CN116356316A - 锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法 - Google Patents

锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法 Download PDF

Info

Publication number
CN116356316A
CN116356316A CN202310365839.4A CN202310365839A CN116356316A CN 116356316 A CN116356316 A CN 116356316A CN 202310365839 A CN202310365839 A CN 202310365839A CN 116356316 A CN116356316 A CN 116356316A
Authority
CN
China
Prior art keywords
film layer
substep
plating
lens
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310365839.4A
Other languages
English (en)
Inventor
梁献波
刘梦佳
尹士平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Guangzhi Technology Co Ltd
Original Assignee
Anhui Guangzhi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Guangzhi Technology Co Ltd filed Critical Anhui Guangzhi Technology Co Ltd
Priority to CN202310365839.4A priority Critical patent/CN116356316A/zh
Publication of CN116356316A publication Critical patent/CN116356316A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种锗透镜基底上镀制8‑12μmDLC加减反射增透膜的制备方法包括步骤:S1,将作为镜片的锗透镜基底的陪镀片和产品的表面进行清洁处理,陪镀片的厚度为0.9‑1.5mm;S2,在第一面上镀制DLC膜层;S3,在第二面镀制减反射增透膜。S4,镀制完成后,待真空室冷却至80℃以下取出镜片。通过第一面镀制的作为外膜层的DLC膜层和第二面镀制的作为内膜层的减反射增透膜,基于陪镀片的8‑12μm红外波段的测试,8‑12μm红外波段的透过率能达到91%以上。内膜层和外膜层的配合既能满足恶劣环境工作又能满足红外透射率要求。

Description

锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法
技术领域
本公开涉及红外领域,更具体地涉及一种锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法。
背景技术
锗既可以用于长波红外也可以用于中波红外。锗在中长波红外光学系统中广泛使用,但其色散特性在不同波段变化明显,锗在3-5μm的阿贝数为103,在光学系统中一般为负组;而其在8-12μm的阿贝数却为864,在光学系统中一般为正组。在长波段可作为消色差双透镜中的冕牌或正元件。在中波段可以作为消色差双透镜中的火石或负元件。这种变化来源于锗材料在这两个波段的色散特性差异。在中波段锗很接近其低吸收波段,折射率变化很快,进而导致具有较大色散,这使得锗在中波段可以作为消色差双透镜中的负光焦度元件。
随着红外技术在军事和民用中越来越广泛,对红外镀膜要求越来越高,大多光学系统前置透镜的膜层需具备在恶劣环境下长时间正常的能力,如大气高速飞行,抗击异物摩擦,在阴雨潮湿天气抵抗雨水的浸泡及腐蚀等等。
发明内容
鉴于背景技术中存在的问题,本公开的目的在于提供一种锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其既能满足恶劣环境工作又能满足红外透射率要求。
由此,一种锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法包括步骤:S1,将作为镜片的锗透镜基底的陪镀片和产品的表面进行清洁处理,陪镀片的厚度为0.9-1.5mm;S2,在镜片的第一面上镀制DLC膜层;S3,在镜片的第二面上镀制减反射增透膜。S4,镀制完成后,待真空室冷却至80℃以下取出两面镀制好的镜片。步骤S2包括子步骤:S21,将清洁处理好的陪镀片和产品的镜片置于射频等离子类金刚石镀膜设备的下极板托盘上;S22,射频等离子类金刚石镀膜设备抽真空,然后通入氩气清洗;S23,启动射频等离子类金刚石镀膜设备,通入甲烷120sccm、氩气10sccm作为反应气源,开启射频电源,射频电源的射频功率为700-800W,沉积压力为0.1-10Pa,沉积时间为2800-3000s,从而在镜片的第一面上镀制DLC膜层;S24,沉积完成后,冷却后从射频等离子类金刚石镀膜设备中取出包含陪镀片和产品的镜片,准备镀制镜片的第二面。步骤S3包括子步骤:S30,将第一面镀制DLC膜层的包括陪镀片和产品的镜片的表面进行清洁处理;S31,将清洁处理好的镜片放入工装夹具,放好镜片的工装夹具挂入真空镀膜机的腔体内,腔体的温度设定为150℃;S32,真空镀膜机启动抽真空,真空度达到1×10-3Pa,打开真空镀膜机的辅助镀膜的离子源进行清洗,清洗时间为6min,离子源的阳极电压为220V、阳极电流为1.2-1.5A、发射极的电流为1.3-1.5A、采用氩气作为工作气体;S33,维持前述真空度,在镜片的第二面蒸镀第一Ge膜层,第一Ge膜层的沉积速率为0.4nm/s,控制第一Ge膜层的膜厚为20nm±1nm,离子源辅助蒸镀;S34,在镀制的第一Ge膜层上蒸镀第一ZnS膜层,第一ZnS膜层的沉积速率为0.8nm/s,控制第一ZnS膜层的膜厚为278nm±5nm,离子源辅助蒸镀;S35,在镀制的第一ZnS膜层上蒸镀第二Ge膜层,第二Ge膜层的沉积速率为0.4nm/s,控制第二Ge膜层的膜厚为160nm±4nm,离子源辅助蒸镀;S36,在镀制的第二Ge膜层上蒸镀第二ZnS膜层,第二ZnS膜层的沉积速率为0.8nm/s,控制第二ZnS膜层的膜厚为583nm±5nm,离子源辅助蒸镀;S37,在镀制的第二ZnS膜层上蒸镀YbF3膜层,YbF3膜层的沉积速率为0.6nm/s,控制YbF3膜层的膜厚为980nm±5nm,离子源辅助蒸镀;S38,在镀制的YbF3膜层上蒸镀第三ZnS膜层,第三ZnS膜层的沉积速率为0.8nm/s,控制第三ZnS膜层的膜厚为137nm±4nm,离子源辅助蒸镀。
本公开的有益效果如下:在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,通过在作为镜片的锗透镜基底的陪镀片和产品的第一面镀制DLC膜层,DLC膜层将作为透镜的产品的外膜层,使得产品具备在恶劣环境下长时间正常的能力,如大气高速飞行,抗击异物摩擦,在阴雨潮湿天气抵抗雨水的浸泡及腐蚀等等;通过在作为镜片的锗透镜基底的陪镀片和产品的第二面镀制20nm±1nm膜厚的第一Ge膜层、278nm±5nm膜厚的第一ZnS膜层、160nm±4nm膜厚的第二Ge膜层、583nm±5nm膜厚的第二ZnS膜层、980nm±5nm膜厚的YbF3膜层、137nm±4nm膜厚的第三ZnS膜层,第二面上的六层膜层将作为透镜的产品的内膜层,这种内膜层为减反射增透膜,通过第一面镀制的作为外膜层的DLC膜层和第二面镀制的作为内膜层的减反射增透膜,基于陪镀片的8-12μm红外波段的测试,8-12μm红外波段的透过率能达到91%以上。换句话说,内膜层和外膜层的配合既能满足恶劣环境工作又能满足红外透射率要求。
附图说明
图1是根据本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法在包含锗透镜基底的陪镀片和产品的镜片的两面分别镀制DLC膜层和减反射增透膜的结构示意图。
图2是实施例1的陪镀片两面分别镀制DLC膜层和减反射增透膜在8-12μm红外波段的透过率的曲线图。
具体实施方式
附图示出本公开的实施例,且将理解的是,所公开的实施例仅仅是本公开的示例,本公开可以以各种形式实施,因此,本文公开的具体细节不应被解释为限制,而是仅作为权利要求的基础且作为表示性的基础用于教导本领域普通技术人员以各种方式实施本公开。
[锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法]
根据本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法包括步骤:S1,将作为镜片的锗透镜基底的陪镀片和产品的表面进行清洁处理,陪镀片的厚度为0.9-1.5mm;S2,在镜片的第一面上镀制DLC膜层;S3,在镜片的第二面上镀制减反射增透膜;S4,镀制完成后,待真空室冷却至80℃以下取出两面镀制好的镜片。
步骤S2包括子步骤:S21,将清洁处理好的陪镀片和产品的镜片置于射频等离子类金刚石镀膜设备的下极板托盘上;S22,射频等离子类金刚石镀膜设备抽真空,然后通入氩气清洗;S23,启动射频等离子类金刚石镀膜设备,通入甲烷120sccm、氩气10sccm作为反应气源,开启射频电源,射频电源的射频功率为700-800W,沉积压力为0.1-10Pa,沉积时间为2800-3000s,从而在镜片的第一面上镀制DLC膜层;S24,沉积完成后,冷却后从射频等离子类金刚石镀膜设备中取出包含陪镀片和产品的镜片,准备镀制镜片的第二面。
步骤S3包括子步骤:S30,将第一面镀制DLC膜层的包括陪镀片和产品的镜片的表面进行清洁处理;S31,将清洁处理好的镜片放入工装夹具,放好镜片的工装夹具挂入真空镀膜机的腔体内,腔体的温度设定为150℃;S32,真空镀膜机启动抽真空,真空度达到1×10-3Pa,打开真空镀膜机的辅助镀膜的离子源进行清洗,清洗时间为6min,离子源的阳极电压为220V、阳极电流为1.2-1.5A、发射极的电流为1.3-1.5A、采用氩气作为工作气体;S33,维持前述真空度,在镜片的第二面蒸镀第一Ge膜层,第一Ge膜层的沉积速率为0.4nm/s,控制第一Ge膜层的膜厚为20nm±1nm,离子源辅助蒸镀;S34,在镀制的第一Ge膜层上蒸镀第一ZnS膜层,第一ZnS膜层的沉积速率为0.8nm/s,控制第一ZnS膜层的膜厚为278nm±5nm,离子源辅助蒸镀;S35,在镀制的第一ZnS膜层上蒸镀第二Ge膜层,第二Ge膜层的沉积速率为0.4nm/s,控制第二Ge膜层的膜厚为160nm±4nm,离子源辅助蒸镀;S36,在镀制的第二Ge膜层上蒸镀第二ZnS膜层,第二ZnS膜层的沉积速率为0.8nm/s,控制第二ZnS膜层的膜厚为583nm±5nm,离子源辅助蒸镀;S37,在镀制的第二ZnS膜层上蒸镀YbF3膜层,YbF3膜层的沉积速率为0.6nm/s,控制YbF3膜层的膜厚为980nm±5nm,离子源辅助蒸镀;S38,在镀制的YbF3膜层上蒸镀第三ZnS膜层,第三ZnS膜层的沉积速率为0.8nm/s,控制第三ZnS膜层的膜厚为137nm±4nm,离子源辅助蒸镀。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,通过在作为镜片的锗透镜基底的陪镀片和产品的第一面镀制DLC膜层,DLC膜层将作为透镜的产品的外膜层,使得产品具备在恶劣环境下长时间正常的能力,如大气高速飞行,抗击异物摩擦,在阴雨潮湿天气抵抗雨水的浸泡及腐蚀等等;通过在作为镜片的锗透镜基底的陪镀片和产品的第二面镀制20nm±1nm膜厚的第一Ge膜层、278nm±5nm膜厚的第一ZnS膜层、160nm±4nm膜厚的第二Ge膜层、583nm±5nm膜厚的第二ZnS膜层、980nm±5nm膜厚的YbF3膜层、137nm±4nm膜厚的第三ZnS膜层,第二面上的六层膜层将作为透镜的产品的内膜层,这种内膜层为减反射增透膜,通过第一面镀制的作为外膜层的DLC膜层和第二面镀制的作为内膜层的减反射增透膜,基于陪镀片的8-12μm红外波段的测试,8-12μm红外波段的透过率能达到91%以上。换句话说,内膜层和外膜层的配合既能满足恶劣环境工作又能满足红外透射率要求。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,在作为镜片的锗透镜基底的陪镀片和产品的第一面镀制的DLC膜层是直接镀覆,从而使得DLC膜层对两面镀覆完成的产品的透射率的影响最小。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,在作为镜片的锗透镜基底的陪镀片和产品的第二面镀制的六层膜层的总厚度为1519nm±24nm。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,步骤S1的表面清洁有利于改善陪镀片和产品的第一面的表面状态,有助于提高DLC膜层与陪镀片和产品的第一面的结合性能。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,在步骤S2的子步骤S22中,氩气清洗是氩离子的轰击作用和溅射作用将使陪镀片和产品的表层吸附的杂质、油污分子、氧化物脱离基体表面,从而大幅度改善界面状态,有助于子步骤S23形成的DLC膜层与陪镀片和产品的结合性能的提高,以此同时通过氩离子对陪镀片和产品的表面的轰击,可以加热陪镀片和产品的表面,有助于DLC膜层的生长以及减小DLC膜层的生长应力。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,在步骤S2的子步骤S23中,射频电源产生辉光放电,使化学源气体产生等离子体,化学源气体(甲烷、氩)分解成各种中性粒子和带电粒子,粒子之间相互碰撞发生一系列化学反应,等离子体中的正离子(碳离子、氩离子)向下极板托盘聚集,在陪镀片和产品的表面上形成正离子鞘层,正离子在鞘层中被加速撞击陪镀片和产品的表面,形成高温高压,碳离子沉积在陪镀片和产品上并形成碳膜、碳膜发生结构转换,形成类金刚石膜,氩离子在膜形成过程中一直轰击沉积的碳膜,使得形成的类金刚石膜致密。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,同样地,步骤S3的子步骤S30的表面清洁,有利于改善陪镀片和产品的第二面的表面状态,有助于提高六层膜层与陪镀片和产品的第二面的结合性能。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,步骤S3的子步骤S31的腔体的温度有助于消除陪镀片和产品的第一面的DLC膜层的应力同时有助于在陪镀片和产品的第二面的减反射增透膜的生长。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,步骤S3的子步骤S32采用离子源进行清洗,工作气体氩气电离的氩离子的轰击作用和溅射作用将使陪镀片和产品的第二面的表层吸附的杂质、油污分子、氧化物脱离基体表面,从而大幅度改善界面状态,有助于第一Ge膜层与Ge透镜基底的结合性能的提高,以此同时通过氩离子对Ge透镜基底的第二面的轰击,可以加热Ge透镜基底的第二面,有助于第一Ge膜层的生长以及减小第一Ge膜层生长应力。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,在步骤S3的子步骤S33至子步骤S38中,离子源辅助蒸镀通过离子轰击镜片的第二面有助于膜层的生长、提高附着力和硬度,同时减少膜层应力。
在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,步骤S3的子步骤S33镀制的是与Ge透镜基底相同材质的第一Ge膜层,由此消除了不同材质导致的应力,而且第一Ge膜层在六层膜层中的膜厚最小,能够使得从Ge透镜基底通过采用最薄的过渡层过渡到第一ZnS膜层。
注意的是,在本公开的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法中,陪镀片为等厚度的第一面和第二面均为平坦面的片,而产品在形状和尺寸上会依据实际需要与陪镀片不同,基于透镜的需要,在一示例中,产品是第一面为凸面而第二面为凹面。
在一示例中,在步骤S1中,锗透镜基底的陪镀片的厚度为1.0mm。
在一示例中,在步骤S1中,采用超声波对镜片的表面进行清洁处理。
在一示例中,在步骤S2的子步骤S22中,射频等离子类金刚石镀膜设备抽真空的真空度达到5.0×10-3Pa。
在一示例中,在步骤S2的子步骤S22中,通入氩气30sccm,清洗时间为2min。
在一示例中,在步骤S2的子步骤S23中,射频电源的射频功率为750W,沉积压力为5Pa,沉积时间为2900s。
在一示例中,在步骤S2的子步骤S24中,冷却30min。
在一示例中,在步骤S3的子步骤S30中,采用超声波对镜片的表面进行清洁处理。
在一示例中,在步骤S3的子步骤S32中,阳极电流为1.2A、发射极的电流为1.5A。
在一示例中,在步骤S3的子步骤S32至子步骤S38中,离子源为霍尔离子源。
在一示例中,在子步骤S33中,控制第一Ge膜层的膜厚为20nm;在子步骤S34中,控制第一ZnS膜层的膜厚为278nm;在子步骤S35中,控制第二Ge膜层的膜厚为160nm;在子步骤S36中,控制第二ZnS膜层的膜厚为583nm;在子步骤S37中,控制YbF3膜层的膜厚为980nm;在子步骤S38中,控制第三ZnS膜层的膜厚为137nm。
在一示例中,在子步骤S33和子步骤S35中,针对离子源设有中和器,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为150V、阳极电流为1.2A、采用氩气作为工作气体、氩气流量为100sccm。
在一示例中,在子步骤S34、子步骤S36以及子步骤S38中,针对离子源设有中和器,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为180V、阳极电流为1.8A、采用氩气作为工作气体、氩气流量为100sccm。
在一示例中,在子步骤S37中,针对离子源设有中和器,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为120V、阳极电流为1.2A、采用氩气作为工作气体、氩气流量为100sccm。
在采用中和器的上述示例中,离子源的氩气电离将形成近等离子体,但是这些等离子体将可能存在有多余的带电离子,而中和器中的氩气通过电离成形成电子来中和离子源产生的所述多余的带电离子,从而消除带电离子对蒸发镀膜的膜层的影响,进而确保离子源辅助蒸镀的各膜层的质量。由此,仅需在中和气:工作气体在很小的流量比例(1/10)达到此效果。
在一示例中,在子步骤S33和子步骤S35中,蒸镀采用电子束蒸发;在子步骤S34、子步骤S36、子步骤S38以及子步骤S37中,蒸镀采用电阻加热蒸发。
[测试]
实施例1
锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法采用下列步骤:
S1,将作为镜片的锗透镜基底的陪镀片和产品的表面采用超声波进行清洁处理,锗透镜基底的陪镀片的厚度为1.0mm,陪镀片为等厚度的第一面和第二面均为平坦面的片,产品是第一面为凸面而第二面为凹面;
S2,在镜片的第一面上镀制DLC膜层,采用下列子步骤:
S21,将清洁处理好的陪镀片和产品的镜片置于射频等离子类金刚石镀膜设备的下极板托盘上,射频等离子类金刚石镀膜设备为成都西沃克真空科技有限公司制造的类金刚石硬碳膜镀膜机;
S22,射频等离子类金刚石镀膜设备抽真空,抽真空的真空度达到5.0×10-3Pa,然后通入氩气30sccm清洗2min;
S23,启动射频等离子类金刚石镀膜设备,通入甲烷120sccm、氩气10sccm作为反应气源,开启射频电源,射频电源的射频功率为750W,沉积压力为5Pa,沉积时间为2900s,从而在镜片的第一面上镀制DLC膜层;
S24,沉积完成后,冷却30min后从启动射频等离子类金刚石镀膜设备中取出包含陪镀片和产品的镜片,准备镀制镜片的第二面;
S3,在镜片的第二面上镀制减反射增透膜,采用下列子步骤:
S30,将第一面镀制DLC的包括陪镀片和产品的镜片的表面采用超声波进行清洁处理;
S31,将清洁处理好的镜片放入工装夹具,放好镜片的工装夹具挂入真空镀膜机的腔体内,腔体的温度设定为150℃,真空镀膜机为成都西沃克真空科技有限公司制造并销售的设有中和器的霍尔离子源的真空镀膜机,设有中和器的霍尔离子源商购自博顿光电科技有限公司;
S32,真空镀膜机启动抽真空,真空度达到1×10-3Pa,打开真空镀膜机的辅助镀膜的霍尔离子源进行清洗,清洗时间为6min,离子源的阳极电压为220V、阳极电流为1.2A、发射极的电流为1.5A、采用氩气作为工作气体;
S33,维持前述真空度,在镜片的第二面蒸镀第一Ge膜层,第一Ge膜层的沉积速率为0.4nm/s,控制第一Ge膜层的膜厚为20nm,蒸镀采用电子束蒸发方式;
S34,在镀制的第一Ge膜层上蒸镀第一ZnS膜层,第一ZnS膜层的沉积速率为0.8nm/s,控制第一ZnS膜层的膜厚为278nm,蒸镀采用电阻加热蒸发方式;
S35,在镀制的第一ZnS膜层上蒸镀第二Ge膜层,第二Ge膜层的沉积速率为0.4nm/s,控制第二Ge膜层的膜厚为160nm,蒸镀采用电子束蒸发方式;
S36,在镀制的第二Ge膜层上蒸镀第二ZnS膜层,第二ZnS膜层的沉积速率为0.8nm/s,控制第二ZnS膜层的膜厚为583nm,蒸镀采用电阻加热蒸发方式;
S37,在镀制的第二ZnS膜层上蒸镀YbF3膜层,YbF3膜层的沉积速率为0.6nm/s,控制YbF3膜层的膜厚为980nm,蒸镀采用电阻加热蒸发方式;
S38,在镀制的YbF3膜层上蒸镀第三ZnS膜层,第三ZnS膜层的沉积速率为0.8nm/s,控制第三ZnS膜层的膜厚为137nm,蒸镀采用电阻加热蒸发方式;
在子步骤S33和子步骤S35中,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为150V、阳极电流为1.2A、采用氩气作为工作气体、氩气流量为100sccm;
在子步骤S34、子步骤S36以及子步骤S38中,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为180V、阳极电流为1.8A、采用氩气作为工作气体、氩气流量为100sccm;
在子步骤S37中,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为120V、阳极电流为1.2A、采用氩气作为工作气体、氩气流量为100sccm;
S4,镀制完成后,待真空室冷却至80℃以下取出两面镀制好的镜片。
实施例1制备的两面镀制好DLC膜层和六层膜层的镜片的结构如图1示意所示,图2示出实施例1所制备的陪镀片连同两面上的DLC膜层和六层膜层(构成减反射增透膜)的透过率的曲线图,从图2看出,在8-12μm波段,透过率(算术平均值)能达到91%以上。
按照GJB2485-95光学膜层通用规范的内容,对陪镀片连同两面上的DLC膜层和六层膜层整体的性能进行检验。
水泡试验:实施例1所制备的陪镀片连同两面上的DLC膜层和六层膜层整体经过取自自来水的水泡试验10min,未发现DLC膜层和六层膜层从陪镀片上脱落、也未发现DLC膜层和六层膜层崩裂。
粘接力试验:在取自自来水的水泡和盐雾试验完成之后,用手粘贴3M胶带纸在陪镀片的第一面的DLC膜层进行沿与粘贴端相反的方向拉胶带,并未将DLC膜层拉起;针对陪镀片的第二面,用手粘贴3M胶带纸在陪镀片的第二面的第三ZnS膜层进行沿与粘贴端相反的方向拉胶带,并未将六层膜层拉起。
通过水泡实验和拉胶带实验,说明陪镀片的两面上的DLC膜层和六层膜层的附着力良好。
冷热冲击试验:在高低温箱内,-40℃至85℃范围进行冷热冲击24h,未发现DLC膜层和六层膜层从陪镀片上脱落、也未发现DLC膜层和六层膜层崩裂。
恒温恒湿试验:在恒温恒湿箱内,50℃、95%相对湿度下48h。未发现DLC膜层和六层膜层从陪镀片上脱落、也未发现DLC膜层和六层膜层崩裂。
盐雾试验:中性盐雾试验48h,未发现DLC膜层和六层膜层从陪镀片上脱落、也未发现DLC膜层和六层膜层崩裂。
低温试验:在低温箱内,-40℃48h,未发现DLC膜层和六层膜层从陪镀片上脱落、也未发现DLC膜层和六层膜层在陪镀片上崩裂;
高温试验:在高温内,85℃48h,未发现DLC膜层和六层膜层从陪镀片上脱落、也未发现DLC膜层和六层膜层崩裂。
采用上面详细的说明描述多个示范性实施例,但本文不意欲限制到明确公开的组合。因此,除非另有说明,本文所公开的各种特征可以组合在一起而形成出于简明目的而未示出的多个另外组合。

Claims (10)

1.一种锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,包括步骤:
S1,将作为镜片的锗透镜基底的陪镀片和产品的表面进行清洁处理,陪镀片的厚度为0.9-1.5mm;
S2,在镜片的第一面上镀制DLC膜层,包括子步骤:
S21,将清洁处理好的陪镀片和产品的镜片置于射频等离子类金刚石镀膜设备的下极板托盘上;
S22,射频等离子类金刚石镀膜设备抽真空,然后通入氩气清洗;
S23,启动射频等离子类金刚石镀膜设备,通入甲烷120sccm、氩气10sccm作为反应气源,开启射频电源,射频电源的射频功率为700-800W,沉积压力为0.1-10Pa,沉积时间为2800-3000s,
从而在镜片的第一面上镀制DLC膜层;
S24,沉积完成后,冷却后从射频等离子类金刚石镀膜设备中取出包含陪镀片和产品的镜片,准备镀制镜片的第二面;
S3,在镜片的第二面上镀制减反射增透膜,包括子步骤:
S30,将第一面镀制DLC膜层的包括陪镀片和产品的镜片的表面进行清洁处理;
S31,将清洁处理好的镜片放入工装夹具,放好镜片的工装夹具挂入真空镀膜机的腔体内,腔体的温度设定为150℃;
S32,真空镀膜机启动抽真空,真空度达到1×10-3Pa,打开真空镀膜机的辅助镀膜的离子源进行清洗,清洗时间为6min,
离子源的阳极电压为220V、阳极电流为1.2-1.5A、发射极的电流为1.3-1.5A、采用氩气作为工作气体;
S33,维持前述真空度,在镜片的第二面蒸镀第一Ge膜层,第一Ge膜层的沉积速率为0.4nm/s,控制第一Ge膜层的膜厚为20nm±1nm,离子源辅助蒸镀;
S34,在镀制的第一Ge膜层上蒸镀第一ZnS膜层,第一ZnS膜层的沉积速率为0.8nm/s,控制第一ZnS膜层的膜厚为278nm±5nm,离子源辅助蒸镀;
S35,在镀制的第一ZnS膜层上蒸镀第二Ge膜层,第二Ge膜层的沉积速率为0.4nm/s,控制第二Ge膜层的膜厚为160nm±4nm,离子源辅助蒸镀;
S36,在镀制的第二Ge膜层上蒸镀第二ZnS膜层,第二ZnS膜层的沉积速率为0.8nm/s,控制第二ZnS膜层的膜厚为583nm±5nm,离子源辅助蒸镀;
S37,在镀制的第二ZnS膜层上蒸镀YbF3膜层,YbF3膜层的沉积速率为0.6nm/s,控制YbF3膜层的膜厚为980nm±5nm,
离子源辅助蒸镀;
S38,在镀制的YbF3膜层上蒸镀第三ZnS膜层,第三ZnS膜层的沉积速率为0.8nm/s,控制第三ZnS膜层的膜厚为137nm±4nm,离子源辅助蒸镀;
S4,镀制完成后,待真空室冷却至80℃以下取出两面镀制好的镜片。
2.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,
在步骤S1中,锗透镜基底的陪镀片的厚度为1.0mm。
3.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,
在步骤S1和子步骤S30中,采用超声波对镜片的表面进行清洁处理。
4.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透的制备方法,其特征在于,
在子步骤S22中,射频等离子类金刚石镀膜设备抽真空的真空度达到5.0×10-3Pa;
在子步骤S22中,通入氩气30sccm,清洗时间为2min;
在子步骤S23中,射频电源的射频功率为750W,沉积压力为5Pa,沉积时间为2900s;
在子步骤S24中,冷却30min。
5.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,
在子步骤S32中,阳极电流为1.2A、发射极的电流为1.5A;
在子步骤S32至子步骤S38中,离子源为霍尔离子源。
6.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,
在子步骤S33中,控制第一Ge膜层的膜厚为20nm;
在子步骤S34中,控制第一ZnS膜层的膜厚为278nm;
在子步骤S35中,控制第二Ge膜层的膜厚为160nm;
在子步骤S36中,控制第二ZnS膜层的膜厚为583nm;
在子步骤S37中,控制YbF3膜层的膜厚为980nm;
在子步骤S38中,控制第三ZnS膜层的膜厚为137nm。
7.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,
在子步骤S33和子步骤S35中,针对离子源设有中和器,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为150V、阳极电流为1.2A、采用氩气作为工作气体、氩气流量为100sccm。
8.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,
在子步骤S34、子步骤S36以及子步骤S38中,针对离子源设有中和器,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为180V、阳极电流为1.8A、采用氩气作为工作气体、氩气流量为100sccm。
9.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,
在子步骤S37中,针对离子源设有中和器,中和器的参数为中和电流为0.5A、采用氩气形成中和气、中和气的流量为10sccm,离子源的阳极电压为120V、阳极电流为1.2A、采用氩气作为工作气体、氩气流量为100sccm。
10.根据权利要求1所述的锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法,其特征在于,
在子步骤S33和子步骤S35中,蒸镀采用电子束蒸发;
在子步骤S34、子步骤S36、子步骤S38以及子步骤S37中,蒸镀采用电阻加热蒸发。
CN202310365839.4A 2023-04-04 2023-04-04 锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法 Pending CN116356316A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310365839.4A CN116356316A (zh) 2023-04-04 2023-04-04 锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310365839.4A CN116356316A (zh) 2023-04-04 2023-04-04 锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法

Publications (1)

Publication Number Publication Date
CN116356316A true CN116356316A (zh) 2023-06-30

Family

ID=86907386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310365839.4A Pending CN116356316A (zh) 2023-04-04 2023-04-04 锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法

Country Status (1)

Country Link
CN (1) CN116356316A (zh)

Similar Documents

Publication Publication Date Title
CN105800954A (zh) 一种硫系玻璃及其制备方法
US10006116B2 (en) Forming method of intermediate layer formed between base material and DLC film, DLC film forming method, and intermediate layer formed between base material and DLC film
WO2021047644A1 (zh) 电子设备及其钢化加强膜和制备方法及应用
CN110578122A (zh) 一种AlTiN/AlTiSiN多层纳米复合涂层的制备工艺
CN111334794A (zh) 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法
CN105951051A (zh) 一种倾斜溅射工艺制备渐变折射率减反射膜的方法
CN104480436A (zh) 一种高硬度折射率可变的碳化锗薄膜的制备方法
CN112030115B (zh) 一种透雷达波柔性基底红外滤光膜及其制备方法
CN116356316A (zh) 锗透镜基底上镀制8-12μmDLC加减反射增透膜的制备方法
CN112501557B (zh) 一种蓝宝石基底1-5μm超宽带增透膜及其制备方法
CN107099779B (zh) 一种提高光学器件激光损伤阈值和面形的iad镀制方法
CN116356315A (zh) 锗透镜基底上镀制3-5μmDLC加减反射增透膜的制备方法
US11453941B2 (en) Cerium oxide coating, its preparation and use
CN110923650B (zh) 一种dlc涂层及其制备方法
CN102560349A (zh) 镀膜件及其制备方法
US8304100B2 (en) Coated glass and method for making the same
CN116641021A (zh) 硅透镜基底上镀制3-5μmDLC加减反射增透膜的制备方法
CN110735107A (zh) 一种类金刚石涂层制备前的离子表面刻蚀方法
CN110863188A (zh) 类石墨含氢碳膜、制备方法及光学薄膜
CN106637077B (zh) 一种刀具表面涂层的制备方法及制备得到的涂层
CN107479116A (zh) 一种双面低反射铬膜系及其制备方法
CN113151797A (zh) 一种基于硬质合金表面镀ta-C膜的新型离子清洗工艺
KR101326899B1 (ko) 저마찰 코팅층 형성방법
US8435638B2 (en) Coated glass and method for making the same
CN101713062B (zh) 遮光元件及其镀膜方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination