CN116462496B - 一种介电陶瓷的制备方法和产品 - Google Patents

一种介电陶瓷的制备方法和产品 Download PDF

Info

Publication number
CN116462496B
CN116462496B CN202310505197.3A CN202310505197A CN116462496B CN 116462496 B CN116462496 B CN 116462496B CN 202310505197 A CN202310505197 A CN 202310505197A CN 116462496 B CN116462496 B CN 116462496B
Authority
CN
China
Prior art keywords
ball milling
powder
drying
hours
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310505197.3A
Other languages
English (en)
Other versions
CN116462496A (zh
Inventor
王静
赵明
朱元吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Vocational University
Original Assignee
Suzhou Vocational University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Vocational University filed Critical Suzhou Vocational University
Priority to CN202310505197.3A priority Critical patent/CN116462496B/zh
Publication of CN116462496A publication Critical patent/CN116462496A/zh
Application granted granted Critical
Publication of CN116462496B publication Critical patent/CN116462496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于介电陶瓷技术领域,具体涉及一种介电陶瓷的制备方法和产品。所述制备方法包括以下步骤:(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;(2)按照结构式为Sr1‑x‑y‑zZnxMnyBazAl2Si2O8;其中x=0.001~0.005;y=0.002~0.006;z=0.01~0.05,称量原料,采用湿法球磨,进行球磨;(3)球磨后的粉体烘干,预煅烧;(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在50~90MPa下压制成胚体,然后将胚体于400~500℃下排胶3~5h,然后在1300~1400℃下烧结3~6h,然后自然冷却至室温得到介电陶瓷。所述介电陶瓷的介电常数εr为7.45~8.19,品质因数Q×f为4.91×104~5.01×104GHz,温度系数为τf为‑27.2~‑27.9ppm/℃。

Description

一种介电陶瓷的制备方法和产品
技术领域
本发明属于介电陶瓷技术领域。更具体地,涉及一种介电陶瓷的制备方法和产品。
背景技术
微波介质陶瓷就是应用于微波频段电路中作为介质材料并完成一种或多种功能的陶瓷。目前,低介电常数介质陶瓷运用在雷达、移动通讯、微波基片及电子封装等重要领域。
锶长石(SrAl2Si2O8,SAS)是一种介电常数小(εr≈7)、品质因数较低(Q×f≈15000GHz)、谐振频率温度系数为负(τf=-30.32×10-6/℃)的微波介质陶瓷。主要晶型有3种形式:六方相、单斜相和正交相。六方相为高温亚稳相,具有高热膨胀系数(~8×10-6/℃),在578℃下与正交相发生可逆相变,这一过程会伴随约为3%的体积膨胀,可能造成基体开裂。而单斜锶长石相抗氧化能力强,熔点高(~1650℃)和热膨胀系数低(~2.5×10-6/℃),在低于1500℃时能够稳定存在,不发生相转变。
CN102365249B公开了一种具有高介电常数和经抑制的低热膨胀系数的介电陶瓷组合物。还公开了一种使用该介电陶瓷组合物的多层介电基板,和电子部件。具体地公开了一种含有ATiO3(其中A代表Ca和/或Sr中任一种)相和AAl2Si2O8相,所述的介电陶瓷组合物的特征在于:介电常数在3GHz下不小于10以及在40-600℃温度内的平均热膨胀系数小于7ppm/℃。
综上所述,现有技术中对SrAl2Si2O8介电陶瓷改性进而改善介电常数以及品质因数,但是并不能保证温度系数,或者其他温度系数能够保证,但是介电常数和品质因数较差。
发明内容
本发明要解决的技术问题是克服现有技术中存在的缺陷和不足,提供一种介电陶瓷的制备方法和产品。所述制备方法包括以下步骤:(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;(2)按照结构式为Sr1-x-y-zZnxMnyBazAl2Si2O8;其中x=0.001~0.005;y=0.002~0.006;z=0.01~0.05,称量原料,采用湿法球磨,进行球磨;(3)球磨后的粉体烘干,预煅烧;(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在50~90MPa下压制成胚体,然后将胚体于400~500℃下排胶3~5h,然后在1300~1400℃下烧结3~6h,然后自然冷却至室温得到介电陶瓷。所述介电陶瓷的介电常数εr为7.45~8.19,品质因数Q×f为4.91×104~5.01×104GHz,温度系数为τf为-27.2~-27.9ppm/℃。
本发明的目的是提供一种介电陶瓷的制备方法。
本发明另一目的是提供一种介电陶瓷。
本发明上述目的通过以下技术方案实现:
一种介电陶瓷的制备方法,所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;
(2)按照结构式为Sr1-x-y-zZnxMnyBazAl2Si2O8;其中x=0.001~0.005;y=0.002~0.006;z=0.01~0.05,称量原料,采用湿法球磨,进行球磨;
(3)球磨后的粉体烘干,预煅烧;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在50~90MPa下压制成胚体,然后将胚体于400~500℃下排胶3~5h,然后在1300~1400℃下烧结3~6h,然后自然冷却至室温得到介电陶瓷。
优选的,在步骤(4)中,所述预烧后的粉体和烧结助剂的质量比为:1:0.005~0.015。
优选的,在步骤(4)中,所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.2~0.8:0.4~1。
优选的,在步骤(2)中,所述球磨介质为无水乙醇,所述球磨时间为10~20h,转速为350~450r/min。
优选的,在步骤(1)中,配料前将原料在100~140℃烘干10~20h。
优选的,在步骤(3)中,所述预煅烧的条件是在800~900℃预煅烧2~4h,升温速率为2~4℃/min。
优选的,在步骤(3)中,所述烘干的温度为100~140℃,干燥时间为8~12h。
优选的,在步骤(4)中,所述球磨时间为6~10h,转速为350~450r/min。
优选的,在步骤(5)中,所述将胚体于400~500℃下排胶3~5h,然后在1300~1400℃下烧结3~6h,具体为从室温以1~3℃/min升温至400~500℃,排胶3~5h,然后以5~7℃/min升温至1300~1400℃烧结3~6h。
基于上述所述的一种介电陶瓷的制备方法制备的介电陶瓷,所述介电陶瓷的介电常数εr为7.45~8.19,品质因数Q×f为4.91×104~5.01×104GHz,温度系数为τf为-27.2~-27.9ppm/℃。
本发明具有以下有益效果:
(1)本发明通过添加改性组分以及优化烧结助剂,显著改善了介电陶瓷的的介电常数、品质因数和温度系数等,而且发现本申请的添加的改善组分和烧结助剂之间具有相互作用,正是由于组分的相互作用改善了介电陶瓷的综合性能。
(2)本发明制备工艺简单,成本低,有利于工业化生产。
具体实施方式
以下结合具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.003Mn0.004Ba0.03Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.4:0.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
实施例2
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在140℃烘干10h;
(2)按照结构式为Sr0.943Zn0.005Mn0.002Ba0.05Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为10h,转速为450r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为140℃,干燥时间为8h,所述预煅烧的条件是在900℃预煅烧2h,升温速率为4℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为6h,转速为450r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.015;所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.8:0.4;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在90MPa下压制成胚体,然后将胚体从室温以3℃/min升温至500℃下排胶3h,然后以7℃/min升温至1400℃下烧结3h,然后自然冷却至室温得到介电陶瓷。
实施例3
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在100℃烘干20h;
(2)按照结构式为Sr0.983Zn0.001Mn0.006Ba0.01Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为20h,转速为350r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为100℃,干燥时间为12h,所述预煅烧的条件是在800℃预煅烧4h,升温速率为2℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为10h,转速为350r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.005;所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.2:1;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在50MPa下压制成胚体,然后将胚体从室温以1℃/min升温至400℃下排胶5h,然后以5℃/min升温至1300℃下烧结6h,然后自然冷却至室温得到介电陶瓷。
对比例1
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.007Ba0.03Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.4:0.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
对比例2
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Mn0.007Ba0.03Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.4:0.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
对比例3
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.003Mn0.034Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.4:0.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
对比例4
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.003Ba0.034Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.4:0.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
对比例5
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.003Mn0.004Ba0.03Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为CuO和Al2O3,其中CuO和Al2O3的质量比为:1.4:0.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
对比例6
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.003Mn0.004Ba0.03Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为ZnO和Al2O3,其中ZnO和Al2O3的质量比为:1.4:0.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
对比例7
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.003Mn0.004Ba0.03Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为CuO和ZnO,其中CuO和ZnO的质量比为:1.6:0.4;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
对比例8
一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.003Mn0.004Ba0.03Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min。所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为ZnO和Al2O3,其中ZnO和Al2O3的质量比为:0.4:1.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
将上述实施例1-3和对比例1-8所获得的微波介质陶瓷进行研磨抛光,得到表面平整光滑的陶瓷成品,采用Agilent N5230A型矢量网络分析仪测试陶瓷介电常数和品质因数,测试频率在11.5GHz左右:采用Espec MC-710P型小型高低温试验箱分别测试陶瓷样品在25℃和85℃条件下的中心谐振频率,再利用公式计算陶瓷试样的谐振频率温度系数:τf=(f85-f25)/(60×f25)。
表1
εr Q×f(×104GHz) τf(ppm/℃)
实施例1 8.19 5.01 -27.2
实施例2 7.45 4.91 -27.9
实施例3 7.93 4.98 -27.5
对比例1 7.25 4.71 -29.9
对比例2 7.35 4.83 -28.9
对比例3 7.29 4.73 -29.6
对比例4 7.31 4.75 -29.4
对比例5 7.32 4.76 -29.3
对比例6 7.36 4.85 -28.6
对比例7 7.34 4.81 -29.1
对比例8 7.38 4.87 -28.3
由表1可以看出,本发明的一种介电陶瓷,利用了改性组分以及烧结助剂之间的相互配合,使得介电陶瓷的的介电常数εr为8.19,最优的品质因数Q×f为5.01×104GHz,而且温度系数τf达到-27.2ppm/℃。因而本申请制备的介电陶瓷具有优异的微波性能,具有良好的应用前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

1.一种介电陶瓷的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)以纯度均为99.9%的SrCO3、ZnO、MnO、BaCO3、Al2O3和SiO2粉末为原料;配料前将原料在120℃烘干15h;
(2)按照结构式为Sr0.963Zn0.003Mn0.004Ba0.03Al2Si2O8称量原料,采用湿法球磨,球磨介质为无水乙醇,进行球磨;所述球磨时间为15h,转速为400r/min;
(3)球磨后的粉体烘干,预煅烧;所述烘干的温度为120℃,干燥时间为10h,所述预煅烧的条件是在850℃预煅烧3h,升温速率为3℃/min;
(4)将预烧后的粉体和烧结助剂放入到玛瑙研钵中,进行二次球磨;所述球磨时间为8h,转速为400r/min,所述预烧后的粉体和烧结助剂的质量比为:1:0.01;所述烧结助剂为CuO、ZnO和Al2O3,其中CuO、ZnO和Al2O3的质量比为:1:0.4:0.6;
(5)二次球磨后的粉体烘干,加入到陶瓷研钵中,加入5wt%的PVA溶液,混合均匀后,进行造粒,在70MPa下压制成胚体,然后将胚体从室温以2℃/min升温至450℃下排胶4h,然后以6℃/min升温至1350℃下烧结5h,然后自然冷却至室温得到介电陶瓷。
2.根据权利要求1所述的制备方法制备得到的介电陶瓷,其特征在于:所述介电陶瓷的介电常数εr为8.19,品质因数Q×f为5.01×104GHz,温度系数τf为-27.2ppm/℃。
CN202310505197.3A 2023-05-08 2023-05-08 一种介电陶瓷的制备方法和产品 Active CN116462496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310505197.3A CN116462496B (zh) 2023-05-08 2023-05-08 一种介电陶瓷的制备方法和产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310505197.3A CN116462496B (zh) 2023-05-08 2023-05-08 一种介电陶瓷的制备方法和产品

Publications (2)

Publication Number Publication Date
CN116462496A CN116462496A (zh) 2023-07-21
CN116462496B true CN116462496B (zh) 2024-02-27

Family

ID=87173572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310505197.3A Active CN116462496B (zh) 2023-05-08 2023-05-08 一种介电陶瓷的制备方法和产品

Country Status (1)

Country Link
CN (1) CN116462496B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121174A (en) * 1996-09-26 2000-09-19 Ngk Spark Plug Co., Ltd. Dielectric material with low temperature coefficient and high quality
KR20030002412A (ko) * 2001-06-29 2003-01-09 홍국선 위상변환기용 유전체 세라믹 조성물
CN1566020A (zh) * 2003-07-08 2005-01-19 国巨股份有限公司 温度补偿型陶瓷组合物、烧结助剂系统及层压陶瓷组件
CN111635222A (zh) * 2020-06-24 2020-09-08 西华大学 一种基于单斜相的低介微波介质陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121174A (en) * 1996-09-26 2000-09-19 Ngk Spark Plug Co., Ltd. Dielectric material with low temperature coefficient and high quality
KR20030002412A (ko) * 2001-06-29 2003-01-09 홍국선 위상변환기용 유전체 세라믹 조성물
CN1566020A (zh) * 2003-07-08 2005-01-19 国巨股份有限公司 温度补偿型陶瓷组合物、烧结助剂系统及层压陶瓷组件
CN111635222A (zh) * 2020-06-24 2020-09-08 西华大学 一种基于单斜相的低介微波介质陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
The synthesis and microwave dielectric properties of SrxBa1-xAl2Si2O8 and CayBa-yAl2Si2O8 ceramics;Marjeta Macek Krzmanc et al.;《Journal of the European Ceramic Society》;第27卷;摘要,图5 *
离子取代对SrAl2Si2O8系微波介质陶瓷的结构和性能研究;朱惠;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》(第2期);第19页第3段,图2.1,第20页表2.2,第21页第1-6段,第22页第1段,第30页第1-3段,第47页第4段,第67页第3段 *

Also Published As

Publication number Publication date
CN116462496A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
CN109608050B (zh) 一种高频低介低损耗微晶玻璃/陶瓷系ltcc基板材料及其制备方法
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN110540420B (zh) 一种低烧结温度低介微波介质陶瓷及其制备方法
CN112341189B (zh) 一种温度稳定型低介电常数微波介质陶瓷及其制备方法
CN114409389B (zh) 一种低介低损Ba-Si-B-M基LTCC材料及其制备方法
CN111302775B (zh) 一种具有高品质因数低介电常数的陶瓷材料及其制备方法
CN107827452B (zh) 一种利用空气淬火降低钛酸铜钙陶瓷损耗的方法
CN111170733A (zh) 一种低介电损耗介质陶瓷及其制备方法
CN111925199B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN111320471B (zh) 适用于超低温烧结的微波介质材料及其制备方法
CN111470776B (zh) 一种高频低损耗玻璃陶瓷材料及其制备方法
CN116462496B (zh) 一种介电陶瓷的制备方法和产品
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN115650713B (zh) 一种5g通信用微波介质陶瓷材料及其制备方法
CN112759383B (zh) 一种中介电常数微波介质陶瓷及其制备方法
CN114409396B (zh) 高温度稳定型wifi用微波介质陶瓷及其制备方法
CN112939595B (zh) 高温下近零温度系数的微波介质陶瓷材料及其制备方法
CN113548888B (zh) 一种频率温度系数改善的微波介质材料及其制备方法
CN112266238B (zh) 一种微波器件用的低介电常数陶瓷材料及其制备方法
CN105399413A (zh) 一种低介电常数、低损耗的微波介质陶瓷及制备方法
CN111960821B (zh) 一种微波介质陶瓷材料及其制备方法和应用
CN111943673B (zh) 一种低温烧结bnt微波介质材料及其制备方法
CN111635226B (zh) 一种低介电常数陶瓷材料及其制备方法
KR100842854B1 (ko) 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
CN113248265A (zh) 一种叠层高频电感用材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant