CN116460538A - 一种商用车车轮成型工艺 - Google Patents

一种商用车车轮成型工艺 Download PDF

Info

Publication number
CN116460538A
CN116460538A CN202310399115.1A CN202310399115A CN116460538A CN 116460538 A CN116460538 A CN 116460538A CN 202310399115 A CN202310399115 A CN 202310399115A CN 116460538 A CN116460538 A CN 116460538A
Authority
CN
China
Prior art keywords
corrosion inhibition
monomer
corrosion
coated
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310399115.1A
Other languages
English (en)
Other versions
CN116460538B (zh
Inventor
董琦
彭桂云
万金华
王飞
夏程强
孙益
周金凤
张彤
茆文
罗永辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Pomlead Co ltd
Original Assignee
Jiangsu Pomlead Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Pomlead Co ltd filed Critical Jiangsu Pomlead Co ltd
Priority to CN202310399115.1A priority Critical patent/CN116460538B/zh
Publication of CN116460538A publication Critical patent/CN116460538A/zh
Application granted granted Critical
Publication of CN116460538B publication Critical patent/CN116460538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明涉及铝合金车轮防腐涂装技术领域,且公开了一种商用车车轮成型工艺,包括如下步骤:加热、墩粗、旋转锻造、热冲孔、热旋压、热处理、机加工、涂装,所述涂装工艺使用环氧富锌‑石墨烯涂料作为底漆,并且在环氧富锌‑石墨烯涂料中加入有对A356合金具有较好缓蚀效果的包覆型缓蚀纳米粒子,其制备方法:利用曼尼希反应机理,以含有芳环活泼氢的苯并三氮唑和甲醛及氨基官能团化负载单体同时发生胺甲基化反应,生成结构为负载有苯并三氮唑基团的缓蚀单体,其作为缓蚀剂、醋酸锌为锌源、2‑甲基咪唑为有机配体,通过锌与2‑甲基咪唑和缓蚀单体上氮原子之间的配位作用,把缓蚀单体包封固定在金属有机骨架ZIF‑8的纳米容器内。

Description

一种商用车车轮成型工艺
技术领域
本发明涉及铝合金车轮防腐涂装技术领域,具体为一种商用车车轮成型工艺。
背景技术
铝合金车轮具有质量轻、散热性能好、外观多样、安全等优点广泛用于轿车,其是汽车的重要安全件。而铝的标准电极电位低(-1.67 V/SHE),属于是一种活泼金属,在空气中易生成钝化膜,但在腐蚀环境下一般的铝合金钝化膜难以提供长期有效的防护作用。因此,铝合金在实际应用中,需施加严格的腐蚀防护措施。
发明内容
本发明的技术目的是提供一种新包覆型缓蚀纳米粒子,把其加入环氧富锌-石墨烯涂料中,以此作为底漆涂装在经过机加工处理的铝合金车轮表面,改善铝合金车轮防腐的能力。
为了实现上述技术目的,提供如下的技术方案:
一种商用车车轮成型工艺,该成型工艺以A356合金棒料为原料,具体包括如下工艺步骤:加热、墩粗、旋转锻造、热冲孔、热旋压、热处理、机加工、涂装,所述涂装工艺使用环氧富锌-石墨烯涂料作为底漆,并且在环氧富锌-石墨烯涂料中加入有包覆型缓蚀纳米粒子,其具体制备方法如下:利用曼尼希反应机理,以含有芳环活泼氢的苯并三氮唑和甲醛及氨基官能团化负载单体同时发生胺甲基化反应,生成结构为负载有苯并三氮唑基团的缓蚀单体,其作为缓蚀剂、醋酸锌为锌源、2-甲基咪唑为有机配体,通过锌与2-甲基咪唑和缓蚀单体上氮原子之间的配位作用,把缓蚀单体包封固定在金属有机骨架ZIF-8的纳米容器内,制备得到包覆型缓蚀纳米粒子。
优选的,所述包覆型缓蚀纳米粒子包括:包覆型缓蚀纳米粒子CCIN-Ⅰ和/或包覆型缓蚀纳米粒子CCIN-Ⅱ。
优选的,所述缓蚀单体包括:缓蚀单体CIM-Ⅰ和/或缓蚀单体CIM-Ⅱ。
优选的,所述氨基官能团化负载单体包括:氨基官能团化负载单体L-M-Ⅰ和/或八氨基笼型倍半硅氧烷。
优选的,所述氨基官能团化负载单体L-M-Ⅰ的制备方法如下:以季戊四醇为联接基、3-氯丙胺盐酸盐为原料,通过亲核试剂季戊四醇的醇羟基官能团与3-氯丙胺盐酸盐的氯官能团发生亲核取代反应生成氨基官能团化负载单体L-M-Ⅰ。
优选的,所述涂装工艺包括如下步骤:
步骤S1,把X10稀释剂加入环氧富锌-石墨烯涂料中,得到底漆Ⅰ;
步骤S2,把包覆型缓蚀纳米粒子超声分散在底漆Ⅰ中,得到含有包覆型缓蚀纳米粒子的底漆Ⅱ;
步骤S3,利用喷枪把底漆Ⅱ喷涂在经过机加工处理的铝合金车轮表面上,其喷涂厚度为(85±5)µm;
步骤S6-4,喷涂结束之后,干燥固化得到铝合金车轮。
优选的,所述步骤S1,X10稀释剂用量为环氧富锌-石墨烯涂料的15-35wt%。
优选的,所述步骤S2,包覆型缓蚀纳米粒子的用量为3-10wt%。
优选的,所述步骤S3,喷涂分为三步,每一步喷涂20~30µm,并且每一次间隔3-10min。
与现有技术相比,本发明具备以下有益的技术效果:
利用曼尼希反应机理合成了负载有苯并三氮唑基团的新型缓蚀单体,以其为缓蚀剂、醋酸锌为锌源、2-甲基咪唑为有机配体,通过锌与2-甲基咪唑和缓蚀单体上氮原子之间的配位作用,把缓蚀单体包封固定在金属有机骨架ZIF-8的纳米容器内,制备包覆有缓蚀单体的包覆型缓蚀纳米粒子;
通过实验可知,包覆型缓蚀纳米粒子对A356合金具有较好的缓蚀效果,因此将包覆型缓蚀纳米粒子加入环氧富锌-石墨烯涂料,以此作为底漆涂装在经过机加工处理的铝合金车轮表面;
其中,包覆型缓蚀纳米粒子主要通过苯并三氮唑基团与铝表面发生吸附而起缓蚀作用,并且包覆型缓蚀纳米粒子CCIN-Ⅰ的缓蚀性能要优于包覆型缓蚀纳米粒子CCIN-Ⅱ,据此可知缓蚀单体的分子结构直接影响其缓蚀效率。
附图说明
图1为氨基官能团化负载单体L-M-Ⅰ的化学结构式;
图2为缓蚀单体CIM-Ⅰ的化学结构式;
图3为缓蚀单体CIM-Ⅱ的化学结构式;
图4为包覆型缓蚀纳米粒子CCIN在盐酸溶液中缓蚀速率柱状图;
图5为包覆型缓蚀纳米粒子CCIN在氯化钠溶液中缓蚀速率柱状图。
具体实施方式
实施例1:
氨基官能团化负载单体L-M-Ⅰ:其合成机理如下:以季戊四醇为联接基、3-氯丙胺盐酸盐为原料,通过亲核试剂季戊四醇的醇羟基官能团与3-氯丙胺盐酸盐的氯官能团发生亲核取代反应生成氨基官能团化负载单体L-M-Ⅰ;
氨基官能团化负载单体L-M-Ⅰ的具体合成步骤如下:
向三口烧瓶中加入40mL二甲基亚砜、10mL去离子水、3.4g氢氧化钠、1.36g季戊四醇,首先搅拌形成均一溶液,然后在搅拌条件下采用恒压滴液漏斗缓慢滴加20mL溶解有13g3-氯丙胺盐酸盐的水溶液,滴加完毕之后,在温度60℃下回流反应8h,过滤,利用四氢呋喃洗涤、减压除去溶剂,得到氨基官能团化负载单体L-M-Ⅰ,其化学结构式如图1所示;
氨基官能团化负载单体L-M-Ⅰ的核磁共振谱表征结果为:
1H NMR(400MHz,CDCl3),δ:3.79(s,8H),3.35(t,8H),2.68(t,8H),1.73(m,8H),1.11(s,8H);
13C NMR(100MHz,CDCl3),δ:70.7(t,4个CH2),66.5(t,4个CH2),44.8(s,C),39.6(t,4个CH2),29.1(t,4个CH2)。
实施例2:
制备缓蚀单体CIM-Ⅰ:其合成机理如下:以含有芳环活泼氢的苯并三氮唑和甲醛及氨基官能团化负载单体L-M-Ⅰ同时发生胺甲基化反应生成结构为缓蚀单体CIM-Ⅰ的一种新型曼尼希碱;
缓蚀单体CIM-Ⅰ的具体合成步骤如下:
在装有电动搅拌器和回流装置的三口烧瓶中加入1.2g苯并三氮唑、0.3g甲醛、0.9g氨基官能团化负载单体L-M-Ⅰ、30mL蒸馏水,在温度25℃下搅拌回流反应6h,冷却至室温,蒸馏,利用无水乙醇沉淀和抽提,在40℃下真空干燥至恒重,得到缓蚀单体CIM-Ⅰ,其化学结构式如图2所示;
缓蚀单体CIM-Ⅰ的核磁共振谱表征结果为:
1H NMR(400MHz,CDCl3),δ:8.24(s,2H),7.85-7.93(m,8H),7.43(m,2H),5.67-5.92(m,8H),3.76(s,8H),3.35(t,8H),2.53(t,8H),1.59(m,8H),1.1(s,4H);
13C NMR(100MHz,CDCl3),δ:145.2(s,4个C),143.9(s,2个C),139.2(s,2个C),137.2(s,2个C),136.4(s,2个C),128.5(d,2个CH),127.9(d,4个CH),123.1(d,2个CH),122.9(d,2个CH),119.7(d,2个CH),70.7(t,4个CH2),66.8(t,4个CH2),52.6(t,2个CH2),49.3(t,2个CH2),45.8(t,4个CH2),44.8(s,C),30.3(t,4个CH2)。
实施例3:
以八氨基笼型倍半硅氧烷(POSS-NH2)为氨基官能团化负载单体L-M-Ⅱ,氨基官能团化负载单体L-M-Ⅱ的制备方法,可参见期刊《功能材料》在2021年第3期(52)卷刊出的《共价功能化POSS/PDMS防腐复合涂层的研究》一文中所公开的八氨基笼型倍半硅氧烷(POSS-NH2)的制备方法;
制备缓蚀单体CIM-Ⅱ:其合成机理如下:以含有芳环活泼氢的苯并三氮唑和甲醛及氨基官能团化负载单体L-M-Ⅱ同时发生胺甲基化反应生成结构为缓蚀单体CIM-Ⅱ的一种新型曼尼希碱;
缓蚀单体CIM-Ⅱ的具体合成步骤如下:
在装有电动搅拌器和回流装置的三口烧瓶中加入1.2g苯并三氮唑、0.3g甲醛、1.1g氨基官能团化负载单体L-M-Ⅱ、25mL去离子水、5mL二甲基亚砜,在温度30℃下搅拌回流反应8h,冷却至室温,蒸馏,利用无水乙醇沉淀和抽提,在40℃下真空干燥至恒重,得到缓蚀单体CIM-Ⅱ,其化学结构式如图3所示;
缓蚀单体CIM-Ⅱ的核磁共振谱表征结果为:
1H NMR(400MHz,CDCl3),δ:7.43-8.24(m,24H),3.76(s,16H),2.53(t,16H),1.37(m,16H),1.1(s,8H),0.56(t,16H);
13C NMR(100MHz,CDCl3),δ:145.2(s,8个C),143.9(s,5个C),139.2(s,3个C),137.2(s,5个C),136.4(s,3个C),128.5(d,5个CH),127.9(d,8个CH),123.1(d,3个CH),122.9(d,3个CH),119.7(d,5个CH),52.7(t,8个CH2),52.6(t,3个CH2),49.3(t,5个CH2),24.9(t,8个CH2),23.7(t,8个CH2)。
实施例4:
制备包覆型缓蚀纳米粒子CCIN-Ⅰ:以缓蚀单体CIM-Ⅰ为缓蚀剂、醋酸锌为锌源、2-甲基咪唑为有机配体,通过锌与2-甲基咪唑和缓蚀单体CIM-Ⅰ上氮原子之间的配位作用,把缓蚀单体CIM-Ⅰ包封固定在金属有机骨架ZIF-8的纳米容器内,制备包覆有缓蚀单体CIM-Ⅰ的包覆型缓蚀纳米粒子CCIN-Ⅰ,其具体合成步骤如下:
步骤S4-1,取0.2g醋酸锌和0.9g缓蚀单体CIM-Ⅰ分散在20mL蒸馏水中超声分散0.5h,转移到恒压滴液漏斗,得到溶液Ⅰ;
步骤S4-2,向三口烧瓶中加入2.5g2-甲基咪唑、60mL去离子水,在35℃恒温水浴锅中搅拌0.5h,得到溶液Ⅱ;
步骤S4-3,在剧烈搅拌条件下,通过恒压滴液漏斗缓慢滴加溶液Ⅰ至溶液Ⅱ,滴加完毕之后,在温度35℃恒温水浴锅中搅拌反应18h,离心收集产物,利用蒸馏水洗涤,在50℃下真空干燥至恒重,得到平均粒径100-200nm的包覆型缓蚀纳米粒子CCIN-Ⅰ。
实施例5:
制备包覆型缓蚀纳米粒子CCIN-Ⅱ:使用缓蚀单体CIM-Ⅱ代替缓蚀单体CIM-Ⅰ,其缓蚀单体CIM-Ⅱ的用量为3.8g,其余制备步骤参见实施例4,制备包覆有缓蚀单体CIM-Ⅱ的包覆型缓蚀纳米粒子CCIN-Ⅱ。
实施例6:
铝合金车轮成型工艺包括步骤如下:以A356合金棒料(Al-7Si-0.4Mg)为原料,通过加热、墩粗、旋转锻造、热冲孔、热旋压、热处理、机加工、涂装;
其中,旋转锻造工艺参数如下:模具温度控制在400℃、坯料温度控制在450℃、摩擦系数为0.2、每转下压量3mm/r;
所述涂装工艺包括如下步骤:
步骤S6-1,把X10稀释剂加入环氧富锌-石墨烯涂料(含有0.5wt%片状石墨烯和50wt%锌粉)中,得到底漆Ⅰ;
其中,X10稀释剂用量为环氧富锌-石墨烯涂料的20wt%;
步骤S6-2,把包覆型缓蚀纳米粒子CCIN-Ⅱ超声分散在底漆Ⅰ中,得到包覆型缓蚀纳米粒子CCIN-Ⅱ用量8wt%的底漆Ⅱ;
步骤S6-3,利用喷枪把底漆Ⅱ喷涂在经过机加工处理的铝合金车轮表面上,其喷涂厚度为(85±5)µm,喷涂分为三步,每一步喷涂20~30µm,并且每一次间隔5min;
步骤S6-4,喷涂结束之后,干燥固化得到铝合金车轮。
实施例7:
为了考察包覆型缓蚀纳米粒子CCIN在10wt%盐酸溶液中的缓蚀性能,进行下述实验,其实验结果如图4所示,具体实验方法步骤如下:
步骤S7-1,从实施例6中经过机加工处理的铝合金车轮上的轮辐位置取铝合金实验片材,该铝合金实验片材的具体尺寸参数为50mm*30mm*2mm,据此计算铝合金实验片材的表面积;并且称量铝合金实验片材的质量,精确至0.0001g;
步骤S7-2,把装有500mL10wt%盐酸溶液且带有容量刻度的挂片瓶放入水浴锅中,该水浴锅设定温度为30℃、50℃、80℃;
步骤S7-3,向挂片瓶中加入包覆型缓蚀纳米粒子CCIN,配制得到浓度为35mg/L的包覆型缓蚀纳米粒子CCIN溶液;
步骤S7-4,向挂片瓶中加入铝合金实验片材,记录开始时间,实验过程及时补充蒸馏水至开始标记的刻度处;
步骤S7-5,实验结束之后,取出铝合金实验片材,清除表面腐蚀产物,利用蒸馏水洗涤,在无水乙醇中浸泡2h,使用吹风机冷风干燥至恒重,称量其质量,精确至0.0001g;
步骤S7-6,根据铝合金实验片材的失重情况计算铝合金实验片材的腐蚀速率CR及浓度35mg/L的包覆型缓蚀纳米粒子CCIN的缓释速率CIR,具体计算公式如下;
CR=(106Δm)/(S*Δt);
式中:CR为铝合金实验片材的腐蚀速率,单位为g/(m2·h);
Δm为铝合金实验片材的质量损失,单位为g;
S为铝合金实验片材的表面积,单位为mm2
Δt为铝合金实验片材的反应时间,单位为h;
CIR=((CR0-CR)/CR0)*100%;
式中:CIR为铝合金实验片材的缓蚀速率,单位为%;
CR0为不添加包覆型缓蚀纳米粒子CCIN的腐蚀速率,单位为g/(m2·h);
CR为添加包覆型缓蚀纳米粒子CCIN的腐蚀速率,单位为g/(m2·h)。
实施例8:
参考实施例7,考察在浓度50g/L氯化钠溶液中浓度35mg/L的包覆型缓蚀纳米粒子CCIN的缓蚀性能,其实验结果如图5所示。
实施例9:
通过分析图4和图5可知:包覆有缓蚀单体CIM-Ⅰ的包覆型缓蚀纳米粒子CCIN-Ⅰ、包覆有缓蚀单体CIM-Ⅱ的包覆型缓蚀纳米粒子CCIN-Ⅱ都对A356合金具有较好的缓蚀效果,并且包覆型缓蚀纳米粒子CCIN-Ⅰ的缓蚀性能要优于包覆型缓蚀纳米粒子CCIN-Ⅱ,据此可知缓蚀单体的分子结构直接影响其缓蚀效率。

Claims (9)

1.一种商用车车轮成型工艺,该成型工艺以A356合金棒料为原料,具体包括如下工艺步骤:加热、墩粗、旋转锻造、热冲孔、热旋压、热处理、机加工、涂装,其特征在于:所述涂装工艺使用环氧富锌-石墨烯涂料作为底漆,并且在环氧富锌-石墨烯涂料中加入有包覆型缓蚀纳米粒子,其具体制备方法如下:利用曼尼希反应机理,以含有芳环活泼氢的苯并三氮唑和甲醛及氨基官能团化负载单体同时发生胺甲基化反应,生成结构为负载有苯并三氮唑基团的缓蚀单体,其作为缓蚀剂、醋酸锌为锌源、2-甲基咪唑为有机配体,通过锌与2-甲基咪唑和缓蚀单体上氮原子之间的配位作用,把缓蚀单体包封固定在金属有机骨架ZIF-8的纳米容器内,制备得到包覆型缓蚀纳米粒子。
2.根据权利要求1所述的商用车车轮成型工艺,其特征在于,所述包覆型缓蚀纳米粒子包括:包覆型缓蚀纳米粒子CCIN-Ⅰ和/或包覆型缓蚀纳米粒子CCIN-Ⅱ。
3.根据权利要求1所述的商用车车轮成型工艺,其特征在于,所述缓蚀单体包括:缓蚀单体CIM-Ⅰ和/或缓蚀单体CIM-Ⅱ。
4.根据权利要求1所述的商用车车轮成型工艺,其特征在于,所述氨基官能团化负载单体包括:氨基官能团化负载单体L-M-Ⅰ和/或八氨基笼型倍半硅氧烷。
5.根据权利要求1所述的商用车车轮成型工艺,其特征在于,所述氨基官能团化负载单体L-M-Ⅰ的制备方法如下:以季戊四醇为联接基、3-氯丙胺盐酸盐为原料,通过亲核试剂季戊四醇的醇羟基官能团与3-氯丙胺盐酸盐的氯官能团发生亲核取代反应生成氨基官能团化负载单体L-M-Ⅰ。
6.根据权利要求1所述的商用车车轮成型工艺,其特征在于,所述涂装工艺包括如下步骤:
步骤S1,把X10稀释剂加入环氧富锌-石墨烯涂料中,得到底漆Ⅰ;
步骤S2,把包覆型缓蚀纳米粒子超声分散在底漆Ⅰ中,得到含有包覆型缓蚀纳米粒子的底漆Ⅱ;
步骤S3,利用喷枪把底漆Ⅱ喷涂在经过机加工处理的铝合金车轮表面上,其喷涂厚度为(85±5)µm;
步骤S6-4,喷涂结束之后,干燥固化得到铝合金车轮。
7.根据权利要求6所述的商用车车轮成型工艺,其特征在于,所述步骤S1,X10稀释剂用量为环氧富锌-石墨烯涂料的15-35wt%。
8.根据权利要求6所述的商用车车轮成型工艺,其特征在于,所述步骤S2,包覆型缓蚀纳米粒子的用量为3-10wt%。
9.根据权利要求6所述的商用车车轮成型工艺,其特征在于,所述步骤S3,喷涂分为三步,每一步喷涂20~30µm,并且每一次间隔3-10min。
CN202310399115.1A 2023-04-14 2023-04-14 一种商用车车轮成型工艺 Active CN116460538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310399115.1A CN116460538B (zh) 2023-04-14 2023-04-14 一种商用车车轮成型工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310399115.1A CN116460538B (zh) 2023-04-14 2023-04-14 一种商用车车轮成型工艺

Publications (2)

Publication Number Publication Date
CN116460538A true CN116460538A (zh) 2023-07-21
CN116460538B CN116460538B (zh) 2023-12-12

Family

ID=87174693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310399115.1A Active CN116460538B (zh) 2023-04-14 2023-04-14 一种商用车车轮成型工艺

Country Status (1)

Country Link
CN (1) CN116460538B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362569A (en) * 1993-03-22 1994-11-08 Bauman Albert J Anodizing and duplex protection of aluminum copper alloys
CN104649985A (zh) * 2013-11-25 2015-05-27 刘现梅 一种水溶性的甲基苯骈三氮唑的次甲基衍生物及其制备方法
CN105563044A (zh) * 2016-02-01 2016-05-11 秦皇岛戴卡兴龙轮毂有限公司 一种h型铝合金车轮锻造成形工艺
CN107312987A (zh) * 2017-07-12 2017-11-03 安徽凯密克企业管理咨询有限公司 一种铝合金轮毂的锻造方法
CN109748879A (zh) * 2019-02-28 2019-05-14 盘锦辽河油田大力集团有限公司 一种改性苯并三氮唑及其制备方法
CN110218332A (zh) * 2019-06-17 2019-09-10 北京石油化工学院 一种负载缓蚀剂的锌配合物纳米容器及其制备方法与应用
CN111362883A (zh) * 2020-04-16 2020-07-03 安美科技股份有限公司 苯并三氮唑衍生物缓蚀剂及其制备方法与应用
CN112028845A (zh) * 2020-08-05 2020-12-04 长江大学 一种铜缓蚀剂及其制备方法
CN115161643A (zh) * 2022-06-28 2022-10-11 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种含有苯并三氮唑的纳米硅缓蚀剂及其制备方法
CN115926587A (zh) * 2023-01-17 2023-04-07 辽宁石油化工大学 一种防腐耐磨涂层及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362569A (en) * 1993-03-22 1994-11-08 Bauman Albert J Anodizing and duplex protection of aluminum copper alloys
CN104649985A (zh) * 2013-11-25 2015-05-27 刘现梅 一种水溶性的甲基苯骈三氮唑的次甲基衍生物及其制备方法
CN105563044A (zh) * 2016-02-01 2016-05-11 秦皇岛戴卡兴龙轮毂有限公司 一种h型铝合金车轮锻造成形工艺
CN107312987A (zh) * 2017-07-12 2017-11-03 安徽凯密克企业管理咨询有限公司 一种铝合金轮毂的锻造方法
CN109748879A (zh) * 2019-02-28 2019-05-14 盘锦辽河油田大力集团有限公司 一种改性苯并三氮唑及其制备方法
CN110218332A (zh) * 2019-06-17 2019-09-10 北京石油化工学院 一种负载缓蚀剂的锌配合物纳米容器及其制备方法与应用
CN111362883A (zh) * 2020-04-16 2020-07-03 安美科技股份有限公司 苯并三氮唑衍生物缓蚀剂及其制备方法与应用
CN112028845A (zh) * 2020-08-05 2020-12-04 长江大学 一种铜缓蚀剂及其制备方法
CN115161643A (zh) * 2022-06-28 2022-10-11 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种含有苯并三氮唑的纳米硅缓蚀剂及其制备方法
CN115926587A (zh) * 2023-01-17 2023-04-07 辽宁石油化工大学 一种防腐耐磨涂层及其制备方法

Also Published As

Publication number Publication date
CN116460538B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
US8591988B1 (en) Method of fabrication of anchored nanostructure materials
EP2220176B1 (en) Sol-gel coating compositions and their process of preparation
Xiao et al. A pH-responsive cerium-imidazole decorated ZIF-8 to achieve self-healing barrier property for epoxy coating on Al alloy by controlled release
Cao et al. Inhibition behavior of synthesized ZIF-8 derivative for copper in sodium chloride solution
Supplit et al. Corrosion protection of aluminum pigments by sol–gel coatings
Zai et al. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst
Wegner et al. Soft, wet‐chemical synthesis of metastable superparamagnetic hexagonal close‐packed nickel nanoparticles in different ionic liquids
Wang et al. Corrosion resistance of lamellar aluminium pigments coated by SiO2 by sol–gel method
CN116460538B (zh) 一种商用车车轮成型工艺
Stoikov et al. Synthesis of hybrid nano-and microsized particles on the base of colloid silica and thiacalix [4] arene derivatives
Amiri et al. Development and anti-corrosion performance of hyperbranched polyglycerol-decorated Fe3O4@ SiO2 on mild steel in 1.0 M HCl
Nejad et al. A novel nitrogen-and sulfur-grafted reduced graphene oxide doped with zinc cations for corrosion mitigation of mild steel
Zhong et al. Effect of sintering temperature on corrosion properties of sol–gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy
US11154843B1 (en) Methods of forming nano-catalyst material for fabrication of anchored nanostructure materials
Jin et al. Efficient self-healing coatings embedded with polydopamine modified BTA@ DMSNs for corrosion protection
Huang et al. Construction of anticorrosive coatings with emergency response closure by introducing functionalized graphene oxide
Gao et al. Assessment of corrosion inhibition performance of quaternary ammonium based dicationic ionic liquids for AZ91D magnesium alloy in NaCl solution
US8974719B2 (en) Composite materials formed with anchored nanostructures
Shi et al. Bionic modified h-BN loaded CeO2 nanoparticles to improve the anti-corrosion properties of composited epoxy coatings
Dong et al. High-Efficiency Corrosion Inhibitor of Biomass-Derived High-Yield Carbon Quantum Dots for Q235 Carbon Steel in 1 M HCl Solution
JP5438994B2 (ja) 金属微粒子の製造方法、金属微粒子分散液ならびに焼結体の製造方法
Khezri et al. Addition of Schiff bases to hybrid silane sol–gel coatings: an efficient strategy to develop an active system for corrosion protection of copper
Aucejo et al. Naphthalene-containing polyamines supported in nanosized boehmite particles
Gao et al. Preparation and characterisation of aluminium pigments encapsulated by composite layer containing organic silane acrylate resin and SiO2
Kim et al. Facile and affordable process to control shell thickness of polydopamine-assisted polystyrene/silver core-shell particles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant