CN116334538A - 一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用 - Google Patents

一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用 Download PDF

Info

Publication number
CN116334538A
CN116334538A CN202310384312.6A CN202310384312A CN116334538A CN 116334538 A CN116334538 A CN 116334538A CN 202310384312 A CN202310384312 A CN 202310384312A CN 116334538 A CN116334538 A CN 116334538A
Authority
CN
China
Prior art keywords
zrn
coating
craln
crystal
equiaxed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310384312.6A
Other languages
English (en)
Other versions
CN116334538B (zh
Inventor
恽剑
熊计
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Haizhou Cnc Machinery Tool Co ltd
Sichuan University
Original Assignee
Shenzhen Haizhou Cnc Machinery Tool Co ltd
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Haizhou Cnc Machinery Tool Co ltd, Sichuan University filed Critical Shenzhen Haizhou Cnc Machinery Tool Co ltd
Priority to CN202310384312.6A priority Critical patent/CN116334538B/zh
Publication of CN116334538A publication Critical patent/CN116334538A/zh
Application granted granted Critical
Publication of CN116334538B publication Critical patent/CN116334538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/24Hard, i.e. after being hardened
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/36Multi-layered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及切削刀具防护涂层技术领域,公开了一种等轴晶与柱状晶结合的ZrN‑CrAlN复合涂层、制备方法及应用。表面为等轴晶ZrN涂层,底部为柱状晶CrAlN涂层;ZrN沿(111)、(200)、(300)三个晶面等轴生长;CrAlN沿着(200)晶面择优生长;本发明将硬度较低的等轴生长的纳米晶ZrN涂层涂覆于高硬度沿(200)晶面择优生长的柱状晶CrAlN涂层表面,形成多层复合涂层体系,改善了涂层的抗磨损性,提高了其高温抗氧化性。

Description

一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及 应用
技术领域
本发明涉及切削刀具防护涂层技术领域,具体涉及一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用。
背景技术
钛合金拥有密度低、耐磨性高、强度高等特点,其被广泛应用于航空航天、生物医疗、电子电器等行业。但由于钛合金高强度、高韧性、低导热因数,使得钛合金的切削加工性差,切削加工过程中常常由于粘刀让其发生剧烈的粘着磨损,甚至断刀,刀具寿命大大降低。不仅如此,切削钛合金时,产生的过度发热会造成被加工件表面氧化严重,表面质量降低。钛合金的切削加工效率低、表面质量差、容易崩刃等问题,一直以来是材料及机械工作者努力解决的关键技术难题。钛合金切削时常用的CrAlN涂层,具有良好的抗高温氧化性,能在表面形成致密的Al2O3和Cr2O3混合的氧化膜。对基体内部进行保护,可以起到良好的抗高温氧化效果,但单层的CrAlN涂层刀具切削钛合金时,摩擦系数高、粘刀严重、钛合金刀具切削寿命短。
如专利公开号为CN107075692A制备了多层涂层包含连接层和直接沉积到连接层上的耐磨层,其中耐磨层包含了Ti、V、Cr、Zr、Nb、Mo等两种及以上金属元素。涂层具有较高硬度,但由于通过该方法制备的涂层,表层晶粒主要为柱状晶结构,连接层和耐磨层之间残余应力大,涂层产品在进行高速切削钛合金时,表面粘着磨损后易发生脆性断裂,摩擦系数高。特别是切削过程中氧原子易从粗大的晶界处向晶内扩散,涂层的抗氧化性低。
发明内容
本发明针对现有技术存在的问题提供一种具有良好的抗机械冲击和热稳定性、韧性,综合性能好,有效延长了钛合金切削刀具使用寿命的等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用。
本发明采用的技术方案是:一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层,表面为等轴晶ZrN涂层,底部为柱状晶CrAlN涂层;ZrN沿(111)、(200)、(300)三个晶面等轴生长;CrAlN沿着(200)晶面择优生长。
进一步的,所述ZrN涂层中原子百分比为:Zr 53~66%、N 34~47%;CrAlN涂层中原子百分比为Cr 13~27%、Al 22~29%、N 45~70%。
进一步的,所述ZrN涂层厚度为0.4~1.2μm,CrAlN涂层厚度为1.3~3.5μm。
一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,包括以下步骤:
步骤1:对基体进行预处理,采用Ar离子和合金靶材对基体进行刻蚀;
步骤2:采用阴极电弧镀在基体上制备CrAlN硬质层;
步骤3:采用Zr离子轰击CrAlN硬质层,预制ZrN涂层晶粒生长点;
步骤4:采用阴极电弧镀在CrAlN涂层表面制备ZrN软质层;
步骤5:在ZrN软质层表面采用ZrO2纳米颗粒进行表面微动颗粒撞击,形成ZrN涂层。
进一步的,所述步骤5中撞击溶液介质为含30wt.%ZrO2纳米颗粒的氢氧化铁液体溶胶,其中ZrO2纳米颗粒的直径为50nm~100nm,撞击频率为20000~30000次/min,颗粒撞击时间为30min。
进一步的,所述步骤3中基体偏压为-100~-200V,氩气流量为300~450sccm,靶电流为80~120A,轰击影响深度为0.1~0.3μm。
进一步的,所述步骤2中同时充入氮气和氩气,气体流量为400~550sccm,氮气和氩气的原子比为3:1,采用AlCr合金靶,基体材料温度控制在450~600℃,基体材料偏压为-60V~-200V,靶电流为40~80A。
进一步的,所述步骤4中同时充入氮气和氩气,气体流量为400~550sccm,氮气和氩气的原子比为3:1,采用Zr合金靶,基体材料温度控制在450~650℃,基体材料偏压为-60V~-200V,靶电流为60~80A。
进一步的,所述步骤1中预处理包括以下过程:将基体依次进行打磨、抛光、喷砂、清洗,烘干,置于炉腔中,抽真空进行加热,真空度为3.7×10-3Pa,加热温度为300~600℃;控制基体和靶材之间的距离为10mm~40mm;
刻蚀过程中采用合金靶材AlCr对基体进行刻蚀,基体偏压为-400~-600V,氩气流量为300~450sccm,靶电流为80~120A。
一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层的应用,复合涂层用于切削刀具防护。
本发明的有益效果是:
(1)本发明将硬度较低的等轴生长的纳米晶ZrN涂层涂覆于高硬度沿(200)晶面择优生长的柱状晶CrAlN涂层表面,形成多层复合涂层体系,提高了复合涂层的硬度,改善了涂层的抗磨损性;
(2)本发明中沿三个晶面等轴生长的纳米晶,致密细小的颗粒使得表面未起伏减小,降低了摩擦系数、并且纳米状的ZrN在高温时,表面易形成一层致密的氧化膜对内部组织有很好的保护作用,涂层具有良好的抗机械冲击和热稳定性、韧性,综合性能好,有效的延长了钛合金切削刀具的使用寿命。
附图说明
图1为实施例1中表面纳米等轴晶内部柱状晶结构示意图及电子背散射衍射(EBSD)图。
图2为实施例1中三次重复实验获得的表面纳米等轴晶内部柱状晶的XRD图。
图3为实施例1中本发明表面纳米等轴晶内部柱状晶在0~1200℃氧化质量变化图。
图中:1-ZrN等轴晶,2-CrAlN柱状晶,3-基体。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层,表面为等轴晶ZrN涂层,底部为柱状晶CrAlN涂层;ZrN沿(111)、(200)、(300)三个晶面等轴生长;CrAlN沿着(200)晶面择优生长。ZrN涂层中原子百分比为:Zr 53~66%、N 34~47%;CrAlN涂层中原子百分比为Cr13~27%、Al 22~29%、N 45~70%。ZrN涂层厚度为0.4~1.2μm,CrAlN涂层厚度为1.3~3.5μm。
一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,包括以下步骤:
步骤1:对基体进行预处理,采用Ar离子和合金靶材对基体进行刻蚀;预处理包括以下过程:将基体依次进行打磨、抛光、喷砂、清洗,烘干,置于炉腔中,抽真空进行加热,真空度为3.7×10-3Pa,加热温度为300~600℃;控制基体和靶材之间的距离为10mm~40mm;
刻蚀过程中:采用合金靶材AlCr对基体进行刻蚀,基体偏压为-400~-600V,氩气流量为300~450sccm,靶电流为80~120A。
步骤2:采用阴极电弧镀在基体上制备CrAlN硬质层;同时充入氮气和氩气,气体流量为400~550sccm,氮气和氩气的原子比为3:1,采用AlCr合金靶,基体材料温度控制在450~600℃,基体材料偏压为-60V~-200V,靶电流为40~80A;沉积CrAlN涂层厚度1.3~3.5μm。
步骤3:采用Zr离子轰击CrAlN硬质层,,预制ZrN涂层晶粒生长点;基体偏压为-100~-200V,氩气流量为300~450sccm,靶电流为80~120A,CrAlN涂层厚度1.3~3.5μm。
步骤4:采用阴极电弧镀在CrAlN涂层表面制备ZrN软质层;同时充入氮气和氩气,气体流量为400~550sccm,氮气和氩气的原子比为3:1,采用Zr合金靶,基体材料温度控制在450~650℃,基体材料偏压为-60V~-200V,靶电流为60~80A,轰击影响深度0.1~0.3μm。
步骤5:在ZrN软质层表面采用ZrO2纳米颗粒进行表面微动颗粒撞击,形成ZrN涂层。
撞击溶液介质为含30wt.%ZrO2纳米颗粒的氢氧化铁液体溶胶,其中ZrO2纳米颗粒的直径为50nm~100nm,撞击频率为20000~30000次/min,颗粒撞击时间为30min。
实施例1
一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,包括以下步骤:
步骤1:对基体进行预处理,采用Ar离子和合金靶材对基体进行刻蚀;
选用硬质合金样品,对其表面进行研磨、抛光、喷砂,丙酮、乙醇超声波清洗、烘干。将清洗完成后的样品装入到涂层炉腔体内,硬质合金样品与靶材的距离为40mm,关闭炉门,对涂层进行抽真空处理,真空度为2.4-3Pa,基材温度加热至300℃。
在涂层炉中通入氩气,保证气流量为300sccm,基体打开偏压,偏压为-400V,保持时间30min。AlCr(Al0.7Cr0.3)靶通电,靶电流80A,保持时间时间5min。
步骤2:采用阴极电弧镀在基体上制备CrAlN硬质层;
调节氩气和氮气流量,使其气体流量为400sccm,其中氩气和氮气的原子比为1:3,基体材料加热至温度450℃基体偏压-60V,靶电流40A,沉积时间120min;关闭AlCr(Al0.7Cr0.3)靶电源。
步骤3:采用Zr离子轰击CrAlN硬质层,预制ZrN涂层晶粒生长点;
Zr金属靶材通电,基体偏压-100V,氩气流量300sccm,靶电流80A,保持时间5min。
步骤4:采用阴极电弧镀在CrAlN涂层表面制备ZrN软质层;
调节氩气和氮气,气体流量为400sccm,其中氩气和氮气的原子比为1:3;Zr靶通电,基体温度控制在450℃,基体材料偏压为-60V,靶电流60A,沉积60min结束涂层。
步骤5:在ZrN软质层表面采用ZrO2纳米颗粒进行表面微动颗粒撞击,形成ZrN涂层。
撞击颗粒ZrO2,颗粒直径50nm,颗粒撞击频率20000次/min,保持时间15min。
本实施例得到的表面纳米等轴晶内部柱状晶结构示意图及电子背散射衍射(EBSD)图如图1所示,从图中可以可明显观察到底层涂层为柱状晶生长,表面涂层为等轴晶生长。
图2为实施例1中三次重复实验获得的表面纳米等轴晶内部柱状晶的XRD图。图中可以明显观察到绝大多数表层ZrN沿(111)、(200)、(300)三个晶面等轴生长;CrAlN沿着(200)晶面择优生长。
图3为实施例1中本发明表面纳米等轴晶内部柱状晶在0~1200℃氧化质量变化图。图中可以观察到在1200℃氧化试验后,该表面纳米等轴晶内部柱状晶的复合涂层氧化增重小于0.01%,说明该图层在1200℃下仍然具有高的抗氧化性。
上述方法制备得到的复合涂层经测试由等轴晶ZrN涂层0.4μm,柱状晶AlCrN涂层厚度为1.3μm,涂层之间以及涂层和基体之间的结合力良好,结合力74N,涂层硬度为3200HV。涂层抗高温能力大于1200℃。在于TiAl6V4钛合金对磨时,摩擦系数为0.13,高速车削TiAl6V4钛合金时,表现出良好的抗黏着磨损能力。
实施例2
一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,包括以下步骤:
步骤1:对基体进行预处理,采用Ar离子和合金靶材对基体进行刻蚀;
选用金属陶瓷样品,对其表面进行研磨、抛光、喷砂,丙酮、乙醇超声波清洗、烘干。将清洗完成后的样品装入到涂层炉腔体内,金属陶瓷样品与靶材的距离为10mm,关闭炉门,对涂层进行抽真空处理,真空度为2.4-3Pa,基材温度加热至600℃。
在涂层炉中通入氩气,保证气流量为450sccm,基体打开偏压,偏压为-600V,保持时间30min。AlCr(Al0.6Cr0.4)靶通电,靶电流120A,保持时间时间5min。
步骤2:采用阴极电弧镀在基体上制备CrAlN硬质层;
调节氩气和氮气流量,使其气体流量为550sccm,其中氩气和氮气的原子比为1:3,基体材料加热至温度600℃,基体偏压-200V,靶电流120A,沉积时间120min;关闭AlCr(Al0.6Cr0.4)靶电源。
步骤3:采用Zr离子轰击CrAlN硬质层,预制ZrN涂层晶粒生长点;
Zr金属靶材通电,基体偏压-200V,氩气流量450sccm,靶电流120A,保持时间5min。
步骤4:采用阴极电弧镀在CrAlN涂层表面制备ZrN软质层;
调节氩气和氮气,气体流量为400sccm,其中氩气和氮气的原子比为1:3;Zr靶通电,基体温度控制在600℃,基体材料偏压为-200V,靶电流80A,沉积60min结束涂层。
步骤5:在ZrN软质层表面采用ZrO2纳米颗粒进行表面微动颗粒撞击,形成ZrN涂层。
撞击颗粒ZrO2,颗粒直径50nm,颗粒撞击频率30000次/min,保持时间15min。
上述方法制备得到的复合涂层经测试由等轴晶ZrN涂层1.2μm,柱状晶AlCrN涂层厚度为3.5μm,涂层之间以及涂层和基体之间的结合力良好,结合力71N,涂层硬度为3600HV。涂层抗高温能力大于1200℃。在于TiAl6V4钛合金对磨时,摩擦系数为0.11,高速铣削TiAl6V4钛合金时,表现出良好的抗黏着磨损能力。
实施例3
一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,包括以下步骤:
步骤1:对基体进行预处理,采用Ar离子和合金靶材对基体进行刻蚀;
选用高速钢样品,对其表面进行研磨、抛光、喷砂,丙酮、乙醇超声波清洗、烘干。将清洗完成后的样品装入到涂层炉腔体内,金属陶瓷样品与靶材的距离为10mm,关闭炉门,对涂层进行抽真空处理,真空度为1.6-3Pa,基材温度加热至400℃。
在涂层炉中通入氩气,保证气流量为350sccm,基体打开偏压,偏压为-450V,保持时间30min。AlCr(Al0.55Cr0.45)靶通电,靶电流100A,保持时间时间5min。
步骤2:采用阴极电弧镀在基体上制备CrAlN硬质层;
调节氩气和氮气流量,使其气体流量为450sccm,其中氩气和氮气的原子比为1:3,基体材料加热至温度500℃,基体偏压-100V,靶电流90A,沉积时间120min;关闭AlCr(Al0.55Cr0.45)靶电源。
步骤3:采用Zr离子轰击CrAlN硬质层,预制ZrN涂层晶粒生长点;
Zr金属靶材通电,基体偏压-100V,氩气流量350sccm,靶电流90A,保持时间5min。
步骤4:采用阴极电弧镀在CrAlN涂层表面制备ZrN软质层;
调节氩气和氮气,气体流量为400sccm,其中氩气和氮气的原子比为1:3;Zr靶通电,基体温度控制在500℃,基体材料偏压为-100V,靶电流70A,沉积60min结束涂层。
步骤5:在ZrN软质层表面采用ZrO2纳米颗粒进行表面微动颗粒撞击,形成ZrN涂层。
撞击颗粒ZrO2,颗粒直径50nm,颗粒撞击频率20000次/min,保持时间10min。
上述方法制备得到的复合涂层经测试由等轴晶ZrN涂层0.7μm,柱状晶AlCrN涂层厚度为2.6μm,涂层之间以及涂层和基体之间的结合力良好,结合力67N,涂层硬度为3100HV。涂层抗高温能力大于1000℃。在于TiAl6V4钛合金对磨时,摩擦系数为0.17,高速钻削TiAl6V4钛合金时,表现出良好的抗黏着磨损能力。
本发明基体采用CrAl合金靶材进行同时刻蚀处理,基体涂层界面连续梯度过渡,可促进涂层和基体中元素相互扩散作用,涂层和基体产生良好的粘结,涂层结合力强。其次ZrN涂层生长前对CrAlN涂层进行Zr离子短时快速轰击,可对两涂层界面薄区晶粒快速细化,甚至纳米化,为ZrN涂层生长提供微颗粒生长点,促进ZrN涂层各向同性生长,并且界面薄区可吸附大量Zr原子,增加CrAlN和ZrN涂层之间元素扩散,增强界面结合力,提高涂层硬度。采用微动颗粒撞击处理,颗粒撞击频率超过2 0000次/min,可大程度完成ZrN涂层过程中未完全等轴晶化的残余柱状晶的等轴晶化,并且该过程可降低涂层表面残余应力,增加表面的致密化程度。表面采用Zr掺杂涂层,可降低涂层与Ti合金的亲和力,降低粘着磨损成都;切削过程中,涂层表面为等轴晶层,表面颗粒掉落时易在切削刀具表面形成表面含Zr保护摩擦层,降低涂层刀具和被加工材料界面摩擦系数的同时,可提高表面的抗氧化性,提高刀具寿命。

Claims (10)

1.一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层,其特征在于,表面为等轴晶ZrN涂层,底部为柱状晶CrAlN涂层;ZrN沿(111)、(200)、(300)三个晶面等轴生长;CrAlN沿着(200)晶面择优生长。
2.根据权利要求1所述的一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层,其特征在于,所述ZrN涂层中原子百分比为:Zr 53~66%、N 34~47%;CrAlN涂层中原子百分比为Cr13~27%、Al 22~29%、N 45~70%。
3.根据权利要求1所述的一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层,其特征在于,所述ZrN涂层厚度为0.4~1.2μm,CrAlN涂层厚度为1.3~3.5μm。
4.如权利要求1~3所述任一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,其特征在于,包括以下步骤:
步骤1:对基体进行预处理,采用Ar离子和合金靶材对基体进行刻蚀;
步骤2:采用阴极电弧镀在基体上制备CrAlN硬质层;
步骤3:采用Zr离子轰击CrAlN硬质层,预制ZrN涂层晶粒生长点;
步骤4:采用阴极电弧镀在CrAlN涂层表面制备ZrN软质层;
步骤5:在ZrN软质层表面采用ZrO2纳米颗粒进行表面微动颗粒撞击,形成ZrN涂层。
5.根据权利要求4所述的一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,其特征在于,所述步骤5中撞击溶液介质为含30wt.%ZrO2纳米颗粒的氢氧化铁液体溶胶,其中ZrO2纳米颗粒的直径为50nm~100nm,撞击频率为20000~30000次/min,颗粒撞击时间为30min。
6.根据权利要求4所述的一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,其特征在于,所述步骤3中基体偏压为-100~-200V,氩气流量为300~450sccm,靶电流为80~120A,轰击影响深度为0.1~0.3μm。
7.根据权利要求4所述的一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,其特征在于,所述步骤2中同时充入氮气和氩气,气体流量为400~550sccm,氮气和氩气的原子比为3:1,采用AlCr合金靶,基体材料温度控制在450~600℃,基体材料偏压为-60V~-200V,靶电流为40~80A。
8.根据权利要求4所述的一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,其特征在于,所述步骤4中同时充入氮气和氩气,气体流量为400~550sccm,氮气和氩气的原子比为3:1,采用Zr合金靶,基体材料温度控制在450~650℃,基体材料偏压为-60V~-200V,靶电流为60~80A。
9.根据权利要求4所述的一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层制备方法,其特征在于,所述步骤1中预处理包括以下过程:将基体依次进行打磨、抛光、喷砂、清洗,烘干,置于炉腔中,抽真空进行加热,真空度为3.7×10-3Pa,加热温度为300~600℃;控制基体和靶材之间的距离为10mm~40mm;
刻蚀过程中采用合金靶材AlCr对基体进行刻蚀,基体偏压为-400~-600V,氩气流量为300~450sccm,靶电流为80~120A。
10.如权利要求1~3所述任一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层的应用,其特征在于,复合涂层用于切削刀具防护。
CN202310384312.6A 2023-04-07 2023-04-07 一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用 Active CN116334538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310384312.6A CN116334538B (zh) 2023-04-07 2023-04-07 一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310384312.6A CN116334538B (zh) 2023-04-07 2023-04-07 一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用

Publications (2)

Publication Number Publication Date
CN116334538A true CN116334538A (zh) 2023-06-27
CN116334538B CN116334538B (zh) 2024-01-23

Family

ID=86894943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310384312.6A Active CN116334538B (zh) 2023-04-07 2023-04-07 一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用

Country Status (1)

Country Link
CN (1) CN116334538B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117364022A (zh) * 2023-12-06 2024-01-09 艾瑞森表面技术(苏州)股份有限公司 刀具涂层的制备方法及刀具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603486A2 (de) * 1992-12-23 1994-06-29 Hauzer Techno Coating Europe Bv Verfahren zur mehrstufigen Beschichtung von Substraten
US20090075114A1 (en) * 2007-07-13 2009-03-19 Hauzer Techno Coating Bv Method for the manufacture of a hard material coating on a metal substrate and a coated substrate
JP2010207921A (ja) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp すぐれた切屑排出性を示す表面被覆切削工具
CN104532185A (zh) * 2014-12-22 2015-04-22 四川大学 一种非晶结构的CrAl(C,N)硬质涂层及其制备方法
CN114438440A (zh) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 一种复合涂层、其制备方法及应用
CN114908350A (zh) * 2021-02-08 2022-08-16 中国石油化工股份有限公司 一种表面具有耐冲蚀、耐腐蚀复合涂层的球座

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603486A2 (de) * 1992-12-23 1994-06-29 Hauzer Techno Coating Europe Bv Verfahren zur mehrstufigen Beschichtung von Substraten
US20090075114A1 (en) * 2007-07-13 2009-03-19 Hauzer Techno Coating Bv Method for the manufacture of a hard material coating on a metal substrate and a coated substrate
JP2010207921A (ja) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp すぐれた切屑排出性を示す表面被覆切削工具
CN104532185A (zh) * 2014-12-22 2015-04-22 四川大学 一种非晶结构的CrAl(C,N)硬质涂层及其制备方法
CN114438440A (zh) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 一种复合涂层、其制备方法及应用
CN114908350A (zh) * 2021-02-08 2022-08-16 中国石油化工股份有限公司 一种表面具有耐冲蚀、耐腐蚀复合涂层的球座

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI CHEN ET AL.: ""Influence of interfacial structure on the mechanical and thermal properties of CrAlN/ZrN multilayer coatings"", 《MATERIALS AND DESIGN》, vol. 106, pages 1 - 5, XP029645443, DOI: 10.1016/j.matdes.2016.05.082 *
张文勇 等: ""调制周期对CrAlN/ZrN纳米多层膜韧性的影响"", 《表面技术》, vol. 45, no. 1, pages 55 - 61 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117364022A (zh) * 2023-12-06 2024-01-09 艾瑞森表面技术(苏州)股份有限公司 刀具涂层的制备方法及刀具

Also Published As

Publication number Publication date
CN116334538B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
JP4184691B2 (ja) 切削工具インサート
AU2007254166B2 (en) Wear resistant coating
Al-Asadi et al. A review of tribological properties and deposition methods for selected hard protective coatings
JP5246165B2 (ja) 硬質皮膜被覆部材の製造方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
WO2017156996A1 (zh) 一种钛合金切削用复合功能刀具涂层及其制备方法
CN116334538B (zh) 一种等轴晶与柱状晶结合的ZrN-CrAlN复合涂层、制备方法及应用
CN103898445A (zh) 一种多层AlCrN切削刀具涂层及其制备方法
EP1548146B1 (en) Method of coating a cutting tool
Chen et al. Structure and wear behavior of AlCrSiN-based coatings
CN103774096B (zh) 一种抗氧化复合硬质涂层的制备方法
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
Zhao et al. Effect of bias voltage on mechanical properties, milling performance and thermal crack propagation of cathodic arc ion-plated TiAlN coatings
CN109735799A (zh) 一种切削刀具表面多层梯度高温耐磨涂层及其制备方法
Teppernegg et al. Arc evaporated Ti-Al-N/Cr-Al-N multilayer coating systems for cutting applications
JP5555835B2 (ja) 耐摩耗性にすぐれたターニング加工用表面被覆切削工具およびその製造方法
Hong et al. Influence of annealing temperature on microstructure evolution of TiAlSiN coating and its tribological behavior against Ti6Al4V alloys
Wang et al. Deposition, structure and hardness of Ti–Cu–N hard films prepared by pulse biased arc ion plating
Dyadyura et al. Influence of roughness of the substrate on the structure and mechanical properties of TiAlN nanocoating condensed by DCMS
Song et al. The adhesion strength and mechanical properties of SiC films deposited on SiAlON buffer layer by magnetron sputtering
Cheng et al. Effect of substrate bias on structure and properties of (AlTiCrZrNb) N high-entropy alloy nitride coatings through arc ion plating
CN106756841A (zh) 一种刀具复合涂层的制备方法
Zhao et al. Effects of substrate pulse bias duty cycle on the microstructure and mechanical properties of Ti–Cu–N films deposited by magnetic field-enhanced arc ion plating
CN111304612A (zh) 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法
Xia et al. Improvement of adhesion properties of TiB2 films on 316L stainless steel by Ti interlayer films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant