CN116359236A - 检测装置 - Google Patents

检测装置 Download PDF

Info

Publication number
CN116359236A
CN116359236A CN202310248928.0A CN202310248928A CN116359236A CN 116359236 A CN116359236 A CN 116359236A CN 202310248928 A CN202310248928 A CN 202310248928A CN 116359236 A CN116359236 A CN 116359236A
Authority
CN
China
Prior art keywords
light
station
workpiece
assembly
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310248928.0A
Other languages
English (en)
Inventor
黄玉
朱震
刘枢
吕江波
沈小勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Simou Intelligent Technology Co ltd
Shenzhen Smartmore Technology Co Ltd
Original Assignee
Beijing Simou Intelligent Technology Co ltd
Shenzhen Smartmore Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Simou Intelligent Technology Co ltd, Shenzhen Smartmore Technology Co Ltd filed Critical Beijing Simou Intelligent Technology Co ltd
Priority to CN202310248928.0A priority Critical patent/CN116359236A/zh
Publication of CN116359236A publication Critical patent/CN116359236A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种检测装置,检测装置包括输送组件、第一检测组件及第二检测组件,输送组件用于运输工件在第一工位与第二工位之间运动;第一检测组件包括分别位于第一工位相背两侧的第一相机结构及第一照明件,第一照明件的光轴用于穿过工件并向第一相机结构照明;第二检测组件包括第二相机结构及第二照明件,第二照明件包括第一光源及第一反光部,第一反光部能够将第一光源的光线聚焦在第二工位上以形成焦点,多个第一光源与多个第一反光部对应成组设置,以在第二工位上形成线性分布的多个焦点,第二相机结构朝向线性分布的多个焦点。如此,通过第一检测组件与第二检测组件配合,可以对玻璃内部及外表面进行全面检测。

Description

检测装置
技术领域
本发明涉及外观检测技术领域,特别是涉及一种检测装置。
背景技术
玻璃等类似的产品在出厂前通常需要对其进行检测,以排除存在缺陷的产品。传统技术中,通常通过相机配合镜头对玻璃进行视觉检测。然而,传统技术中的检测方式不够全面。
发明内容
基于此,有必要针对玻璃等类似产品检测时不全面的问题,提供一种检测装置。
一种检测装置,用于对可透光工件进行缺陷检测,所述检测装置包括:
输送组件,用于运输所述工件在第一工位与第二工位之间运动;
第一检测组件,包括分别位于所述第一工位相背两侧的第一相机结构及第一照明件,所述第一照明件的光轴用于穿过工件并向所述第一相机结构照明;
第二检测组件,包括第二相机结构及第二照明件,所述第二照明件包括第一光源及第一反光部,所述第一反光部能够将所述第一光源的光线聚焦在第二工位上以形成焦点,多个所述第一光源与多个所述第一反光部对应成组设置,以在所述第二工位上形成线性分布的多个所述焦点,所述第二相机结构朝向线性分布的多个所述焦点。
在其中一个实施例中,所述输送组件还用于驱动所述工件经过第三工位,所述检测装置还包括第三检测组件,所述第三检测组件包括位于所述第三工位同一侧的第三相机结构及第三照明件,所述第三照明件的光轴与所述输送方向相交,处于所述第三工位的所述工件用于将所述第三照明件的光线反射至所述第三相机结构。
在其中一个实施例中,所述第三照明件的光轴与所述输送方向的夹角为45°至90°。
在其中一个实施例中,所述第一相机结构为线阵相机,所述第一照明件为线光源。
在其中一个实施例中,所述第一反光部包括第一聚焦体及第二聚焦体,所述第一光源包括分别对应所述第一聚焦体及所述第二聚焦体的两个发光部,所述第一聚焦体与所述第二聚焦体能够将与之对应的发光部的光线聚焦在同一所述焦点,所述第一聚焦体与所述第二聚焦体分别位于两者所对应的所述焦点的两侧。
在其中一个实施例中,所述第一聚焦体及所述第二聚焦体均包括朝向所述第二工位的多个反光分部,多个所述反光分部沿分布曲线设置,所述分布曲线上各处曲率半径不同,所述发光部朝向所述反光分部,各所述反光分部能够将所述发光部的光线对应反射至同一所述焦点。
在其中一个实施例中,定义多个所述焦点的连线为焦点线光,所述第一反光部上设有透光缝隙,所述透光缝隙在所述第二工位上的投影至少部分与所述焦点线光重合。
在其中一个实施例中,所述输送组件还用于驱动所述工件经过第四工位,所述检测装置还包括第四检测组件,所述第四检测组件与所述第二检测组件用于设于所述工件的不同侧;所述第四检测组件包括第二光源及第二反光部,所述第二光源与所述第一光源的结构相同,所述第二反光部与所述第二反光部的结构相同,所述第二反光部能够将所述第二光源的光线聚焦在第四工位上,并形成线性分布的多个焦点。
在其中一个实施例中,所述输送组件包括驱动件及承载件,所述驱动件与所述承载件连接以驱动所述承载件运动,所述承载件用于承载所述工件,所述承载件上开设有避让口,所述工件用于至少部分覆盖所述避让口。
在其中一个实施例中,所述检测装置还包括位置调整组件,所述位置调整组件与所述第一检测组件与所述第二检测组件均连接,所述位置调整组件用于调整所述第一检测组件相对所述第一工位的位置、姿态,以及所述位置调整组件用于调整所述第二检测组件相对所述第二工位的位置。
上述检测装置中,由于工件具有可透光性,且第一相机结构与第一照明件分别位于第一工位相背的两侧,故第一照明件的光轴能够穿过工件并照向第一相机结构。如此,通过第一检测组件能够检测工件内部的缺陷。第二检测组件中,通过多个第一反光部对应聚焦多个第一光源的光线,能够形成线性分布的多个焦点。第二相机结构朝向线性分布的多个焦点,从而多个焦点能够对第二相机结构进行照明。如此,第二相机结构在对工件的表面进行检测时,具有更高的亮度,能够检测出程度更加轻微的缺陷,使第二检测组件具有更高的检测精度。由于第一检测组件能够对工件内部进行检测,而第二检测组件能够对工件表面进行检测,故通过第一检测组件与第二检测组件配合,可以对工件内部及外表面进行全面检测。
附图说明
图1为本发明一实施例所提供检测装置各工位检测工件时的示意图;
图2为第二照明件的聚焦原理示意图;
图3为图2所示第二照明件的轴侧示意图;
图4为图1所示检测装置中第三检测组件的照明远离示意图。
附图标记:10、检测装置;100、第一检测组件;101、第一工位;110、第一相机结构;120、第一照明件;200、第二检测组件;201、第二工位;210、第二相机结构;220、第二照明件;220a、焦点;2210、发光部;2220、第一反光部;2220a、反光分部;2220b、透光缝隙;2221、第一聚焦体;2222、第二聚焦体;300、第三检测组件;301、第三工位;310、第三相机结构;320、第三照明件;321、第三光源;322、第三反光部;400、第四检测组件;401、第四工位;410、第四相机结构;420、第四照明件;20、工件。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1,图1示出了本发明一实施例中检测装置各工位检测工件时的示意图,本发明一实施例提供的检测装置10包括输送组件(图未示,下同)、第一检测组件100及第二检测组件200。
输送组件用于运输工件20在第一工位101与第二工位201之间运动。第一检测组件100包括第一相机结构110和第一照明件120,第一相机结构110与第一照明件120分别位于第一工位101相背的两侧。第一照明件120的光轴用于穿过工件20并向所述第一相机结构110照明。第二检测组件200包括第二相机结构210及第二照明件220。第二照明件220包括第一光源及第一反光部2220。第一反光部2220能够将第一光源的光线聚焦在第二工位201上以形成焦点220a。如此,能够显著提高焦点220a处的亮度。多个第一光源与多个第一反光部2220对应成组设置,以在第二工位201上形成线性分布的多个焦点220a。第二相机结构210朝向线性分布的多个焦点220a,从而多个焦点220a能够向第二相机结构210照明。
请结合图1,在第一工位101处,由于工件20具有可透光性,且第一相机结构110与第一照明件120分别位于第一工位101相背的两侧,故第一照明件120提供的光线能够穿过工件20以向第一相机结构110照明。如此设置,当工件20内部存在缺陷时,该缺陷将折射第一照明件120的光线,使得第一相机结构110在成像后的图像中存在与背景颜色不同的部分区域,以此获知工件20内部是否存在缺陷。
当然,第一检测组件100不仅能够对工件20内部的缺陷进行检测,由于第一照明件120自工件20一侧穿透至工件20另一侧,故显然第一照明件120的光线将穿过工件20的外表面。也就是说,第一检测组件100还能够对工件20外表面的缺陷进行检测。
请继续参阅图1,在第二工位201处,由于第一反光部2220能够将第一光源的光线聚焦而在第二工位201上形成焦点220a。可以理解的是,对于一处光源,其向外提供的光线通常呈放射状向外发射光线。而通过第一反光部2220能够将呈放射状延伸的光线聚焦至同一点,故显然能够显著提高该点处的亮度。即,如此设置能够显著提高焦点220a处的亮度。同时,由于多个第一光源与多个第一反光部2220对应成组设置,能够在第二工位201上形成线性分布的多个焦点220a。从而,通过第二照明件220能够提供一条由各个焦点220a组成的高亮的照明线光。并且,第二相机结构210朝向线性分布的多个焦点220a,从而多个焦点220a能够对第二相机结构210进行照明。如此设置,检测时第二相机结构210的成像效果更好,能够检测玻璃表面上,如横纵划伤、无感细划伤等相对更加轻微的缺陷。
并且,结合图2,第一反光部2220能够将呈放射状延伸的光线聚焦至焦点220a,则在焦点220a附近区域将存在大量呈放射状分布的光线,而显然呈放射状分布的各个光线之间的角度不同,下称该区域为高亮区域,高亮区域见图2中标号G。在本实施例中,当工件20运动至其边缘处于上述高亮区域的覆盖范围内的位置时,由于高亮区域内存在大量角度不同的光线,故工件20边缘上尺寸各异的台阶状凸出结构均能够被照亮。如此,使第二检测组件200还能够检测工件20的侧周面。如此,无需翻转工件20,即可对工件20的边缘进行检测,提高了检测的效率。可以理解的是,工件20的边缘,即工件20的侧周面上可能存在尺寸各异的台阶状凸出结构,由于各个凸出结构形状、尺寸均不同,故容易单一角度的光线难以满足不同工件20侧周面的照明。而本实施例中通过第一反光部2220能够使高亮区域内存在大量角度不同的光线,从而能够对各种不同工件20的边缘进行检测。
上述检测装置10中,由于第一检测组件100能够对玻璃内部进行检测,而第二检测组件200能够对玻璃表面进行检测,故通过第一检测组件100与第二检测组件200配合,可以对玻璃内部及外表面进行全面检测。
可以理解的是,输送组件能够带动工件20运动。故,在检测时能够通过输送组件带动工件20上的不同区域对着第一检测组件100及第二检测组件200,以使工件20上不同区域能够接受检测,保证对工件20检测的全面性。
请参阅图1,在一个实施例中,第二相机结构210与第二照明件220均位于工件20的同一侧,第二照明件220与第二相机结构210沿垂直工件20的方向依次分布。第二照明件220相对第二相机结构210靠近第二工位201,第二相机结构210能够穿过第二照明件220以检测工件20的缺陷。
请参阅图1,在一个实施例中,第一检测工位可以为明场照射。即,第一照明件120的入射角大于为45°至90°,并直接指向第一照明件120。如此,第一相机结构110得到的是明背景的图像。当工件20内部存在缺陷时,第一相机结构110能够得到明背景的图像中存在部分区域为暗色区域,暗色区域即为缺陷位置。从而,能够快速判断工件20是否存在缺陷,以及缺陷位置等。
具体地,第一照明件120的入射角可以为90°,即第一照明件120的光轴垂直于工件20表面。
在一个实施例中,第一相机结构110为线阵相机,第一照明件120为线光源。如此,当工件20随输送组件运动时,第一相机结构110能够扫过工件20上的各个区域的表面及内部,以对工件20上的各个区域进行检测。
同理,在一个实施例中,第二相机结构210也可以为线阵相机,线阵相机可以对应第二工位201上呈线性分布的焦点220a。如此,当工件20随输送组件运动时,第二检测相机能够扫过工件20上的各个区域的表面及内部,以对工件20上的各个区域进行检测。
请参阅图2,在一个实施例中,第一反光部2220包括第一聚焦体2221及第二聚焦体2222。第一光源包括分别对应第一聚焦体2221及第二聚焦体2222的两个发光部2210。第一聚焦体2221与第二聚焦体2222能够将与之对应的发光部2210的光线聚焦在同一焦点220a。第一聚焦体2221与第二聚焦体2222分别位于两者所对应的焦点220a的两侧。如此设置,能够将两个发光部2210光线同时聚焦于同一处。从而,进一步地提高了焦点220a的亮度。
请继续参阅图2,在一个实施例中,第一聚焦体2221与第二聚焦体2222均包括朝向第二工位201的多个反光分部2220a。多个反光分部2220a沿向远离第二工位201的方向内凹的弧形分布。多个反光分部2220a沿分布曲线设置,分布曲线上各处曲率半径不同。发光部2210朝向反光分部2220a,各反光分部2220a能够将发光部2210的光线对应反射至同一焦点220a。也就是说,如图2所示,通过多个反光分部2220a能够将第一光源的放射状光线汇聚至同一焦点220a处,提高焦点220a处的亮度。由于焦点220a处具有较高的亮度,故能够有更好的成像效果,使第二检测组件200能够对更轻微的缺陷进行检测。
上述分布轴线参见图2中标号J。可以理解的是,位于第一聚焦体2221上的多个反光分部2220a沿其中一个分布轴线分布;位于第二聚焦体2222上的多个反光分部2220a沿另一个分布轴线分布。即位于第一聚焦体2221上的反光分部2220a,与位于第二聚焦体2222上的反光分布2220a分别沿不同的分布轴线分布。
可以理解的是,两个发光部2210可以分别对应朝向第一聚焦体2221与第二聚焦体2222,第一聚焦体2221与第二聚焦体2222通过反光分部2220a将两个发光部2210的光线聚焦至同一焦点220a。图2所示反光分部2220a仅为体现第一反光部2220的聚焦作用,实际中反光分部2220a的数量可以根据需求而设置为5-50个。当然,根据实际检测需求,反光分部2220a的数量还可以多于50个或少于5个。反光分部2220a的数量越多,则第一反光部2220朝向第二工位201的面越近似一个内凹的圆滑曲面。
请参阅图2及图3,在一个实施例中,定义多个焦点220a的连线为焦点线光220b第一反光部2220上设有透光缝隙2220b,透光缝隙2220b在第二工位201上的投影至少部分与焦点线光220b重合。如此,焦点线光220b能够通过透光缝隙2220b向第二相机结构210照明,以提高第二相机结构210的成像效果。
请结合图2及图3,具体地,透光缝隙2220b可以由第一聚焦体2221与第二聚焦体2222间隔而形成。透光缝隙2220b与焦点线光220b可以均沿参考方向延伸。同时,第一聚焦体2221与第二聚焦体2222也可以沿参考方向连续分布,即多个反光分部2220a也均沿参考方向连续分布。由此,多个沿参考方向连续分布的反光分部2220a聚焦而形成的焦点线光220b也为连续分布的。如此,能够保证均匀扫过处于第二工位201上的工件20的各个区域。换言之,在垂直参考方向的任意横截面上,均有多个反光分部2220a聚焦光线于同一焦点220a。所述参考方向参见图3中标号K。
本实施例中,发光部2210可以为沿参考方向分布的线光源,或者发光部2210可以由沿参考方向间隔分布的多个光源组成。当然,发光部2210还可以设计为其他能够向第二照明件220提供光线的光源。
在一个实施例中,发光部2210具体可以为LED芯片。
请再次参阅图1,在一个实施例中,输送组件还用于驱动工件20经过第三工位301及第四工位401,检测装置10还包括第三检测组件300及第四检测组件400。可以理解的是,输送组件可以驱动工件20顺次经过第一工位101、第二工位201、第三工位301及第四工位401。当然,在不影响各个检测组件充分实现检测功能的前提下,第一工位101、第二工位201、第三工位301及第四工位401的排列顺序也可以根据检测装置10整体布局、各检测组件摆放位置以及散热布局等需求而适应性调整。
请参阅图1,在一个实施例中,第三检测组件300包括位于第三工位301同一侧的第三相机结构310及第三照明件320。第三照明件320的光轴与输送方向相交,处于第三工位301的工件20用于将第三照明件320的光线反射至第三相机结构310。上述输送方向指的是输送组件输送工件20的方向,输送方向参见图1中标号M。
在本实施例中,由于第三照明件320的光轴与输送方向相交,即第三照明件320倾斜设置。如此,相对于垂直设置的照明方式,第三照明件320这样倾斜设置的照明方式能够使第三相机结构310接受到相对较少的反射光。如此,第三检测组件300便于检测某些具有高反射性表面的工件20。
在一个具体的实施例中,第三照明件320的光轴与输送方向的夹角为45°至90°,即第三照明件320的入射角为45°至90°。也即,第三照明件320以明场照射向第三相机结构310提供照明。此时,尽管第二检测组件200与第三检测组件300均为明场检测,但由于各自照明方式不同,故第二相机结构210与第三相机结构310对不同缺陷的检测效果也不同。上述第三照明件320的光轴与输送方向的夹角参见图1中标号N。
在另一个具体的实施例中,第三照明件320的光轴与输送方向的夹角可以为0°至45°,即第三照明件320的入射角为0°至45°。也即,第三照明件320以暗场照射向第三相机结构310提供照明。对于具有高反射性表面的工件20,若采用明场照射,由于工件20能够反射大量的光线,故对应的相机结构件所获取的图像中将存在大量光点。而采用暗场照射,工件中的缺陷或工件20表面的图形、图案反射光线能够被第三相机结构310捕捉,由于第三相机结构310捕捉到的为强度相对低的杂散光,故成像效果较好。
并且,由于第三检测组件300中为单光线的照明方式,而第二检测组件200中为多光线聚焦的照明方式,故当工件20在相应工位上发生抖动时第三检测组件300受影响较小。具体而言,工件20通过输送组件运动在各个工位之间,而输送组件在运输工件20时可能使工件发生抖动。在工件20发生抖动时,由于第三检测组件300中的照明方式为单光线照明,故其受抖动影响相对较小。如此设置,当第二工位201因抖动发生而导致检测结果不可靠时,第三检测组件300能够对工件20进行补充检测,以保证对工件20的检测效果。
可以理解的是,可以根据工件20的不同类型而适应性的选择第三照明件320的光轴与输送方向之间的夹角。应当理解的是,针对不同角度位置、不同形式的第三照明件320,可以相应调整第三相机结构310的位置,以保证第三相机结构310的成像效果。
进一步地,在一个实施例中,第三照明件320的光轴与输送方向相交,使第三检测组件300与第一检测组件100所能够检测的缺陷类型不同。通过两者相配合,使检测装置10能够检测缺陷的类型更多,检测工件确实时更加全面,检测效果更好。具体而言,以工件20为玻璃为例,由于第一照明件120的光线穿过工件20而直接入射在第一相机结构110中,故第一检测组件100能够针对工件20上的脏污处、工件20内外的气泡以及工件20边缘可能发生的崩边、崩角现象进行检测。而第三检测组件300中,由于第三照明件320的光线倾斜照向工件20,第三相机结构310通过捕获工件20反射第三照明件320的反射光的方式进行检测,故第三检测组件300能够针对工件20上的划伤、点伤以及指纹印等缺陷进行检测。两者在检测缺陷的类型上能够互补,以使检测装置10检测工件20缺陷使更加全面。
在另一个实施例中,如图4所示,第三照明件320可以包括第三光源321及第三反光部322,第三反光部322能够将第三光源321的光线聚焦在第三工位301上以形成照明区域。也就是说,相对于第二照明件220,第三照明件320能够将光线聚焦在一个特定的照明区域内。在照明区域内,各个组成的光线相对输送方向具有不同的夹角,能够兼容不同表面类型的工件20。换言之,本实施例中,第三检测组件300能够用于检测反射性相差很大或者表面纹路复杂的工件20。上述照明区域参见图4中标号Q。
请继续参阅1,在一个实施例中,第四检测组件400与第二检测组件200用于设于工件20的不同侧,例如第二检测组件200处于第二工位201的上方,用于检测工件20的上表面,此时第四检测组件400可以处于第四工位401的下方,用于检测工件20的下表面,反之亦然。
参考图2及图3,对应地,第四检测组件400包括第二光源(图未示,下同)及第二反光部(图未示,下同)。第二光源与第一光源的结构相同,第二反光部与第一反光部2220的结构相同,即第二反光部也包括如上述实施例中所述的多个反光分部2220a。也就是说,第二反光部同样能够将第二光源的光线聚焦在第四工位401上,并形成线性分布的多个焦点220a,即形成另一焦点线光220b。关于第四检测组件400形成另一焦点线光220b的方式参见上述第二检测组件200中的相关描述,于此不再赘述。如此设置,第四相机结构410在对工件20的表面进行检测时,同样具有更高的亮度,能够检测出程度更加轻微的缺陷,使第四检测组件400具有更高的检测精度。
本实施例中,通过设置第二检测组件200与第四检测组件400相配合,能够保证对工件20相对的两个侧面检测时的精度更高。同时,第二检测组件200与第四检测组件400均能够对边缘进行缺陷检测。从而,第二检测组件200、第四检测组件400结合第一检测组件100,能够对工件20内部及外表面进行全面的、完整的检测。
在此基础上,由于第三检测组件300能够兼容不同的缺陷的检测,故检测装置10不仅在结构上能够对工件20进行全面检测,针对不同类型的缺陷,检测装置10也能够进行全面的检测,避免某种或某些类型的缺陷无法被检测出。并且,如此设置还能够使检测装置10能够兼容检测不同种类、大小的玻璃。
在一个实施例中,输送组件包括驱动件及承载件。驱动件与承载件连接以驱动承载件运动。承载件用于承载工件20,承载件上开设有避让口,工件20用于至少部分覆盖避让口。通过设置避让孔,能够避免遮挡件遮挡工件20的外表面,以避免检测不完整。
在一个实施例中,承载件具体可以为托辊传送装置,以运输工件20运动于各个工位之间。本实施例中,避让口可以形成于相邻辊子之间。
在一个实施例中,检测装置10还包括多个位置传感器(图未示,下同),多个位置传感器分别对应设于第一工位101、第二工位201、第三工位301以及第四工位401,以检测工件20是否运动到位。当工件20运动至相应工位时,能够触发设于相应工位上的位置传感器。设于相应工位上的位置传感器,可以与相应工位上所对应的检测组件电连接。当位置传感器被触发后,相应检测组件开始采集工件20图像。
在一个实施例中,检测装置10还包括位置调整组件(图未示,下同)及控制组件(图未示,下同)。位置调整组件与第一检测组件100、第二检测组件200、第三检测组件300以及第四检测组件400均连接。
位置调整组件能够调整第一检测组件100相对第一工位101的位置,以保证第一检测组件100能够稳定检测位于第一工位101上的工件20。进一步地,位置调整组件还能够调整第一相机结构110与第一照明件120的相对位置,以使第一照明件120能够稳定地向第一相机结构110照明,保证第一相机结构110的成像效果。
同理,位置调整组件还能够调整第二检测组件200相对第二工位201的位置,以保证第二检测组件200能够稳定检测位于第二工位201上的工件20。进一步地,位置调整组件还能够调整第二相机结构210与第二照明件220的相对位置,以使第二相机结构210能够对准第二照明件220上的透光缝隙2220b,也即使第二相机结构210能够对准焦点线光220b,保证第二相机结构210的成像效果。
类似地,位置调整组件还能够调整第三检测组件300相对第三工位301的位置,以保证第三检测组件300能够稳定检测位于第三工位301上的工件20。进一步地,位置调整组件还能够调整第三相机结构310与第三照明件320的相对位置,以保证第三相机结构310能够稳定捕捉到由工件20反射的光线。
同样地,位置调整组件还能够调整第四检测组件400相对第四工位401的位置,以保证第四检测组件400能够稳定检测位于第四工位401上的工件20。进一步地,位置调整组件还能够调整第四相机结构410与第四照明件420的相对位置,以使第四相机结构410能够对准第四照明件420上的透光缝隙2220b,也即使第四相机结构410能够对准焦点线光220b,保证第四相机结构420的成像效果。
在一个实施例中,位置调整组件能够通过驱动各检测组件在空间中,沿两两垂直的三轴上移动,以及绕所述三轴转动,以调整各检测组件的位置,朝向等。
在一个实施例中,控制组件与位置调整组件电连接,以通过位置调整组件调整各个检测组件至预期位置。控制组件还与输送组件电连接,以带动工件20运动至相应工位。
控制组件还与第一检测组件100、第二检测组件200、第三检测组件300及第四检测组件400均电连接,以获取各个检测组件的成像结构,并以此分析工件20上所存在的缺陷,以及工件20上的图形、图案。控制组件具体可以与位置传感器连接,当位置传感器被触发后,可以通过控制组件启动各个检测组件开启以采集图像。
在一个实施例中,第一检测组件100、第二检测组件200、第三检测组件300及第四检测组件400可以均包括散热结构,通过散热结构能够对各检测组件内的照明件进行散热。
在一个实施例中,第一相机结构110、第二相机结构210、第三相机结构310及第四相机结构410可以均包括相应的相机以及与相机连接的镜头。
在一个实施例中,工件20具体可以为白玻璃、玻璃晶圆等可透光,且需要进行外形检测的产品。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种检测装置,用于对可透光工件进行缺陷检测,其特征在于,所述检测装置包括:
输送组件,用于运输所述工件在第一工位与第二工位之间运动;
第一检测组件,包括分别位于所述第一工位相背两侧的第一相机结构及第一照明件,所述第一照明件的光轴用于穿过工件并向所述第一相机结构照明;
第二检测组件,包括第二相机结构及第二照明件,所述第二照明件包括第一光源及第一反光部,所述第一反光部能够将所述第一光源的光线聚焦在第二工位上以形成焦点,多个所述第一光源与多个所述第一反光部对应成组设置,以在所述第二工位上形成线性分布的多个所述焦点,所述第二相机结构朝向线性分布的多个所述焦点。
2.根据权利要求1所述的检测装置,其特征在于,所述输送组件还用于驱动所述工件经过第三工位,所述检测装置还包括第三检测组件,所述第三检测组件包括位于所述第三工位同一侧的第三相机结构及第三照明件,所述第三照明件的光轴与所述输送方向相交,处于所述第三工位的所述工件用于将所述第三照明件的光线反射至所述第三相机结构。
3.根据权利要求2所述的检测装置,其特征在于,所述第三照明件的光轴与所述输送方向的夹角为45°至90°。
4.根据权利要求1所述的检测装置,其特征在于,所述第一相机结构为线阵相机,所述第一照明件为线光源。
5.根据权利要求1所述的检测装置,其特征在于,所述第一反光部包括第一聚焦体及第二聚焦体,所述第一光源包括分别对应所述第一聚焦体及所述第二聚焦体的两个发光部,所述第一聚焦体与所述第二聚焦体能够将与之对应的发光部的光线聚焦在同一所述焦点,所述第一聚焦体与所述第二聚焦体分别位于两者所对应的所述焦点的两侧。
6.根据权利要求5所述的检测装置,其特征在于,所述第一聚焦体及所述第二聚焦体均包括朝向所述第二工位的多个反光分部,多个所述反光分部沿分布曲线设置,所述分布曲线上各处曲率半径不同,所述发光部朝向所述反光分部,各所述反光分部能够将所述发光部的光线对应反射至同一所述焦点。
7.根据权利要求1所述的检测装置,其特征在于,定义多个所述焦点的连线为焦点线光,所述第一反光部上设有透光缝隙,所述透光缝隙在所述第二工位上的投影至少部分与所述焦点线光重合。
8.根据权利要求5至7任意一项所述的检测装置,其特征在于,所述输送组件还用于驱动所述工件经过第四工位,所述检测装置还包括第四检测组件,所述第四检测组件与所述第二检测组件用于设于所述工件的不同侧;所述第四检测组件包括第二光源及第二反光部,所述第二光源与所述第一光源的结构相同,所述第二反光部与所述第二反光部的结构相同,所述第二反光部能够将所述第二光源的光线聚焦在第四工位上,并形成线性分布的多个焦点。
9.根据权利要求1所述的检测装置,其特征在于,所述输送组件包括驱动件及承载件,所述驱动件与所述承载件连接以驱动所述承载件运动,所述承载件用于承载所述工件,所述承载件上开设有避让口,所述工件用于至少部分覆盖所述避让口。
10.根据权利要求1所述的检测装置,其特征在于,所述检测装置还包括位置调整组件,所述位置调整组件与所述第一检测组件与所述第二检测组件均连接,所述位置调整组件用于调整所述第一检测组件相对所述第一工位的位置、姿态,以及所述位置调整组件用于调整所述第二检测组件相对所述第二工位的位置。
CN202310248928.0A 2023-03-08 2023-03-08 检测装置 Pending CN116359236A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310248928.0A CN116359236A (zh) 2023-03-08 2023-03-08 检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310248928.0A CN116359236A (zh) 2023-03-08 2023-03-08 检测装置

Publications (1)

Publication Number Publication Date
CN116359236A true CN116359236A (zh) 2023-06-30

Family

ID=86913241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310248928.0A Pending CN116359236A (zh) 2023-03-08 2023-03-08 检测装置

Country Status (1)

Country Link
CN (1) CN116359236A (zh)

Similar Documents

Publication Publication Date Title
KR101140072B1 (ko) 글래스판의 단부면의 결함 검출 장치 및 검출 방법
TWI442016B (zh) A light source for illumination and a pattern inspection device using it
KR101120226B1 (ko) 표면 검사 장치
US8532364B2 (en) Apparatus and method for detecting defects in wafer manufacturing
US20110310244A1 (en) System and method for detecting a defect of a substrate
JP4713279B2 (ja) 照明装置及びこれを備えた外観検査装置
US6034766A (en) Optical member inspection apparatus
JP2007147433A (ja) セラミック板の欠陥検出方法と装置
KR20060053847A (ko) 유리판의 결점 검사 방법 및 그 장치
CN110073203B (zh) 检查透明基材上的缺陷的方法和设备
CN110809731A (zh) 玻璃处理装置和方法
KR20160004099A (ko) 결함 검사 장치
JP2010181249A (ja) 形状測定装置
JP5726628B2 (ja) 透明体ボトルの外観検査装置及び外観検査方法
KR20170133113A (ko) 유리 상면 상의 이물질 검출 방법과 장치, 및 입사광 조사 방법
KR20160121716A (ko) 하이브리드 조명 기반 표면 검사 장치
JP7208233B2 (ja) ガラスシートの表面欠陥の検出方法および装置
CN116359236A (zh) 检测装置
KR20110125906A (ko) 레티클 검사장치
WO2021261149A1 (ja) 表面検査装置および表面検査システム
JP2002131238A (ja) 外観検査装置
KR20190001789A (ko) 멀티 광학 디스플레이 검사 장치
US11774374B2 (en) Inspection device
KR20230024646A (ko) 이차전지 결함 검사장치 및 방법
KR101746416B1 (ko) Led칩 검사 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination