CN116412214A - 一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法 - Google Patents

一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法 Download PDF

Info

Publication number
CN116412214A
CN116412214A CN202310127632.3A CN202310127632A CN116412214A CN 116412214 A CN116412214 A CN 116412214A CN 202310127632 A CN202310127632 A CN 202310127632A CN 116412214 A CN116412214 A CN 116412214A
Authority
CN
China
Prior art keywords
texture
coating
fan
zro
sbnab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310127632.3A
Other languages
English (en)
Inventor
李知瑶
王睿珏
邢佑强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingke Nanotechnology Suzhou Co ltd
Original Assignee
Jingke Nanotechnology Suzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingke Nanotechnology Suzhou Co ltd filed Critical Jingke Nanotechnology Suzhou Co ltd
Priority to CN202310127632.3A priority Critical patent/CN116412214A/zh
Publication of CN116412214A publication Critical patent/CN116412214A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • F16C17/243Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety related to temperature and heat, e.g. for preventing overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1095Construction relative to lubrication with solids as lubricant, e.g. dry coatings, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

本发明公开了一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法,轴瓦基体材料为巴氏合金或铝镁合金,轴瓦基体表面具仿鱼鳞扇形微织构和交替分布的叠层涂层,所述交替叠层涂层第一层为ZrO2,第二层为SbNaB,第三层为AlTeVN;仿鱼鳞扇形微织构排列方向一致,扇形织构夹角θ1为18‑90°,织构深度由扇形圆心向边缘逐渐递减,渐变深度夹角θ2为32‑72°,扇形织构半径r为30‑160μm,扇形织构宽度d为15‑65μm,织构横向阵列间距lx为80‑320μm,织构纵向阵列间距ly为90‑360μm。该轴承能够实现多功能作用,流体润滑条件下该轴承正转时能够最大幅度起到减小摩擦作用,反转时能够最大幅度提高承载能力;ZrO2涂层具有自润滑功效,温度较高时,SbNaB、AlTeVN、ZrO2能够发生原位反应,生成具有润滑作用的Sb2O3、V2O5润滑剂,实现轴承高温润滑,有效减小轴承磨损,提高轴承寿命。

