求[1]。解决该问题的关键是进行合理的封装。从目前电子封装技术发展趋势来看,单一基体的各种封装材料无法满足各方面性能的综合要求,而金属基复合材料可以满足如上的要求。金属基复合封装材料具有较高的机械强度、散热性能优良等优点。其中Cu基复合材料被广泛地应用于热沉材料及电触头材料。此外,金属基复合封装材料尤其适于现代化高速发展的功率HIC、微波毫米波MMIC、MCM和大电流功率模块的功率封装及作为散热片应用[2]。
由于电子封装对基座的绝缘要求,因此在使用铜-碳合金材料的同时,需要开发相应的绝缘材料,在保持基材良好的散热基础上,还需要起到绝缘作用。在高频电路中,信号传输速度可以表示为:
其中,V为信号阐述速度,c为真空中光速,εr为基板介电系数。可以看出,基板介电常数越低,信号传播得越快,因此要得到高的信号传输速率,就必须研究开发低介电常数的基板材料。介电常数除了直接影响信号的传输速度以外,还在很大程度上决定特性阻抗,它可以表示为:
其中,Z0为印制导线的特性阻抗,εr为基板介电系数,h为印制导线与基准面之间的介质厚度,w为印制导线的宽度,t为印制导线的厚度。可以看出,影响特性阻抗的主要因素是:基板的介电常数εr、介质厚度h、导线宽度w以及导线厚度t。基板介电常数越小,特性阻抗就越大。因此,在高速电路中需要高的特性阻抗值,必须研究开发低介电常数的材料以实现信号的高速传输并降低信号损耗。同时为了实现高速数字电路PCB中的阻抗连续稳定,要求基板材料有稳定的介电常数。
AlN材料由于其优异的电绝缘及导热性能,被认为是替代现有SiO2的理想栅极绝缘材料,并广泛应用于高温高功率半导体器件绝缘层[3]。对于AlN绝缘层而言,其AlN绝缘层的制备方法很多,如磁控溅射、反应蒸发、分子束外延、脉冲激光沉积等物理气相沉积方法及化学气相沉积方法。相比较而言,反应蒸发、分子束外延、脉冲激光沉积,这些方法膜层沉积速度较慢,膜基结合欠佳,化学气相沉积也存在速率较慢问题,且设备复杂,反应气体一般有毒性及污染性。而磁控溅射具有使用灵活,使用范围广,膜层纯度高,沉积速率快,基体涂覆性好,以及膜层致密度高、均匀性好、膜基结合力强、膜层平整性好等特点。在电子封装材料领域,反应磁控溅射制备AlN薄膜成为近年来的研究热点。Randolph在1996年使用磁控溅射方法,在1:1的N2:Ar环境中溅射Al靶,产生Al原子或原子团与N原子化合形成AlN涂层,涂层介电强度可达到几兆伏/厘米。Wolborski使用PVD方法制备出AlN薄膜的相对介电系数为8.8[4]。Marauska等使用PVD方法制备出较低介电损耗角正切的AlN薄膜[5]。需要指出的是以上研究报道制备出的AlN介电涂层其相对介电系数约为10,对于频段不同的电子器件而言其适用能力有限。如何在保持AlN优良绝缘性能的基础上,根据电子器件工作频率调节AlN涂层的介电系数,最大化实现信号的传输以及将信号损失减小到最低程度,成为研究的重点与难点。
参考文献:
[1]G.R.Blackwell.The electronic packaging handbook,CRC Press,2002.
[2]T.Schubert,B.Trindade,T.B.Kieback.Materials Science andEngineering:A,475(2008)39.
[3]A.Fathimulla,A.A.Lakhani.J.Appl.Phys.,54(1983)4586.
[4]M.Wolborski,D.Rosén,A.Hallén,M.Bakowski.Thin Solid Films,515(2006)456.
[5]S.Marauska,V.Hrkac,T.Dankwort.Microsystem technologies,18(2012)787.
发明内容
本发明的目的在于提供一种在铜-碳合金基体表面制备相对介电系数可调AlN涂层的方法。
本发明包括以下步骤:
(1)在铜-碳合金表面用脉冲直流溅射沉积Cr过渡层;
(2)用中频电源共溅射双生阴极Al及BN靶,制备AlN-BN纳米复合结构涂层;
(3)交替反应溅射沉积AlN及BN单层膜,完成铜-碳合金基体表面制备相对介电系数可调AlN涂层。
在步骤(1)中,所述在铜-碳合金表面脉冲直流溅射沉积Cr过渡层,目的是解决AlN薄膜的热膨胀系数(~4.5×10-6K-1)与铜-碳合金基体的热膨胀系数(~7.2×10-6K-1)的失配问题,具体方法可为:将沉积腔室工作温度加热至250℃,基体加热至350℃,并抽取沉积腔室内气体,除去腔体内壁吸附的水汽及氧等污染物,当沉积腔室真空达到本底真空度8.0×10-5Pa后,通入Ar气,气体流量设定为50sccm,调节沉积腔室内环境压力至1.25Pa,将金属Cr靶材脉冲直流溅射功率调节至300W,占空比为35%~50%,工作15min。金属Cr靶预溅射之后,将双生阴极Al及BN靶分别接入脉冲直流及中频电源。金属Al靶脉冲直流溅射功率调节至300W,占空比为35%~50%,工作10min;BN靶中频电源溅射功率调节至300W,工作10min。该预溅射处理过程,可以除去靶材表面氧化物等杂质污染,活化靶材表面原子,提高靶材溅射速率及增强膜-基结合力。Cr、Al、BN靶预溅射完成之后,设定沉积腔体温度为200℃,基体为250℃,转动样品台,使铜-碳合金基体正对金属Cr靶,且与靶材的距离为150mm,调节沉积腔室压力至0.45Pa,采用脉冲直流电源溅射沉积金属Cr过渡层,Cr金属靶溅射功率为400W,占空比为35%~50%,沉积时间为2min,沉积过程中基体加载负偏压为-115V。
在步骤(2)中,所述中频电源共溅射双生阴极Al及BN靶,制备AlN-BN纳米复合结构涂层的具体方法可为:在金属Cr过渡层沉积完成之后,维持沉积腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体处于金属Al靶及BN靶中间位置,且与两靶材的距离为200mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,同时采用中频电源溅射双生阴极Al及BN靶,Al靶溅射功率为0~400W,相应地BN靶溅射功率为400~0W,维持Al与BN靶总溅射功率为400W。沉积过程中基体加载负偏压为-115V,基体按角速度90°/s匀速旋转,沉积时间为120min,沉积得到AlN-BN纳米复合结构涂层。
在步骤(3)中,所述交替反应溅射沉积AlN及BN单层膜,完成铜-碳合金基体表面制备相对介电系数可调AlN涂层的具体方法可为:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅双生阴极Al靶,溅射功率为400W,沉积时间为0~30s,控制AlN层单层厚度为0~12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅双生阴极BN靶,溅射功率为400W,沉积时间为1~10s,控制BN层单层厚度为0~2nm;重复如此操作,控制多层膜调制周期(4.2~14nm)及调制比(2~60),交替沉积得到AlN/BN纳米多层结构涂层。
本发明采用先沉积金属Cr过渡层,然后使用中频电源共溅射、交替溅射双生阴极Al靶及BN靶的设计方法,在一定沉积压强、温度等条件下,通过改变BN复合相含量,制备出具有相对介电系数可调、低介电损耗、高绝缘、高导热且膜-基结合良好等性能的AlN-BN纳米复合结构介电涂层。
与现有技术相比,本发明具有以下突出技术效果:
1、具有相对介电系数可调(6~10)、低介电损耗、高绝缘、高导热且膜-基结合良好等性能的AlN-BN纳米复合结构介电涂层。沉积制备的AlN、BN膜层具有柱状晶结构;而AlN-BN纳米复合结构涂层具有两相复合结构特征,当BN达到一定含量时,涂层晶粒为等轴状,不再具备柱状晶结构特征。AlN涂层其相对介电系数为10,电阻率为9.7×1014Ω·m,损耗角介电损耗角正切值为4.2‰,耐电压击穿强度为22.5kV/mm;当BN含量为32mol%时,该纳米复合结构涂层相对介电系数为9.1,电阻率为8.2×1014Ω·m,损耗角介电损耗角正切值为6.5‰,耐电压击穿强度为17.5kV/mm;当BN含量为53mol%时,该纳米复合结构涂层相对介电系数为7.2,电阻率为5.1×1014Ω·m,损耗角介电损耗角正切值为9.7‰,耐电压击穿强度为15kV/mm;而BN涂层其相对介电系数为10,电阻率为2.3×1014Ω·m,损耗角介电损耗角正切值为15.1‰,耐电压击穿强度为10kV/mm。
2、具有相对介电系数可调(10~18.6)、低介电损耗、高绝缘、高导热且膜-基结合良好等性能的AlN/BN纳米多层结构介电涂层。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。当AlN单层厚度为4nm时,BN厚度为0.2~2nm(对于多层膜调制周期为4.2~6nm,调制比为2~20),薄膜相对介电系数为10(AlN)~15.5(BN厚度为0.5nm),薄膜电阻率随BN厚度增加而降低,变化范围9.7~0.8×1014Ω·m,介电损耗角正切随BN厚度增加而增加,变化范围4.2~31‰,薄膜耐电压击穿强度随BN厚度增加而降低,变化范围22.5~2.5kV/mm;当AlN单层厚度为8nm时,BN厚度为0.2~2nm(对于多层膜调制周期为8.2~10nm,调制比为4~40),薄膜相对介电系数为10(AlN)~18.6(BN厚度为0.6nm),薄膜电阻率随BN厚度增加而降低,变化范围9.7~2.5×1014Ω·m,介电损耗角正切随BN厚度增加而增加,变化范围4.2~18‰,薄膜耐电压击穿强度随BN厚度增加而降低,变化范围22.5~7.5kV/mm;当AlN单层厚度为12nm时,BN厚度为0.2~2nm(对于多层膜调制周期为12.2~14nm,调制比为6~60),薄膜相对介电系数为10(AlN)~17.2(BN厚度为0.6nm),薄膜电阻率随BN厚度增加而降低,变化范围9.7~4.1×1014Ω·m,介电损耗角正切随BN厚度增加而增加,变化范围4.2~12.5‰,薄膜耐电压击穿强度随BN厚度增加而降低,变化范围22.5~10kV/mm。
附图说明
图1为AlN-BN纳米复合涂层结构示意图;
图2为实施例1(AlN涂层)的SEM断面形貌图;
图3为实施例2(AlN-32Crl%BN纳米复合涂层)的SEM及HRTEM结构图;
图4为实施例3(AlN-53Crl%BN纳米复合涂层)的SEM及HRTEM结构图;
图5为实施例4(BN涂层)的SEM断面形貌图;
图6为实施例1~4纳米复合结构涂层的相对介电系数;
图7为实施例1~4纳米复合结构涂层的节电损耗角正切值;
图8为实施例1~4纳米复合结构涂层的电阻率;
图9为实施例1~4纳米复合结构涂层的耐电压击穿强度;
图10为AlN/BN纳米多层涂层结构示意图;
图11为实施例5~11(AlN单层厚度均为4nm)纳米多层涂层的TEM结构图;
图12为实施例5~11(AlN单层厚度均为4nm)纳米多层涂层的相对介电系数;
图13为实施例5~11纳米多层涂层的节电损耗角正切值;
图14为实施例5~11纳米多层涂层的电阻率;
图15为实施例5~11纳米多层涂层的耐电压击穿强度;
图16为实施例12~18(AlN单层厚度均为8nm)纳米多层涂层的TEM结构图;
图17为实施例12~18(AlN单层厚度均为8nm)纳米多层涂层的相对介电系数;
图18为实施例12~18纳米多层涂层的节电损耗角正切值;
图19为实施例12~18纳米多层涂层的电阻率;
图20为实施例12~18纳米多层涂层的耐电压击穿强度;
图21为实施例19~25(AlN单层厚度均为12nm)纳米多层涂层的TEM结构图;
图22为实施例19~25(AlN单层厚度均为12nm)纳米多层涂层的相对介电系数;
图23为实施例19~25纳米多层涂层的节电损耗角正切值;
图24为实施例19~25纳米多层涂层的电阻率;
图25为实施例19~25纳米多层涂层的耐电压击穿强度。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
图1给出AlN-BN纳米复合涂层结构示意图。
实施例1
1、基体预处理:(1)溶剂清洗处理。先使用异丙醇超声清洗10min,再使用98%酒精溶液超声清洗10min,取出后再用超纯水超声清洗3min。(2)离子源轰击清洗处理。采用Hall离子源对基体进行清洗5min,环境压力为2.2×10-2Pa,Ar流量为11.5sccm,基体偏压为-180V,阴极电流为22.5A,阴极电压为32.5V,阳极电流为6.2A,阳极电压为65V。
2、先在铜-碳合金基体表面脉冲直流溅射沉积金属Cr过渡层
(1)金属Cr、Al及陶瓷BN靶材预处理。将沉积腔室工作温度加热至250℃,基体加热至350℃,并抽取沉积腔室内气体。长时间加热烘烤腔体,除去腔体内壁吸附的水汽及氧等污染物。当腔室真空达到本底真空度8.0×10-5Pa后,通入Ar气,气体流量设定为50sccm,调节沉积腔室内环境压力至1.25Pa,将金属Cr靶材脉冲直流溅射功率调节至300W,占空比为35%~50%,工作15min。金属Cr靶预溅射之后,将双生阴极Al及BN靶分别接入脉冲直流及中频电源。金属Al靶脉冲直流溅射功率调节至300W,占空比为35%~50%,工作10min;BN靶中频电源溅射功率调节至300W,工作10min。该预溅射处理过程,可以除去靶材表面氧化物等杂质污染,活化靶材表面原子,提高靶材溅射速率及增强膜-基结合力。(2)沉积金属Cr过渡层。靶材预溅射完成之后,设定腔体温度为200℃,基体为250℃,转动样品台,使铜-碳合金基体正对金属Cr靶,且与靶材的距离为150mm,调节沉积腔室压力至0.45Pa,采用脉冲直流电源溅射沉积金属Cr过渡层,Cr金属靶溅射功率为400W,占空比为35%~50%,沉积时间为2min,沉积过程中基体加载负偏压,大小为-115V。
3、中频电源共溅射双生阴极Al及BN靶,制备AlN-BN纳米复合结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体处于金属Al靶及BN靶中间位置,且与两靶材的距离为200mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅射双生阴极金属Al靶,Al靶溅射功率为400W,相应地BN靶溅射功率为0W,维持Al靶与BN靶总溅射功率为400W。基体按角速度90°/s匀速旋转。沉积过程中基体加载负偏压,大小为-115V,沉积时间为120min。沉积得到AlN涂层。
4、涂层结构观察:采用SEM观察涂层形貌结构。图2为实施例1(AlN涂层)的SEM断面形貌图,AlN薄膜呈现柱状晶结构,生长连续且膜层致密,金属Cr过渡层为无定型结构。
5、涂层电学性能测试:如图6~10所示,AlN涂层其相对介电系数为10,电阻率为9.7×1014Ω·m,损耗角介电损耗角正切值为4.2‰,耐电压击穿强度为22.5kV/mm。
实施例2
1、基体预处理:(1)溶剂清洗处理。同实施例1。(2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层:(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN-BN纳米复合结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体处于金属Al靶及BN靶中间位置,且与两靶材的距离为200mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅射双生阴极金属Al靶,Al靶溅射功率为300W,相应地BN靶溅射功率为100W,维持Al靶与BN靶总溅射功率为400W。基体按角速度90°/s匀速旋转。沉积过程中基体加载负偏压,大小为-115V,基体按角速度90°/s匀速旋转,沉积时间为120min,沉积得到AlN-BN纳米复合结构涂层。
4、涂层结构观察:采用SEM及TEM观察涂层形貌结构。图3给出实施例2(AlN-32Crl%BN纳米复合涂层)的SEM及HRTEM结构图。
5、涂层电学性能测试:如图6~10所示,当BN含量为32mol%时,该纳米复合结构涂层相对介电系数为9.1,电阻率为8.2×1014Ω·m,损耗角介电损耗角正切值为6.5‰,耐电压击穿强度为17.5kV/mm。
实施例3
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层:(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN-BN纳米复合结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体处于金属Al靶及BN靶中间位置,且与两靶材的距离为200mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅射双生阴极金属Al靶,Al靶溅射功率为200W,相应地BN靶溅射功率为200W,维持Al靶与BN靶总溅射功率为400W。基体按角速度90°/s匀速旋转。沉积过程中基体加载负偏压,大小为-115V,基体按角速度90°/s匀速旋转,沉积时间为120min,沉积得到AlN-BN纳米复合结构涂层。
4、涂层结构观察:采用SEM及TEM观察涂层形貌结构。图4给出实施例3(AlN-53Crl%BN纳米复合涂层)的SEM及HRTEM结构图。
5、涂层电学性能测试:如图6~10所示,当BN含量为53mol%时,该纳米复合结构涂层相对介电系数为7.2,电阻率为5.1×1014Ω·m,损耗角介电损耗角正切值为9.7‰,耐电压击穿强度为15kV/mm。
实施例4
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层:(1)靶材预溅射。同实施例1。
(2)沉积金属过渡层。同实施例1。
3、沉积AlN-BN纳米复合结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体处于金属Al靶及BN靶中间位置,且与两靶材的距离为200mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅射双生阴极金属Al靶,Al靶溅射功率为0W,相应地BN靶溅射功率为400W,维持Al靶与BN靶总溅射功率为400W。基体按角速度90°/s匀速旋转。沉积过程中基体加载负偏压,大小为-115V,沉积时间为120min。沉积得到BN涂层。
4、涂层结构观察:采用SEM观察涂层形貌结构。图5为实施例4(BN涂层)的SEM断面形貌图。
5、涂层电学性能测试:如图6~10所示,BN涂层其相对介电系数为10,电阻率为2.3×1014Ω·m,损耗角介电损耗角正切值为15.1‰,耐电压击穿强度为10kV/mm。
实施例5
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层:
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为10s,控制AlN层单层厚度为4nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为1s,控制BN层单层厚度约为0.2nm;重复如此操作,控制多层膜调制周期约为4.2nm及调制比约为20,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为4nm,BN厚度约为0.2nm(对于多层膜调制周期约为4.2nm,调制比约为20)。
5、涂层电学性能测试:当AlN单层厚度为4nm时,BN厚度为0.2~2nm(对于多层膜调制周期为4.2~6nm,调制比为2~20),薄膜相对介电系数为10(AlN)~15.5(BN厚度为0.5nm),薄膜电阻率随BN厚度增加而降低,变化范围9.7~0.8×1014Ω·m,介电损耗角正切随BN厚度增加而增加,变化范围4.2~31‰,薄膜耐电压击穿强度随BN厚度增加而降低,变化范围22.5~2.5kV/mm。
实施例6
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为10s,控制AlN层单层厚度为4nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为1.5s,控制BN层单层厚度约为0.3nm;重复如此操作,控制多层膜调制周期约为4.3nm及调制比约为13.3,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为4nm,BN厚度约为0.3nm(对于多层膜调制周期约为4.2nm,调制比约为20)。
5、涂层电学性能测试:见实施例5。
实施例7
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层:(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为10s,控制AlN层单层厚度为4nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为2.5s,控制BN层单层厚度约为0.5nm;重复如此操作,控制多层膜调制周期约为4.5nm及调制比约为8,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为4nm,BN厚度约为0.5nm(对于多层膜调制周期约为4.5nm,调制比约为8)。
5、涂层电学性能测试:见实施例5。
实施例8
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层:
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为10s,控制AlN层单层厚度为4nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为3s,控制BN层单层厚度约为0.6nm;重复如此操作,控制多层膜调制周期约为4.6nm及调制比约为6.7,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为4nm,BN厚度约为0.6nm(对于多层膜调制周期约为4.6nm,调制比约为6.7)。
5、涂层电学性能测试:见实施例5。
实施例9
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层:
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层:
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为10s,控制AlN层单层厚度为4nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为4s,控制BN层单层厚度约为0.8nm;重复如此操作,控制多层膜调制周期约为4.8nm及调制比约为5,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为4nm,BN厚度约为0.8nm(对于多层膜调制周期约为4.8nm,调制比约为5)。
5、涂层电学性能测试:见实施例5。
实施例10
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为10s,控制AlN层单层厚度为4nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为6s,控制BN层单层厚度约为1.2nm;重复如此操作,控制多层膜调制周期约为5.2nm及调制比约为3.3,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为4nm,BN厚度约为1.2nm(对于多层膜调制周期约为5.2nm,调制比约为3.3)。
5、涂层电学性能测试:见实施例5。
实施例11
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为10s,控制AlN层单层厚度为4nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为10s,控制BN层单层厚度约为2nm;重复如此操作,控制多层膜调制周期约为6nm及调制比约为2,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为4nm,BN厚度约为2nm(对于多层膜调制周期约为6nm,调制比约为2)。
5、涂层电学性能测试:见实施例5。
实施例5~11(AlN单层厚度均为4nm)纳米多层涂层的TEM结构图参见图11;实施例5~11(AlN单层厚度均为4nm)纳米多层涂层的相对介电系数参见图12;实施例5~11纳米多层涂层的节电损耗角正切值参见图13;实施例5~11纳米多层涂层的电阻率参见图14;实施例5~11纳米多层涂层的耐电压击穿强度参见图15。
实施例12
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。
(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为20s,控制AlN层单层厚度为8nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为1s,控制BN层单层厚度约为0.2nm;重复如此操作,控制多层膜调制周期约为8.2nm及调制比约为40,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为8nm,BN厚度约为0.2nm(对于多层膜调制周期约为8.2nm,调制比约为40)。
5、涂层电学性能测试:当AlN单层厚度为8nm时,BN厚度为0.2~2nm(对于多层膜调制周期为8.2~10nm,调制比为4~40),薄膜相对介电系数为10(AlN)~18.6(BN厚度为0.6nm),薄膜电阻率随BN厚度增加而降低,变化范围9.7~2.5×1014Ω·m,介电损耗角正切随BN厚度增加而增加,变化范围4.2~18‰,薄膜耐电压击穿强度随BN厚度增加而降低,变化范围22.5~7.5kV/mm。
实施例13
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为20s,控制AlN层单层厚度为8nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为1.5s,控制BN层单层厚度约为0.3nm;重复如此操作,控制多层膜调制周期约为8.3nm及调制比约为26.7,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为8nm,BN厚度约为0.3nm(对于多层膜调制周期约为8.3nm,调制比约为26.7)。
5、涂层电学性能测试:见实施例12。
实施例14
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为20s,控制AlN层单层厚度为8nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为2.5s,控制BN层单层厚度约为0.5nm;重复如此操作,控制多层膜调制周期约为8.5nm及调制比约为16,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为8nm,BN厚度约为0.5nm(对于多层膜调制周期约为8.5nm,调制比约为16)。
5、涂层电学性能测试:见实施例12。
实施例15
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为20s,控制AlN层单层厚度为8nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为3s,控制BN层单层厚度约为0.6nm;重复如此操作,控制多层膜调制周期约为8.6nm及调制比约为13.3,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为8nm,BN厚度约为0.6nm(对于多层膜调制周期约为8.6nm,调制比约为13.3)。
5、涂层电学性能测试:见实施例12。
实施例16
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为20s,控制AlN层单层厚度为8nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为4s,控制BN层单层厚度约为0.8nm;重复如此操作,控制多层膜调制周期约为8.8nm及调制比约为10,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为8nm,BN厚度约为0.8nm(对于多层膜调制周期约为8.8nm,调制比约为10)。
5、涂层电学性能测试:见实施例12。
实施例17
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为20s,控制AlN层单层厚度为8nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为6s,控制BN层单层厚度约为1.2nm;重复如此操作,控制多层膜调制周期约为9.2nm及调制比约为6.7,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为8nm,BN厚度约为1.2nm(对于多层膜调制周期约为9.2nm,调制比约为6.7)。
5、涂层电学性能测试:见实施例12。
实施例18
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为20s,控制AlN层单层厚度为8nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为10s,控制BN层单层厚度约为2nm;重复如此操作,控制多层膜调制周期约为10nm及调制比约为4,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为8nm,BN厚度约为2nm(对于多层膜调制周期约为10nm,调制比约为4)。
5、涂层电学性能测试:见实施例12。
实施例12~18(AlN单层厚度均为8nm)纳米多层涂层的TEM结构图参见图16;实施例12~18(AlN单层厚度均为8nm)纳米多层涂层的相对介电系数参见图17;实施例12~18纳米多层涂层的节电损耗角正切值参见图18;实施例12~18纳米多层涂层的电阻率参见图19;实施例12~18纳米多层涂层的耐电压击穿强度参见图20。
实施例19
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。
(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为30s,控制AlN层单层厚度为12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为1s,控制BN层单层厚度约为0.2nm;重复如此操作,控制多层膜调制周期约为12.2nm及调制比约为60,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为12nm,BN厚度约为0.2nm(对于多层膜调制周期约为12.2nm,调制比约为60)。
5、涂层电学性能测试:当AlN单层厚度为12nm时,BN厚度为0.2~2nm(对于多层膜调制周期为12.2~14nm,调制比为6~60),薄膜相对介电系数为10(AlN)~17.2(BN厚度为0.6nm),薄膜电阻率随BN厚度增加而降低,变化范围9.7~4.1×1014Ω·m,介电损耗角正切随BN厚度增加而增加,变化范围4.2~12.5‰,薄膜耐电压击穿强度随BN厚度增加而降低,变化范围22.5~10kV/mm。
实施例20
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为30s,控制AlN层单层厚度为12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为1.5s,控制BN层单层厚度约为0.3nm;重复如此操作,控制多层膜调制周期约为12.3nm及调制比约为40,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为12nm,BN厚度约为0.3nm(对于多层膜调制周期约为12.3nm,调制比约为40)。
5、涂层电学性能测试:见实施例19。
实施例21
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为30s,控制AlN层单层厚度为12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为2.5s,控制BN层单层厚度约为0.5nm;重复如此操作,控制多层膜调制周期约为12.5nm及调制比约为24,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为12nm,BN厚度约为0.5nm(对于多层膜调制周期约为12.5nm,调制比约为24)。
5、涂层电学性能测试:见实施例19。
实施例22
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为30s,控制AlN层单层厚度为12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为3s,控制BN层单层厚度约为0.6nm;重复如此操作,控制多层膜调制周期约为12.6nm及调制比约为20,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为12nm,BN厚度约为0.6nm(对于多层膜调制周期约为12.6nm,调制比约为20)。
5、涂层电学性能测试:见实施例19。
实施例23
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为30s,控制AlN层单层厚度为12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为4s,控制BN层单层厚度约为0.8nm;重复如此操作,控制多层膜调制周期约为12.8nm及调制比约为15),交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为12nm,BN厚度约为0.8nm(对于多层膜调制周期约为12.8nm,调制比约为15)。
5、涂层电学性能测试:见实施例19。
实施例24
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为30s,控制AlN层单层厚度为12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为6s,控制BN层单层厚度为1.2nm;重复如此操作,控制多层膜调制周期约为13.2nm及调制比约为10,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察
采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为12nm,BN厚度约为1.2nm(对于多层膜调制周期约为13.2nm,调制比约为10)。
5、涂层电学性能测试:见实施例19。
实施例25
1、基体预处理:1)溶剂清洗处理。同实施例1。2)离子源轰击清洗处理。同实施例1。
2、先在铜-碳合金基体表面磁控溅射沉积金属Cr过渡层
(1)靶材预溅射。同实施例1。(2)沉积金属过渡层。同实施例1。
3、沉积AlN/BN纳米多层结构涂层
在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%。调节沉积腔室压力至0.35Pa,采用中频电源溅金属双生Al靶,溅射功率为400W,沉积时间为30s,控制AlN层单层厚度为12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅金属双生BN靶,溅射功率为400W,沉积时间为10s,控制BN层单层厚度约为2nm;重复如此操作,控制多层膜调制周期约为14nm及调制比约为6,交替沉积得到AlN/BN纳米多层结构涂层。
4、涂层结构观察:采用TEM观察涂层形貌结构。TEM结果表明AlN/BN纳米多层结构涂层具有规则分层结构,AlN与BN层交替生长,厚度均匀,AlN与BN层之间具有共格生长关系。AlN单层厚度约为12nm,BN厚度约为2nm(对于多层膜调制周期约为14nm,调制比约为6)。
5、涂层电学性能测试:见实施例19。
实施例19~25(AlN单层厚度均为12nm)纳米多层涂层的TEM结构图参见图21;实施例19~25(AlN单层厚度均为12nm)纳米多层涂层的相对介电系数参见图22;实施例19~25纳米多层涂层的节电损耗角正切值参见图23;实施例19~25纳米多层涂层的电阻率参见图24;实施例19~25纳米多层涂层的耐电压击穿强度参见图25。

Claims (1)

1.一种相对介电系数可调氮化铝涂层的制备方法,其特征在于包括以下步骤:
(1)在铜-碳合金表面用脉冲直流溅射沉积Cr过渡层:将沉积腔室工作温度加热至250℃,基体加热至350℃,并抽取沉积腔室内气体,除去腔体内壁吸附的水汽及氧等污染物,当沉积腔室真空达到本底真空度8.0×10-5Pa后,通入Ar气,气体流量设定为50sccm,调节沉积腔室内环境压力至1.25Pa,将金属Cr靶材脉冲直流溅射功率调节至300W,占空比为35%~50%,工作15min;金属Cr靶预溅射之后,将双生阴极Al及BN靶分别接入脉冲直流及中频电源;金属Al靶脉冲直流溅射功率调节至300W,占空比为35%~50%,工作10min;BN靶中频电源溅射功率调节至300W,工作10min;Cr、Al、BN靶预溅射完成之后,设定沉积腔体温度为200℃,基体为250℃,转动样品台,使铜-碳合金基体正对金属Cr靶,且与靶材的距离为150mm,调节沉积腔室压力至0.45Pa,采用脉冲直流电源溅射沉积金属Cr过渡层,Cr金属靶溅射功率为400W,占空比为35%~50%,沉积时间为2min,沉积过程中基体加载负偏压为-115V。
(2)用中频电源共溅射双生阴极Al及BN靶,制备AlN-BN纳米复合结构涂层:在金属Cr过渡层沉积完成之后,维持沉积腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体处于金属Al靶及BN靶中间位置,且与两靶材的距离为200mm,此时通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%;调节沉积腔室压力至0.35Pa,同时采用中频电源溅射双生阴极Al及BN靶,Al靶溅射功率为0~400W,相应地BN靶溅射功率为400~0W,维持Al与BN靶总溅射功率为400W。沉积过程中基体加载负偏压为-115V,基体按角速度90°/s匀速旋转,沉积时间为120min,沉积得到AlN-BN纳米复合结构涂层。
(3)交替反应溅射沉积AlN及BN单层膜,完成铜-碳合金基体表面制备相对介电系数可调AlN涂层:在金属Cr过渡层沉积完成之后,维持腔体温度为200℃及基体为250℃,转动样品台,使铜-碳合金基体正对金属Al靶位置,且与Al靶距离为150mm,通入N2气,调节流量,使得Ar气与N2气总流量为50sccm,N2分压比为30%;调节沉积腔室压力至0.35Pa,采用中频电源溅双生阴极Al靶,溅射功率为400W,沉积时间为0~30s,控制AlN层单层厚度为0~12nm;将基体转至正对BN靶位置,且与BN靶距离为150mm,关闭Al靶靶挡板,采用中频电源溅双生阴极BN靶,溅射功率为400W,沉积时间为1~10s,控制BN层单层厚度为0~2nm;重复如此操作,控制多层膜调制周期为4.2~14nm及调制比为2~60,交替沉积得到AlN/BN纳米多层结构涂层。
CN201610399691.6A 2016-06-07 2016-06-07 一种相对介电系数可调氮化铝涂层的制备方法 Expired - Fee Related CN105803407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610399691.6A CN105803407B (zh) 2016-06-07 2016-06-07 一种相对介电系数可调氮化铝涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610399691.6A CN105803407B (zh) 2016-06-07 2016-06-07 一种相对介电系数可调氮化铝涂层的制备方法

Publications (2)

Publication Number Publication Date
CN105803407A CN105803407A (zh) 2016-07-27
CN105803407B true CN105803407B (zh) 2018-04-10

Family

ID=56428043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610399691.6A Expired - Fee Related CN105803407B (zh) 2016-06-07 2016-06-07 一种相对介电系数可调氮化铝涂层的制备方法

Country Status (1)

Country Link
CN (1) CN105803407B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831744B (zh) * 2018-05-24 2020-07-03 天津大学 一种提高聚丙烯薄膜的散热方法
CN114824229B (zh) * 2022-05-23 2024-05-28 厦门大学 一种二次锌电池负极银掺杂氮化铝涂层的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026119A (zh) * 2005-12-21 2007-08-29 通用电气公司 耐蚀刻晶片处理装置和其制造方法
CN101157289A (zh) * 2007-11-13 2008-04-09 江苏科技大学 AlN/Si3N4纳米多层硬质涂层及其制备方法
CN101157288A (zh) * 2007-11-13 2008-04-09 江苏科技大学 AlN/BN超硬纳米结构多层膜及其制备方法
JP2008260974A (ja) * 2007-04-10 2008-10-30 Showa Denko Kk Gaスパッタターゲットの製造方法
CN103820763A (zh) * 2014-02-21 2014-05-28 厦门大学 一种在金刚石/铜复合基体表面制备Mo/AlN/BN涂层的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026119A (zh) * 2005-12-21 2007-08-29 通用电气公司 耐蚀刻晶片处理装置和其制造方法
JP2008260974A (ja) * 2007-04-10 2008-10-30 Showa Denko Kk Gaスパッタターゲットの製造方法
CN101157289A (zh) * 2007-11-13 2008-04-09 江苏科技大学 AlN/Si3N4纳米多层硬质涂层及其制备方法
CN101157288A (zh) * 2007-11-13 2008-04-09 江苏科技大学 AlN/BN超硬纳米结构多层膜及其制备方法
CN103820763A (zh) * 2014-02-21 2014-05-28 厦门大学 一种在金刚石/铜复合基体表面制备Mo/AlN/BN涂层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Structure transition of BN layers and its influences on the mechanical properties of AlN/BN nanomultilayers;Junhua Xu et al.;《Thin Solid Films》;20080525;第8640-8645页 *

Also Published As

Publication number Publication date
CN105803407A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
Zhang et al. Plasma-enhanced pulsed-laser deposition of single-crystalline M o 2 C ultrathin superconducting films
Ahmadipour et al. Effect of Ar: N2 flow rate on morphology, optical and electrical properties of CCTO thin films deposited by RF magnetron sputtering
Liu et al. Effect of nano-sized TiN additions on the electrical properties of vacuum cold sprayed SiC coatings
CN108468032B (zh) 一种塑性提升的纳米晶薄膜制备方法
CN105803407B (zh) 一种相对介电系数可调氮化铝涂层的制备方法
WO1994019509A1 (en) Film forming method and film forming apparatus
Jang et al. A single gas barrier layer of high-density Al2O3 formed by neutral beam-assisted sputtering at room temperature
CN109763099B (zh) 一种二硫化钼薄膜的制备方法
CN102179970B (zh) 导热材料及其制备工艺,以及使用该导热材料的led线路板
CN108914064B (zh) 一种rpd用多元导电氧化物材料及其制备方法
CN103820763B (zh) 一种在金刚石/铜复合基体表面制备Mo/AlN/BN涂层的方法
US10046360B2 (en) Method for manufacturing aluminum electrode using solution process
CN105420679B (zh) 一种孪生对靶磁控溅射制备覆铜陶瓷基板的装置及方法
Kim et al. Application of Al2O3-based polyimide composite thick films to integrated substrates using aerosol deposition method
Rong et al. Surface metallization of alumina ceramics by pulsed high energy density plasma process
CN112038481B (zh) 重稀土掺杂ZnO柱状晶择优取向压电薄膜材料及其制备方法
El-ladan et al. Development of AlNB alloy in (Al/AlN/B) stacking sequence using RF reactive sputtering towards thermal management application
JPH0624221B2 (ja) 高熱伝導性絶縁基板およびその製法
US20120127659A1 (en) Heating spreading element with aln film and method for manufacturing the same
Wang et al. Room temperature fabrication of MIMCAPs via aerosol deposition
Chiu et al. Atmospheric-pressure-plasma-jet sintered nanoporous AlN/CNT composites
Hashizume et al. Fabrication of Tantalum nitride thin film using the low vacuum magnetron sputtering system
CN112376028A (zh) 一种Sn掺杂Ge2Sb2Te5热电薄膜及其制备方法
Lu et al. Effect of sputtering power on the properties of TaN thin films prepared by the magnetron sputtering
CN113151793B (zh) 一种高强度高塑性铜铝纳米金属多层膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180410

Termination date: 20190607

CF01 Termination of patent right due to non-payment of annual fee