Description

一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法
技术领域
本发明属于轴承设计制造技术领域,特别涉及了一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法。
背景技术
滑动轴承在工作时由于轴颈与轴瓦的接触会产生摩擦,导致表面发热、磨损甚而“咬死”,所以在设计轴承时,应设计摩擦、承载等性能良好的轴瓦。通常轴承使用过程可以双向旋转,但复杂工况下双向旋转时轴承满足的使用要求可能并不相同,因此设计制备出多功能轴承以满足复杂工况下不同使用要求至关重要。
中国专利“申请号:201910511263.1”报道了一种减摩抗磨自润滑涂层轴承及其制备方法,该轴承通过等离子体喷涂方法,在基体表面制备硬质合金层、氮化硅陶瓷层和立方氮化硼层复合润滑涂层,实现工作过程中的润滑功效。中国专利“申请号:202010428627.2”报道了一种具有减摩和提高油膜承载力的表面织构及其制备方法,该轴承表面具有筝形表面织构,润滑液经由织构形成流体动压润滑,可提高油膜承载力和减小摩擦。中国专利“申请号:202011477509.7”报道了一种高温自润滑轴承及其制备方法,在轴承基体表面沉积AlZnMoN+ZrAgVB交替分布的纳米叠层涂层,高温时,AlZnMoN、ZrAgVB会与空气中O2发生反应,生成高温润滑剂,从而起到润滑作用。
发明内容
发明目的:本发明提供一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法。该轴承能够实现正转与反转不同的功能,其正转时能够最大幅度减小摩擦系数,反转时能够最大幅度提高承载能力。同时该轴承表面梯度涂层具有良好的润滑和耐腐蚀功效,可实现工作过程中的自润滑,从而减小轴承磨损,提高轴承寿命。
技术方案:
本发明的一种仿生织构梯度涂层多功能滑动轴承,轴瓦基体材料为巴氏合金或铝镁合金,轴瓦基体表面具有仿鱼鳞扇形微织构(1)和交替分布的叠层涂层(2);所述交替叠层涂层第一层为ZrO2(21),第二层为SbNaB(22),第三层为AlTeVN(23)。
所述的一种仿生织构梯度涂层多功能滑动轴承,仿鱼鳞扇形微织构排列方向一致,扇形织构夹角θ1(3)为18-90°,织构深度由扇形圆心向边缘逐渐递减,渐变深度夹角θ2(4)为32-72°,扇形织构半径r(5)为30-160μm,扇形织构宽度d(6)为15-65μm,织构横向阵列间距lx(7)为80-320μm,织构纵向阵列间距ly(8)为90-360μm;ZrO2涂层(21)单层厚度为10-50nm,SbNaB涂层(22)单层厚度为100-200nm,AlTeVN涂层(23)单层厚度为100-200nm;梯度涂层(2)含有2-5层ZrO2层(21),2-5层SbNaB层(22)和2-5层AlTeVN层(23)。
所述的一种仿生织构梯度涂层多功能滑动轴承,SbNaB涂层(22)中各元素原子百分比为:Sb 32-46%,Na 12-23%,B 34-55%;AlTeVN涂层(23)中各元素原子百分比为:Al26-40%,Te 15-25%,V 18-21%,N 25-38%。
本发明的一种仿生织构梯度涂层多功能滑动轴承,其仿鱼鳞扇形微织构设计方法如下:
(a)基于液体润滑条件,建立扇形织构润滑模型,采用Fluent仿真软件,研究润滑液沿织构表面浸润特性,分析液体在织构内部速度场和动态接触角变化,计算浸润铺展总做功,以高浸润性和高总做功为目标,初步优化仿鱼鳞扇形微织构扇形夹角θ1(3),织构渐变深度夹角θ2(4),扇形织构半径r(5)和扇形织构宽度d(6);
(b)采用Fluent仿真软件研究轴瓦两种不同旋转方向下(相对运动方向从扇形织构圆心向边缘为正转和相对运动方向从扇形织构边缘向圆心为反转),不同几何参数和阵列形式的仿鱼鳞扇形微织构表面油膜承载力和和摩擦系数,以正转时低摩擦系数和反转时高油膜承载力为目标,进一步优化仿鱼鳞扇形微织构扇形夹角θ1(3),织构渐变深度夹角θ2(4),扇形织构半径r(5),扇形织构宽度d(6),织构横向阵列间距为lx(7),织构纵向阵列间距为ly(8);
(c)综合步骤(a)和(b)优化得到扇形织构几何参数和阵列形式,扇形织构夹角θ1(3)为18-90°,织构渐变深度夹角θ2(4)为32-62°,扇形织构半径r(5)为30-160μm,扇形织构宽度d(6)为15-65μm,织构横向阵列间距lx(7)为80-320μm,织构纵向阵列间距ly(8)为90-360μm。
本发明的一种仿生织构梯度涂层多功能滑动轴承,其梯度涂层设计方法如下:
(d)采用ANSYS仿真软件,对不同厚度的ZrO2层(21),SbNaB层(22),AlTeVN层(23)界面应力进行分析,结合Tsui-Clyne与Stoney公式,建立涂层界面残余应力模型,以应力最小为目标,优化ZrO2涂层(21)、SbNaB涂层(22)、AlTeVN涂层(23)的单层厚度和叠层涂层(2)总层数;
(e)通过步骤(d)优化方法,得到ZrO2涂层(21)单层厚度为10-50nm,SbNaB涂层(22)单层厚度为100-200nm,AlTeVN涂层(23)单层厚度为100-200nm;梯度涂层(2)含有2-5层ZrO2(21),2-5层SbNaB(22)和2-5层AlTeVN(23)。
本发明的一种仿生织构梯度涂层多功能滑动轴承,其制备方法如下:
(f)仿鱼鳞扇形微织构制备:采用纳秒激光加工技术在轴瓦表面加工出仿鱼鳞扇形微织构(1),激光加工功率为10-20W,扫描速度为2-100mm/s;
(g)ZrO2涂层(21)制备:采用原子层沉积技术在微织构表面沉积ZrO2涂层(21);采用ZrCl4和O3作为金属源和氧源,沉积温度为300-400℃,循环次数为100-500次,使ZrO2涂层(21)单层厚度为10-50nm;
(h)SbNaB涂层(22)制备:采用磁控溅射技术在ZrO2涂层(21)表面沉积SbNaB涂层(22),沉积温度为150-250℃,工作气压为1.0-2.2Pa,偏压为200-350V,SbNaB复合靶电流为80-100A,沉积2-10min,使SbNaB涂层(22)单层厚度为100-500nm;
(i)AlTeVN涂层(23)制备:采用磁控溅射技术在SbNaB涂层(22)表面沉积AlTeVN涂层(23),沉积温度为150-250℃,工作气压为1.0-2.2Pa,偏压为200-350V,N2流量为60-100sccm,AlTeV复合靶电流为60-80A,使AlTeVN涂层(23)单层厚度为100-500nm;
(j)重复步骤(g)、(h)、(j),交替沉积ZrO2涂层(21)、SbNaB涂层(22)和AlTeVN涂层(23),使梯度涂层(2)含有2-5层ZrO2(21),2-5层SbNaB(22)和2-5层AlTeVN(23)。
有益效果
1.本发明设计制备的滑动轴承轴瓦表面织构,能够实现轴承正转与反转不同的功能;2.液体润滑条件下,当轴承相对运动方向为从仿鱼鳞扇形织构圆心向边缘正转时,可实现最大幅度降低摩擦系数,当相对运动方向为从仿鱼鳞扇形织构边缘向圆心反转时,可实现最大幅度提高油膜承载力;3.本发明涂层具有自润滑功效,低温时,ZrO2涂层具有自润滑功效,温度较高时,SbNaB、AlTeVN、ZrO2能够发生原位反应,生成具有润滑作用的Sb2O3、V2O5润滑剂,实现轴承高温润滑,有效减小轴承磨损,提高轴承寿命;4.本发明的SbNaB涂层由于添加了Na元素,涂层本身具有良好的抗腐蚀性能;AlTeVN涂层由于添加了Te元素,使涂层本身具有良好的导热性能,可减小摩擦热;5.本发明提供的涂层设计方法能够最大程度减小涂层内应力,从理论上对涂层结构进行优化6.本发明的轴瓦表面ZrO2涂层采用原子层沉积技术,能够实现ZrO2涂层与基体,及ZrO2单层与SbNaB、AlTeVN层的致密结合,提高结合强度;7.该轴承可适用于复杂工况下正转与反转不同使用要求场合。
附图说明
图1为本发明的仿生织构梯度涂层多功能滑动轴承结构示意图,图2为本发明的单个仿鱼鳞扇形微织构示意图;图3为本发明的仿鱼鳞扇形微织构阵列分布示意图;图4为仿鱼鳞扇形微织构油膜承载力计算图,其中:0为轴瓦基体材料,1为微织构,2为叠层涂层,21为ZrO2涂层,22为SbNaB涂层,23为AlTeVN涂层,3为扇形织构夹角θ1,4为织构渐变深度夹角θ2,5为扇形织构半径r,6为扇形织构宽度d,7为织构横向阵列间距为lx,8为织构纵向阵列间距为ly
具体实施方式
下面结合附图1-4所示,对本发明的技术方案进行举例说明。
实例1:
本发明的一种仿生织构梯度涂层多功能滑动轴承,轴瓦基体材料为巴氏合金,轴瓦基体表面具有仿鱼鳞扇形微织构(1)和交替分布的叠层涂层(2);所述交替叠层涂层第一层为ZrO2(21),第二层为SbNaB(22),第三层为AlTeVN(23)。仿鱼鳞扇形微织构排列方向一致,扇形织构夹角θ1(3)为22°,织构深度由扇形圆心向边缘逐渐递减,渐变深度夹角θ2(4)为36°,扇形织构半径r(5)为40μm,扇形织构宽度d(6)为15μm,织构横向阵列间距lx(7)为120μm,织构纵向阵列间距ly(8)为120μm;ZrO2涂层(21)单层厚度为10nm,SbNaB涂层(22)单层厚度为100nm,AlTeVN涂层(23)单层厚度为100nm;梯度涂层(2)含有5层ZrO2层(21),5层SbNaB层(22)和5层AlTeVN层(23)。
所述的一种仿生织构梯度涂层多功能滑动轴承,SbNaB涂层(22)中各元素原子百分比为:Sb 32%,Na 16%,B 52%;AlTeVN涂层(23)中各元素原子百分比为:Al 34%,Te22%,V 19%,N 25%。
所述一种仿生织构梯度涂层多功能滑动轴承,其仿鱼鳞扇形微织构设计方法如下:
(a)基于液体润滑条件,建立扇形织构润滑模型,采用Fluent仿真软件,研究润滑液沿织构表面浸润特性,分析液体在织构内部速度场和动态接触角变化,计算浸润铺展总做功,以高浸润性和高总做功为目标,初步优化仿鱼鳞扇形微织构扇形夹角θ1(3)为18-28°,织构渐变深度夹角θ2(4)为32-45°,扇形织构半径r(5)为30-46μm和扇形织构宽度d(6)为15-22μm;
(b)采用Fluent仿真软件研究轴瓦两种不同旋转方向下(相对运动方向从扇形织构圆心向边缘为正转和相对运动方向从扇形织构边缘向圆心为反转),不同几何参数和阵列形式的仿鱼鳞扇形微织构表面油膜承载力和和摩擦系数,以正转时低摩擦系数和反转时高油膜承载力为目标,进一步优化仿鱼鳞扇形微织构扇形夹角θ1(3)为20-36°,织构渐变深度夹角θ2(4)为32-40°,扇形织构半径r(5)为40-55μm,扇形织构宽度d(6)为10-20μm,织构横向阵列间距lx(7)为120-180μm,织构纵向阵列间距为ly(8)为90-120μm;
(c)综合步骤(a)和(b)优化得到扇形织构几何参数和阵列形式,扇形织构夹角θ1(3)为22°,织构渐变深度夹角θ2(4)为36°,扇形织构半径r(5)为40μm,扇形织构宽度d(6)为15μm,织构横向阵列间距lx(7)为120μm,织构纵向阵列间距ly(8)为90μm。
所述一种仿生织构梯度涂层多功能滑动轴承,其梯度涂层设计方法如下:
(d)采用ANSYS仿真软件,对不同厚度的ZrO2层(21),SbNaB层(22),AlTeVN层(23)界面应力进行分析,结合Tsui-Clyne与Stoney公式,建立涂层界面残余应力模型,以应力最小为目标,优化ZrO2涂层(21)、SbNaB涂层(22)、AlTeVN涂层(23)的单层厚度和叠层涂层(2)总层数;
(e)通过步骤(d)优化方法,得到ZrO2涂层(21)单层厚度为10nm,SbNaB涂层(22)单层厚度为120nm,AlTeVN涂层(23)单层厚度为120nm;梯度涂层(2)含有5层ZrO2(21),5层SbNaB(22)和5层AlTeVN(23)。
本发明的一种仿生织构梯度涂层多功能滑动轴承,其制备方法如下:
(f)仿鱼鳞扇形微织构制备:采用纳秒激光加工技术在轴瓦表面加工出仿鱼鳞扇形微织构(1),激光加工功率为12W,扫描速度为2mm/s;
(g)ZrO2涂层(21)制备:采用原子层沉积技术在微织构表面沉积ZrO2涂层(21);采用ZrCl4和O3作为金属源和氧源,沉积温度为300℃,循环次数为100次,使ZrO2涂层(21)单层厚度为10nm;
(h)SbNaB涂层(22)制备:采用磁控溅射技术在ZrO2涂层(21)表面沉积SbNaB涂层(22),沉积温度为150℃,工作气压为1.0Pa,偏压为200V,SbNaB复合靶电流为80A,沉积3min,使SbNaB涂层(22)单层厚度为120nm;
(i)AlTeVN涂层(23)制备:采用磁控溅射技术在SbNaB涂层(22)表面沉积AlTeVN涂层(23),沉积温度为160℃,工作气压为1.0Pa,偏压为200V,N2流量为60sccm,AlTeV复合靶电流为60A,使AlTeVN涂层(23)单层厚度为120nm;
(j)重复步骤(g)、(h)、(j),交替沉积ZrO2涂层(21)、SbNaB涂层(22)和AlTeVN涂层(23),使梯度涂层(2)含有5层ZrO2(21),5层SbNaB(22)和5层AlTeVN(23)。
实例2:
本发明的一种仿生织构梯度涂层多功能滑动轴承,轴瓦基体材料为铝镁合金,轴瓦基体表面具有仿鱼鳞扇形微织构(1)和交替分布的叠层涂层(2);所述交替叠层涂层第一层为ZrO2(21),第二层为SbNaB(22),第三层为AlTeVN(23)。
所述的一种仿生织构梯度涂层多功能滑动轴承,仿鱼鳞扇形微织构排列方向一致,扇形织构夹角θ1(3)为90°,织构深度由扇形圆心向边缘逐渐递减,渐变深度夹角θ2(4)为62°,扇形织构半径r(5)为120μm,扇形织构宽度d(6)为55μm,织构横向阵列间距lx(7)为300μm,织构纵向阵列间距ly(8)为320μm;ZrO2涂层(21)单层厚度为50nm,SbNaB涂层(22)单层厚度为200nm,AlTeVN涂层(23)单层厚度为200nm;梯度涂层(2)含有2层ZrO2层(21),2层SbNaB层(22)和2层AlTeVN层(23)。
所述的一种仿生织构梯度涂层多功能滑动轴承,SbNaB涂层(22)中各元素原子百分比为:Sb 46%,Na 18%,B 36%;AlTeVN涂层(23)中各元素原子百分比为:Al 40%,Te15%,V 18%,N 27%。
本发明的一种仿生织构梯度涂层多功能滑动轴承,其仿鱼鳞扇形微织构设计方法如下:
(a)基于液体润滑条件,建立扇形织构润滑模型,采用Fluent仿真软件,研究润滑液沿织构表面浸润特性,分析液体在织构内部速度场和动态接触角变化,计算浸润铺展总做功,以高浸润性和高总做功为目标,初步优化仿鱼鳞扇形微织构扇形夹角θ1(3)为80-92°,织构渐变深度夹角θ2(4)为54-62°,扇形织构半径r(5)为100-120μm和扇形织构宽度d(6)为50-55μm;
(b)采用Fluent仿真软件研究轴瓦两种不同旋转方向下(相对运动方向从扇形织构圆心向边缘为正转和相对运动方向从扇形织构边缘向圆心为反转),不同几何参数和阵列形式的仿鱼鳞扇形微织构表面油膜承载力和和摩擦系数,以正转时低摩擦系数和反转时高油膜承载力为目标,进一步优化仿鱼鳞扇形微织构扇形夹角θ1(3)为70-90°,织构渐变深度夹角θ2(4)为60-65°,扇形织构半径r(5)为110-130μm,扇形织构宽度d(6)为45-60μm,织构横向阵列间距lx(7)为250-300μm,织构纵向阵列间距ly(8)为320-350μm;
(c)综合步骤(a)和(b)优化得到扇形织构几何参数和阵列形式,扇形织构夹角θ1(3)为90°,织构渐变深度夹角θ2(4)为62°,扇形织构半径r(5)为120μm,扇形织构宽度d(6)为55μm,织构横向阵列间距lx(7)为300μm,织构纵向阵列间距ly(8)为320μm。
本发明的一种仿生织构梯度涂层多功能滑动轴承,其梯度涂层设计方法如下:
(d)采用ANSYS仿真软件,对不同厚度的ZrO2层(21),SbNaB层(22),AlTeVN层(23)界面应力进行分析,结合Tsui-Clyne与Stoney公式,建立涂层界面残余应力模型,以应力最小为目标,优化ZrO2涂层(21)、SbNaB涂层(22)、AlTeVN涂层(23)的单层厚度和叠层涂层(2)总层数;
(e)通过步骤(d)优化方法,得到ZrO2涂层(21)单层厚度为50nm,SbNaB涂层(22)单层厚度为200nm,AlTeVN涂层(23)单层厚度为200nm;梯度涂层(2)含有2层ZrO2(21),2层SbNaB(22)和2层AlTeVN(23)。
本发明的一种仿生织构梯度涂层多功能滑动轴承,其制备方法如下:
(f)仿鱼鳞扇形微织构制备:采用纳秒激光加工技术在轴瓦表面加工出仿鱼鳞扇形微织构(1),激光加工功率为20W,扫描速度为100mm/s;
(g)ZrO2涂层(21)制备:采用原子层沉积技术在微织构表面沉积ZrO2涂层(21);采用ZrCl4和O3作为金属源和氧源,沉积温度为400℃,循环次数为500次,使ZrO2涂层(21)单层厚度为50nm;
(h)SbNaB涂层(22)制备:采用磁控溅射技术在ZrO2涂层(21)表面沉积SbNaB涂层(22),沉积温度为250℃,工作气压为2.2Pa,偏压为350V,SbNaB复合靶电流为100A,沉积10min,使SbNaB涂层(22)单层厚度为500nm;
(i)AlTeVN涂层(23)制备:采用磁控溅射技术在SbNaB涂层(22)表面沉积AlTeVN涂层(23),沉积温度为250℃,工作气压为2.2Pa,偏压为350V,N2流量为100sccm,AlTeV复合靶电流为80A,使AlTeVN涂层(23)单层厚度为1500nm;
(j)重复步骤(g),(h),(j),交替沉积ZrO2涂层(21)、SbNaB涂层(22)和AlTeVN涂层(23),使梯度涂层(2)含有2层ZrO2(21),2层SbNaB(22)和2层AlTeVN(23)。

Claims (6)

1.一种仿生织构梯度涂层多功能滑动轴承,包括由巴氏合金或铝镁合金制作的轴瓦基体(0),其特征在于:所述轴瓦基体(0)表面具有仿鱼鳞扇形微织构(1)和交替分布的叠层涂层(2);所述交替叠层涂层包括第一层为ZrO2层(21),第二层为SbNaB层(22)和第三层为AlTeVN层(23)。
2.根据权利要求1所述的一种仿生织构梯度涂层多功能滑动轴承,其特征在于,所述仿鱼鳞扇形微织构排列方向一致,所述仿鱼鳞扇形微织构的扇形织构夹角θ1(3)为18-90°,所述仿鱼鳞扇形微织构的织构深度由扇形圆心向边缘逐渐递减,渐变深度夹角θ2(4)为32-72°,所述仿鱼鳞扇形微织构的扇形织构半径r(5)为30-160μm,所述仿鱼鳞扇形微织构的扇形织构宽度d(6)为15-65μm;所述仿鱼鳞扇形微织构的织构横向阵列间距lx(7)为80-320μm,其织构纵向阵列间距ly(8)为90-360μm;所述ZrO2涂层(21)单层厚度为10-50nm,所述SbNaB涂层(22)单层厚度为100-200nm,所述AlTeVN涂层(23)单层厚度为100-200nm;所述梯度涂层(2)含有2-5层ZrO2层(21),2-5层SbNaB层(22)和2-5层AlTeVN层(23)。
3.根据权利要求1或2所述的一种仿生织构梯度涂层多功能滑动轴承,其特征在于,所述SbNaB涂层(22)中各元素原子百分比为:Sb 32-46%,Na 12-23%,B 34-55%;所述AlTeVN涂层(23)中各元素原子百分比为:Al 26-40%,Te 15-25%,V 18-21%,N 25-38%。
4.一种制造如权利要求1或2或3任一项所述的一种仿生织构梯度涂层多功能滑动轴承,其仿鱼鳞扇形微织构设计方法如下:
4-1)基于液体润滑条件,建立扇形织构润滑模型,采用Fluent仿真软件,研究润滑液沿织构表面浸润特性,分析液体在织构内部速度场和动态接触角变化,计算浸润铺展总做功,以高浸润性和高总做功为目标,初步优化仿鱼鳞扇形微织构扇形夹角θ1(3),织构渐变深度夹角θ2(4),扇形织构半径r(5)和扇形织构宽度d(6);
4-2)采用Fluent仿真软件研究轴瓦两种不同旋转方向下(相对运动方向从扇形织构圆心向边缘为正转和相对运动方向从扇形织构边缘向圆心为反转),不同几何参数和阵列形式的仿鱼鳞扇形微织构表面油膜承载力和和摩擦系数,以正转时低摩擦系数和反转时高油膜承载力为目标,进一步优化仿鱼鳞扇形微织构扇形夹角θ1(3),织构渐变深度夹角θ2(4),扇形织构半径r(5),扇形织构宽度d(6),织构横向阵列间距为lx(7),织构纵向阵列间距为ly(8);
4-3)综合步骤4-1和4-2优化得到扇形织构几何参数和阵列形式,扇形织构夹角θ1(3)为18-90°,织构渐变深度夹角θ2(4)为32-62°,扇形织构半径r(5)为30-160μm,扇形织构宽度d(6)为15-65μm,织构横向阵列间距lx(7)为80-320μm,织构纵向阵列间距ly(8)为90-360μm。
5.一种制造如权利要求1或2或3任一项所述的一种仿生织构梯度涂层多功能滑动轴承,其梯度涂层设计方法如下:
5-1)采用ANSYS仿真软件,对不同厚度的ZrO2层(21),SbNaB层(22),AlTeVN层(23)界面应力进行分析,结合Tsui-Clyne与Stoney公式,建立涂层界面残余应力模型,以应力最小为目标,优化ZrO2涂层(21)、SbNaB涂层(22)、AlTeVN涂层(23)的单层厚度和叠层涂层(2)总层数;
5-2)通过步骤5-1优化方法,得到ZrO2涂层(21)单层厚度为10-50nm,SbNaB涂层(22)单层厚度为100-200nm,AlTeVN涂层(23)单层厚度为100-200nm;梯度涂层(2)含有2-5层ZrO2(21),2-5层SbNaB(22)和2-5层AlTeVN(23)。
6.根据权利要求5所述的一种仿生织构梯度涂层多功能滑动轴承,其制备方法如下:
6-1)仿鱼鳞扇形微织构制备:采用纳秒激光加工技术在轴瓦表面加工出仿鱼鳞扇形微织构(1),激光加工功率为10-20W,扫描速度为2-100mm/s;
6-2)ZrO2涂层(21)制备:采用原子层沉积技术在微织构表面沉积ZrO2涂层(21);采用ZrCl4和O3作为金属源和氧源,沉积温度为300-400℃,循环次数为100-500次,使ZrO2涂层(21)单层厚度为10-50nm;
6-3)SbNaB涂层(22)制备:采用磁控溅射技术在ZrO2涂层(21)表面沉积SbNaB涂层(22),沉积温度为150-250℃,工作气压为1.0-2.2Pa,偏压为200-350V,SbNaB复合靶电流为80-100A,沉积2-10min,使SbNaB涂层(22)单层厚度为100-500nm;
6-4)AlTeVN涂层(23)制备:采用磁控溅射技术在SbNaB涂层(22)表面沉积AlTeVN涂层(23),沉积温度为150-250℃,工作气压为1.0-2.2Pa,偏压为200-350V,N2流量为60-100sccm,AlTeV复合靶电流为60-80A,使AlTeVN涂层(23)单层厚度为100-500nm;
6-5)重复步骤6-2、6-3、6-4,交替沉积ZrO2涂层(21)、SbNaB涂层(22)和AlTeVN涂层(23),使梯度涂层(2)含有2-5层ZrO2(21),2-5层SbNaB(22)和2-5层AlTeVN(23)。
CN202310127632.3A 2023-02-17 2023-02-17 一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法 Pending CN116412214A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310127632.3A CN116412214A (zh) 2023-02-17 2023-02-17 一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310127632.3A CN116412214A (zh) 2023-02-17 2023-02-17 一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法

Publications (1)

Publication Number Publication Date
CN116412214A true CN116412214A (zh) 2023-07-11

Family

ID=87057244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310127632.3A Pending CN116412214A (zh) 2023-02-17 2023-02-17 一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法

Country Status (1)

Country Link
CN (1) CN116412214A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117774290A (zh) * 2024-02-27 2024-03-29 中国人民解放军海军工程大学 具有仿生沙鱼鳞片微结构的水润滑轴承轴瓦及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117774290A (zh) * 2024-02-27 2024-03-29 中国人民解放军海军工程大学 具有仿生沙鱼鳞片微结构的水润滑轴承轴瓦及其制备方法
CN117774290B (zh) * 2024-02-27 2024-05-17 中国人民解放军海军工程大学 具有仿生沙鱼鳞片微结构的水润滑轴承轴瓦及其制备方法

Similar Documents

Publication Publication Date Title
Hu et al. Tribological investigation of MoS2 coatings deposited on the laser textured surface
Meng et al. Improving tribological performance of cemented carbides by combining laser surface texturing and WSC solid lubricant coating
CN110181078B (zh) 一种仿生织构与涂层协同作用减摩刀具及其设计方法
Xing et al. Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction
CN1230272C (zh) 一种提高机械部件耐磨性能的方法
Hasan et al. Analysis of the friction and wear of graphene reinforced aluminum metal matrix composites using machine learning models
CN116412214A (zh) 一种仿生织构梯度涂层多功能滑动轴承及其设计制备方法
Xing et al. Effect of laser surface textures combined with multi-solid lubricant coatings on the tribological properties of Al2O3/TiC ceramic
Lu et al. Effects of surface composite structure with micro-grooves and Sn-Ag-Cu on reducing friction and wear of Ni3Al alloys
US20130000592A1 (en) Piston for internal combustion engine
JP2012202522A (ja) ピストンリング
JP2006509967A (ja) 構造化させた層システム
Fan et al. Surface composition–lubrication design of Al2O3/Ni laminated composites—Part I: Tribological synergy effect of micro–dimpled texture and diamond–like carbon films in a water environment
JP5903085B2 (ja) シリンダボアとピストンリングの組合せ
JP5459356B2 (ja) 半割軸受
WO2019225624A1 (ja) 耐摩耗性皮膜、耐摩耗性部材及び耐摩耗性皮膜の製造方法並びに摺動機構
CN106906442B (zh) 一种具有高硬度与自润滑性的涂层及其制备方法
EP2592290A1 (en) Multi-layer sliding bearing
CN219388446U (zh) 一种仿生织构梯度涂层多功能滑动轴承
Xing et al. Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction
CN1297689C (zh) 涂有耐磨涂层的无声链
Liu et al. Friction and wear properties of a novel interface of ordered microporous Ni-based coating combined with MoS2 under complex working conditions
Cai et al. Effect of plasma electrolytic oxidation process on surface characteristics and tribological behavior
CN102758201A (zh) 镁合金表面兼具耐蚀润滑特性的复合涂层及其制备方法
Choudhury et al. Polydopamine+ SiO2 nanoparticle underlayer for improving DLC coating adhesion and durability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination