CN116284872B - 一种纳米复合水凝胶及其制备方法和应用 - Google Patents

一种纳米复合水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN116284872B
CN116284872B CN202310542432.4A CN202310542432A CN116284872B CN 116284872 B CN116284872 B CN 116284872B CN 202310542432 A CN202310542432 A CN 202310542432A CN 116284872 B CN116284872 B CN 116284872B
Authority
CN
China
Prior art keywords
hydrogel
pva
nano composite
solution
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310542432.4A
Other languages
English (en)
Other versions
CN116284872A (zh
Inventor
李淑兰
董红丽
厚华颖
褚旭
刘义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN202310542432.4A priority Critical patent/CN116284872B/zh
Publication of CN116284872A publication Critical patent/CN116284872A/zh
Application granted granted Critical
Publication of CN116284872B publication Critical patent/CN116284872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0023Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0004Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0014Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/0066Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polymers & Plastics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种纳米复合水凝胶及其制备方法和应用,纳米复合水凝胶由纳米材料和高分子聚乙烯醇/壳聚糖混合溶液,通过冻融循环的方法制备而成。在冻融过程中,PVA之间形成结晶区,并且与CS以氢键方式连接,形成网状交联的孔状结构,纳米材料分布在这些孔道中。本发明提供的纳米复合水凝胶在超声的辐照下,能够产生大量活性氧以实现高效抗菌以及抑制生物膜形成,避免细菌产生抗药性。该纳米复合水凝胶用作伤口敷料,可吸收外溢的组织液,避免伤口与外界环境直接接触,加速伤口愈合。本发明还提供了一种所述纳米复合水凝胶用于金属放大钛基材料声动力治疗的用途,用于根除细菌。

Description

一种纳米复合水凝胶及其制备方法和应用
技术领域
本发明涉及细菌感染的伤口愈合治疗技术领域,具体涉及一种纳米复合水凝胶及其制备方法及其应用。
背景技术
细菌感染影响人类健康,被认为是对人类社会最大的威胁之一。抗生素作为一种传统抗菌剂被广泛应用于抗菌治疗。随着抗生素的滥用以及细菌的极端适应性使得细菌产生了强烈的耐药性。因此,建立无抗生素治疗细菌感染的策略是非常必要的。纳米材料在特定刺激条件下能够产生大量活性氧(ROS),通过引起氧化应激使得微生物内部的氧化还原平衡被打破,从而产生细菌杀伤。现阶段,利用ROS抗菌的策略层出不穷。作为一种非侵入性的治疗方式,超声(US)具有精准度高和穿透性强等显著优势,能激活作为声敏剂的纳米材料产生大量ROS,由此形成的声动力疗法(SDT)已经用于多种治疗研究,并且在抗菌领域也表现了优异的性能。
声敏剂在低强度的US刺激下吸收能量,电子-空穴发生分离,与周围的氧气(O2)、水(H2O)结合生成ROS是SDT用于抗菌的主要机制。TiO2作为已经被报道的声敏剂之一,在US刺激下,可产生ROS。然而,由于TiO2的带隙宽,其电子空穴分离的效率低,因此ROS产率低,所以声动力效应弱。为了改善TiO2的声敏性能,将金属掺入TiO2,通过引入肖特基能垒以提高TiO2电子空穴的分离效率并抑制受激电子与空穴的复合,以提高TiO2声敏性能用于高效抗菌。然而,由于伤口复杂的物理环境以及为避免产生疤痕,在细菌感染的伤口愈合过程中,材料仅仅具备抗菌性能是远远不够的,有必要给伤口创造一个利于愈合的环境,例如避免伤口污染,保持适当湿润等。将具有SDT抗菌性能的纳米材料嵌入水凝胶中,作为伤口敷料吸收外溢的组织液,创造良好的伤口愈合环境,加速根除组织深处的细菌,从而促进伤口愈合。
因此,开发了一种增强型SDT钛基水凝胶作为伤口敷料,将有助于高效抗菌,营造适宜环境,从而加速伤口愈合。
发明内容
本发明提供了一种纳米复合水凝胶敷料及其制备方法和应用,能够促进伤口愈合,解决临床上因细菌感染而导致的伤口愈合周期长的问题。
本发明的纳米复合水凝胶是将金属Ag掺杂的TiO2纳米材料AT-x添加到聚乙烯醇(PVA)与壳聚糖(CS)的混合溶液(PVA-CS)中。搅拌混合,然后通过冻融循环的方式合成,即制得纳米复合水凝胶AT-xHD。其中,x表示投料的AgNO3占TiO2的质量百分比。
本发明提供的AT-x HD,在US的辐射下,能够产生大量的活性氧(ROS),实现高效的抗菌伤口愈合。利用金属Ag的掺杂,在AT-x内形成的异质结可以促进电子空穴的分离和迁移,产生更多的单线态氧(1O2)和羟基自由基(∙OH)。ROS通过破坏细菌细胞膜的完整性,降低膜的流动性和增加膜的渗透性,并且抑制生物膜的形成,最终损伤细菌。将AT-x HD用作伤口敷料,可防止伤口感染,并显著加速伤口愈合。本发明的纳米复合水凝胶具有制备方法简单、价格低廉、生物相容性良好的特性。本发明另提供了一种所述纳米复合水凝胶用于金属放大钛基材料声动力治疗的用途,用于根除细菌。
具体来说,为实现上述目的,本发明采用如下技术方案:
第一方面,本发明提供了一种高效金属放大钛基材料声动力抗菌疗效的纳米复合水凝胶的制备方法,其是将纳米材料AT-x嵌入到水凝胶中制备而得,具体包括以下步骤:
(1)金属Ag掺杂的TiO2纳米材料AT-x的制备:将AgNO3与TiO2混合,超声分散均匀后加入还原剂葡萄糖,在室温下持续搅拌反应得到纳米材料AT-x溶液。
(2)纳米复合水凝胶的制备:将纳米材料AT-x溶液加入至PVA与CS的混合溶液(PVA-CS)中,搅拌均匀,通过冻融循环得到AT-x HD。
作为优选:
所述步骤(1)中AgNO3与TiO2的质量比范围为0.02:1-0.20:1,以制备不同Ag掺杂量的AT-x。优选地,AgNO3与TiO2的质量百分比分别为4%、6%、9%、20%,合成了不同Ag掺杂量的AT-x,即AT-4、AT-6、 AT-9和AT-20。更优选地,AgNO3与TiO2的质量百分比为9%。
所述步骤(1)中,反应条件为室温下反应24h。
所述步骤(2)中PVA和CS均购买而得,PVA的分子量是15000,CS的脱乙酰度≥85%,密度≥0.6g/mL。
所述步骤(2)中PVA的溶解温度为95℃,CS的溶解温度为50℃。
所述步骤(2)中PVA与CS的体积比为1:2。
所述步骤(2)中纳米材料AT-x先分散于磷酸缓冲盐溶液(PBS)中,再以滴加的方式加入到PVA-CS的混合溶液中,所述的搅拌混合条件为室温下搅拌30 min。
所述步骤(2)中,纳米材料AT-x与PVA-CS混合溶液的体积比为1:5。
所述步骤(2)中冻融循环的条件是在-20℃冷冻5h,在25℃ 解冻3h,循环5次。
第二方面,本发明提供了一种根据上述方法制备得到的纳米复合水凝胶。
第三方面,本发明提供一种所述纳米复合水凝胶在制备细菌感染伤口治疗药物及医用品中的应用。
第四方面,本发明提供了一种伤口敷料,其含有本发明所制备的所述纳米复合水凝胶。
本发明的纳米复合水凝胶的抗菌效果通过抗菌活性以及细菌感染伤口愈合实验得到验证。包括以下步骤:
(1)通过抗菌实验证明。
(2)建立细菌感染伤口模型。
作为优选:
所述步骤(1)的菌种应包括以下种类:革兰氏阳性菌:金黄色葡萄球菌(S. aureus),革兰氏阴性菌:大肠杆菌(E. coli)。
所述步骤(2)伤口应建立在小鼠背部,且直径为3.5 mm。
进一步地,所述药物进行细菌感染的伤口愈合的治疗方式应为增强型声动力治疗。
本发明的有益效果:
(1)本发明将纳米材料AT-x与PVA-CS通过简单的冻融循环方法合成纳米复合水凝胶,具有制备方法简单便捷、成本低廉、合成原料广泛、生物相容性优异等优点,利于成本控制和工业化生产。
(2)本发明制备的纳米材料AT-x可用作新型声敏剂,在US照射下产生大量ROS,提高了TiO2的声敏性能。
(3)本发明制备的纳米材料AT-x作为优异的抗菌剂,通过减少细胞膜的流动性,增加细胞膜的通透性以及破坏细胞膜的完整性,损伤细菌,具有良好的抗菌性。
(4)本发明制备的AT-x可以有效抑制生物膜的形成,避免细菌产生耐药性。
(5)本发明制备的多功能纳米复合水凝胶表现出高弹性、强粘性、优异的自愈性以及运动形变能力,这些特点使得AT-x HD可作为优异的伤口敷料。
(6)本发明制备的多功能纳米复合水凝胶在体内可有效控制细菌感染,并且加速伤口愈合。
附图说明
图1为本发明金属放大钛基材料声动力抗菌纳米复合水凝胶促进伤口愈合的示意图。
图2为纳米材料AT-9的扫描电镜(SEM)图。
图3为纳米材料AT-9的元素分布图。
图4为纳米材料AT-9的X射线光电子能谱(XPS)。
图5为纳米材料AT-9的Ag 3d高分辨能谱。
图6为不同组别(Control,TiO2,AT-x)的电子顺磁共振(ESR)波谱。
图7为不同浓度的纳米材料AT-9催化1,3-二苯基苯并呋喃(DPBF)吸光度变化图。
图8为不同浓度的纳米材料AT-9催化亚甲基蓝(MB)的吸光度变化图。
图9为相同浓度的纳米材料AT-x对金黄色葡萄球菌(S. aureus)的抗菌活性。
图10为纳米材料AT-x的体外细胞毒性结果图。
图11为不同组别(Control,TiO2±US,AT-9±US)对金黄色葡萄球菌(S. aureus)的抗菌活性。
图12为纳米材料AT-9在US辐射下抗菌活性的浓度依赖性。
图13为不同组别(Control, TiO2, AT-9)有无US照射对S. aureus的活死细菌染色结果图。
图14为不同组别(Control,TiO2, AT-9)有无US照射对S. aureus生物膜的抑制效果图。
图15为不同组别(Control, TiO2, AT-9)有无US照射对S. aureus内活性氧(ROS)的检测结果。
图16为不同组别(Control, TiO2, AT-9)有无US照射对S. aureus形态的影响效果图。
图17展示了不同组别(Control, TiO2, AT-9)有无US照射对S. aureus细胞膜流动性的影响。
图18展示了不同组别(Control, TiO2, AT-9)有无US照射对S. aureus细胞膜渗透性的影响。
图19展示了不同组别(Control, TiO2, AT-9)有无US照射对S. aureus细胞膜完整性的影响。
图20为纳米材料AT-9在US辐射下的体外细胞毒性结果图。
图21为纳米复合水凝胶AT-9 HD的SEM图。
图22为纳米复合水凝胶AT-9 HD的元素分布图。
图23为纳米复合水凝胶AT-9 HD单次压缩性能测试结果。
图24展示了纳米复合水凝胶AT-9 HD循环压缩力学性能测试结果。
图25为纳米复合水凝胶AT-9 HD 拉伸性、黏附性以及运动形变能力测试结果。
图26为纳米复合水凝胶AT-9 HD振幅扫描测试结果。
图27为纳米复合水凝胶AT-9 HD的自愈合性能测试结果。
图28展示了不同组别(Control,HD+US,TiO2HD±US,AT-9 HD±US)治疗小鼠细菌感染型伤口愈合情况。
图29为小鼠细菌感染型伤口面积变化图。
图30为小鼠细菌感染型伤口闭合时间图。
图31为治疗结束后小鼠伤口皮肤组织细菌数量图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合具体的实施方式对本发明做进一步的解释说明。
实施例1AT-x的制备与表征
(1)AT-x的合成
采用简单的化学还原方法,以葡萄糖作为还原剂来制备含Ag的TiO2(AT-x)。
首先,将TiO2(0.5 g)和十六烷基三甲基溴化铵(CTAB,0.5 g)溶于去离子水(DI)中,超声分散并持续搅拌10min得到乳白色溶液。之后,加入葡萄糖(2 g)和银氨溶液(将不同质量的AgNO3溶于DI,并加入1 mLNH3∙H2O),在室温下搅拌24h。经冷冻干燥得到的灰褐色粉末,在4℃条件下储存备用。注:不同质量的AgNO3是指合成AT-4,AT-6,AT-9和AT-20所用AgNO3的质量,分别为0.02g,0.03g,0.045g和0.1g。
从图1可知,制备所得的金属Ag掺杂的TiO2纳米材料AT-9作为一种新的声敏剂,被嵌入水凝胶(AT-9 HD)中敷在伤口处,在US的辐射下,利用金属Ag的掺杂延长受激电子空穴的寿命,增强生成单线态氧(1O2)和羟基自由基(∙OH)的效率。大量生成的ROS可以通过破坏细菌细胞膜的完整性,降低膜的流动性和增加膜的渗透性致使细菌死亡,并且还能有效抑制生物膜的形成。通过提高ROS生成能力,从而实现高效的抗菌伤口愈合。并且,与未嵌入水凝胶的纳米材料AT-9相比,水凝胶能够保持伤口湿润,并且有效阻止伤口的二次感染,从而提高了纳米材料AT-9作为抗菌剂愈合伤口的效果。体外和体内实验结果表明,本发明的纳米复合水凝胶AT-9HD具有增强型声动力抗菌性能,可以高效促进伤口愈合。
(2)AT-9的表征
纳米材料AT-9的扫描电子显微镜图像所示,显示出其形态为不规则的球体(图2)。AT-9的元素分布图证实了Ag元素的存在(图3)。X射线光电子能谱(XPS)数据显示纳米材料AT-9中有五个明显的峰(图4),分别位于284.8 eV、532.2 eV、367.9eV和457.5 eV,对应于C1s、O1s、Ag3d和Ti2p,这进一步证实了纳米材料AT-9中Ag的存在。对Ag的高分辨能谱进行了峰值拟合,如图5所示。Ag3d图表明,它可以分为两个峰。位于368 eV和374 eV的峰对应于Ag0,这是因为葡萄糖将Ag+还原为Ag0。Ag的存在赋予了纳米材料AT-9出色的声敏性。
实施例2AT-x的声敏性
1O2和OH的生成效率作为评价声动力效应的标准。电子顺磁共振波谱仪(ESR)测试选用2,2,6,6-四甲基哌啶氧化物(TEMP)和5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)分别作为1O2和OH的捕获剂。在US (3 W∙cm-2,1 MHz)辐射下,AT-x的ESR谱图(图6)呈现了1:1:1的1O2特征信号和1:2:2:1的OH特征信号,与仅表现出微弱的ROS信号的TiO2相比,Ag掺杂明显提高了TiO2的声敏性。并且,随着Ag掺杂量的增加,ROS信号逐渐增强。除此之外,1,3-二苯基异苯并呋喃(DPBF)也被用来检测1O2,记录410 nm处的紫外可见吸收强度的变化。如图7所示,在US辐射下,随着AT-9浓度从0增加到80μg∙mL-1,DPBF在410 nm处的特征吸收峰减弱。亚甲基蓝(MB)作为OH指示剂也呈现相同的趋势(图8),这表明纳米材料AT-9在US辐射下可有效产生1O2与OH,并且具有浓度依赖性。
实施例3AT-x的抗菌活性测试
用平板计数法测试AT-x的抗菌性,通过菌落数量计算细菌存活率。抗菌实验结果表明,TiO2的抗菌活性不到20%,可以忽略不计,但AT-x显示出明显的抗菌效果。并且,随着Ag掺杂量的增加,抗菌效率也在提高(图9)。值得注意的是,AT-9和AT-20都具有出色的抗菌性能,其抗菌率都超过80%。进一步,通过细胞活性检测实验评估了AT-x的生物相容性(图10)。用AT-x与正常小鼠胚胎成纤维细胞系(3T3)共孵育,数据显示,细胞的状态并不受TiO2、AT-4、AT-6、AT-9的影响,细胞的存活率均超过80%,而AT-20具有明显的细胞毒性,与AT-20共孵育的细胞存活率低于35%。综合来说,AT-9表现出良好的抗菌性能和良好的生物相容性,作为具有代表性的AT-x被选择用于后续的抗菌实验。如图11所示,TiO2、TiO2+US和AT-9的抗菌效率显示为19.02%、23.67%、72.34%。而AT-9+US的抗菌活性对金黄色葡萄球菌(S. aureus)超过97.89%。同时,AT-9在US辐射下的抗菌效果具有浓度依赖性(图12)。然后对S.aureus进行活/死细菌染色。如图13所示,TiO2处理的细菌几乎全部被染成绿色,呈现良好的生长活性;TiO2与US共同处理的细菌的也表现为大部分绿色荧光。相较之下,AT-9与US共同处理的细菌全部被染成红色。活/死细菌染色实验结果证实,Ag的掺杂明显增强了TiO2的声敏抗菌能力。
抗菌率计算公式:抗菌率(%)=(NH-NE)/NH (1)
NH:PBS组菌落数NE:不同对待组菌落数
实施例4AT-9抑制细菌生物膜实验
用结晶紫(CV)染色法评估AT-9对生物膜形成的抑制能力。将S.aureus(108CFU∙mL-1)与AT-9添加到96孔板中,在37℃条件下培养72 h,此时注意不要摇晃。培养结束后,用PBS缓冲液(10 mM,pH7.4)清洗数次以去除剩余悬浮的细菌。用10%的甲醛固定后,再次用PBS清洗。最后用1%的CV在室温下静置、染色处理15min,吸走多余的CV,用PBS清洗孔。如图14所示,PBS处理(control)及在PBS与US共同处理(control+US)后的细菌,形成了完整的CV染色的生物膜,TiO2处理的细菌,不论是否给予US刺激,均出现了部分紫色的生物膜;而在AT-9与US共处理后,几乎没有紫色的生物膜存在。上述结果表明,在US辐射下,AT-9可以有效地抑制生物膜的形成。
实施例5AT-9的抗菌机制实验
选用2,7-二氯荧光素二乙酸酯(DCFH-DA)作为探针对细菌内部的ROS进行检测。如图15所示,以S.aureus为实验模型,在US辐射下,PBS处理的细菌未出现荧光;经TiO2与US共同处理的细菌呈现微弱的荧光,但AT-9与US共同处理的细菌呈现明亮的绿色荧光。这些结果表明,在AT-9与US的共同作用下,S.aureus内部的ROS水平大幅度提高。利用扫描电子显微(SEM)图像观察菌的形态发现,不论是否引入US刺激,PBS和TiO2处理的S.aureus均呈现完整且光滑的球形表面,而AT-9处理的细菌表面出现轻微的皱缩和破损,但经AT-9与US处理的细菌,表面明显皱缩,结构坍塌(图16)。为了探究抗菌机制,进一步对细菌细胞膜结构如流动性、渗透性和完整性进行研究。实验结果表明,AT-9与US共同处理的细菌表现出明显的细胞膜流动性降低、渗透性增加,且细菌细胞膜的完整性被破环,膜结构发生坍塌(图17-19),导致细菌内部物质发生泄漏引起细菌死亡。
实施例6AT-9的细胞毒性实验
通过细胞活性实验测试评估AT-9在US辐射下的细胞相容性。将不同浓度的AT-9与3T3细胞共孵育,图20中实验结果显示,浓度为近两倍最小抑菌浓度时(5ug∙mL-1),并未产生明显的细胞毒性。说明在此AT-9浓度下,以AT-9与PVA/CS的混合溶液体积比为1:5合成水凝胶AT-9 HD,在US辐射下,除了具有优异的抗菌活性之外,还能保证良好的生物相容性。
实施例7AT-9 HD的制备与表征
(1)AT-9 HD的合成
将聚乙烯醇(PVA)和壳聚糖(CS)分别在95℃和50℃条件下溶于无菌PBS缓冲液中。PVA赋予水凝胶优异的机械性能,同时添加CS可以提高水凝胶的黏性。因此将质量浓度分别为5wt.%和2.5wt.%的PVA与CS溶液以体积比1:2混合,这样制备的水凝胶具有最优性能。接下来,将AT-9加入到上述PVA/CS混合溶液中,体积比为1:5,室温搅拌30 min。最后,通过5次冻融循环(在-20℃下冷冻5 h,在25℃下解冻3 h)得到水凝胶AT-9 HD。将AT-9嵌入的水凝胶命名为AT-9 HD。
(2)AT-9 HD的表征
利用扫描电子显微镜(SEM)研究了AT-9 HD的微观结构。首先将AT-9 HD冻干,并用液氮脆断后镀金,然后使用扫描电子显微镜观察不同放大倍数下水凝胶的结构。如图21所示,水凝胶呈现网状交联结构。单纯水凝胶的交联密度大,无孔道结构。而有AT-9嵌入的AT-9 HD呈现网状交联,含有明显孔道结构,且孔道结构遭到破坏。从高倍的扫描电子显微镜我们可以看到AT-9聚集在水凝胶内部。AT-9 HD的元素扫描也证明了AT-9已被成功嵌入(图22)。
实施例8AT-9 HD的机械性能测试
对AT-9 HD的机械性能进行测试。首先进行单次循环压缩试验检测AT-9 HD的回弹性。如图23所示,圆柱形试样可以被完全压缩,并在去除力后立即恢复,体现了AT-9 HD良好的回弹性。接着在不同的应变下进行10次加载-卸载循环,水凝胶表现出显著的滞后环和可忽略的应力下降,表明制备的水凝胶具有优良的抗疲劳性(图24)。除此之外,AT-9 HD表现出优良的拉伸性能,它可以被拉伸到大的变形而没有任何损坏。而且AT-9 HD也可以附着在人体皮肤上,没有额外的残留物或刺激性反应。最后,所制备的AT-9HD与弯曲的指关节贴合,甚至可以配合关节的不同幅度的运动,展示了其运动形变能力(图25)。这些特点表明AT-9 HD具有良好的机械性能。
实施例9AT-9 HD的自愈性能
采用流变学分析研究水凝胶的自愈特性。对如图26所示,储能模量(G')和损耗模量(G")在0.1%-8%的剪切应变范围内呈现线性关系,由此可以确定水凝胶的线性粘弹性的区域。随着应变的增加,G'和G"值骤降,水凝胶发生了从凝胶到溶胶的相变。为了模拟自愈过程,通过在线性粘弹性区域重复施加500%的较大应变和1%的较小应变来研究水凝胶的可恢复性(图27)。当施加1Hz,500%的应变时,水凝胶被完全破坏并转化为液体状态(G'<G")。然而,当施加的应变减少为1%时,G'和G"立即恢复到原始值(G'<G")。应力加大减小5个周期循环后,G'和G"值并未产生明显差异,表明所制备的水凝胶具有良好的自我修复性能。
实施例10AT-9 HD的细菌感染型伤口愈合实验
健康的雄性昆明鼠(25-30g)购自北京华阜康生物科技股份有限公司,按照天津易生源生物技术有限公司批准的方案进行治疗。首先在小鼠的背部创造了一个直径为3.5mm的伤口,并用金黄色葡萄球菌(20 µL×108CFU∙mL-1)感染伤口。24 h后,伤口处有生物膜形成。将小鼠随机分为六组(n=5),HD±US、TiO2HD±US、AT-9 HD±US。按照分组将不同的水凝胶贴在小鼠伤口区域,并对小鼠的伤口愈合情况进行监测,每两天拍照记录。治疗结束后,用PBS冲洗小鼠伤口,并用浊度仪检测洗液中细菌含量。图28显示了小鼠的伤口的状态监测和记录,各组小鼠的皮下脓肿面积有不同程度缩小。但AT-9 HD+US组具有最优促进伤口愈合的效果(图29)。值得注意的是,与其他组相比,在US辐射下,AT-9 HD大约2天就可以使伤口闭合,并且并未有明显的脓肿产生。在第八天,小鼠的伤口愈合率超过98%,明显优于其他对照组(图30)。为了测试伤口感染情况,用浊度仪测量清洗伤口的PBS中细菌含量。结果显示,与其他组相比,在AT-9 HD+US治疗的小鼠伤口中细菌含量明显低于其他对照组,几乎没有细菌的存在(图31)。这些数据表明,在US辐射下,AT-9HD不仅具有良好的抗菌效果,而且可以抑制生物膜的形成,因此,伤口愈合明显加快,具有很大的临床应用前景。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (4)

1.一种纳米复合水凝胶的制备方法,其特征在于,包括以下步骤:
(1)金属Ag掺杂的TiO2纳米材料AT-9的制备:
将0.5gTiO2和0.5g十六烷基三甲基溴化铵CTAB溶于去离子水中,超声分散并持续搅拌10 min得到乳白色溶液;
将0.045gAgNO3溶于去离子水中并加入1mLNH3∙H2O制得银氨溶液;
之后将2g葡萄糖和所述银氨溶液加入所述乳白色溶液中,在室温下搅拌24 h得到纳米材料AT-9溶液;
(2)纳米复合水凝胶的制备:
将聚乙烯醇PVA和壳聚糖CS分别在95℃和50℃条件下溶于无菌磷酸缓冲盐溶液PBS中,将质量浓度分别为5wt.%和2.5wt.%的PVA与CS溶液以体积比1:2混合,将AT-9溶液加入到PVA/CS混合溶液中,两者体积比为1:5,室温搅拌30 min,在-20℃下冷冻5 h,然后在25℃下解冻3h,通过5次这样的冻融循环得到水凝胶AT-9 HD;
PVA的分子量是15000,CS的脱乙酰度≥85%,密度≥0.6g/mL。
2.一种纳米复合水凝胶,其特征在于:所述纳米复合水凝胶通过如权利要求1所述的制备方法制得。
3.一种如权利要求2所述的纳米复合水凝胶在制备细菌感染伤口治疗药物及医用品中的应用。
4.一种伤口敷料,其特征在于,其含有权利要求2所述的纳米复合水凝胶。
CN202310542432.4A 2023-05-15 2023-05-15 一种纳米复合水凝胶及其制备方法和应用 Active CN116284872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310542432.4A CN116284872B (zh) 2023-05-15 2023-05-15 一种纳米复合水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310542432.4A CN116284872B (zh) 2023-05-15 2023-05-15 一种纳米复合水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116284872A CN116284872A (zh) 2023-06-23
CN116284872B true CN116284872B (zh) 2023-12-22

Family

ID=86790916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310542432.4A Active CN116284872B (zh) 2023-05-15 2023-05-15 一种纳米复合水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116284872B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861452A (zh) * 2021-11-02 2021-12-31 长春中医药大学 一种导电抗菌复合水凝胶及其制备方法、应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861452A (zh) * 2021-11-02 2021-12-31 长春中医药大学 一种导电抗菌复合水凝胶及其制备方法、应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YSamantha J. Rinehart et al..Synthesis and Characterization of a Chitosan/PVA Antimicrobial Hydrogel Nanocomposite for Responsive Wound Management Materials.《Journal of Microbial & Biochemical Technology》.2016,摘要,实验部分. *
张书江.聚乙烯醇基复合功能水凝胶敷料的制备及用于浅表皮肤创伤修复的研究.万方数据库.2019,2.3.1节. *
潘世奇等.纳米银-二氧化钛填充树脂力学及光控抗菌性能研究.《生物医学工程学杂志》.2022,1.2节. *
王心如.《毒理学》.北京:中国协和医科大学出版社,2019,第323页. *

Also Published As

Publication number Publication date
CN116284872A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Tavakolizadeh et al. An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel
Li et al. A rose bengal/graphene oxide/PVA hybrid hydrogel with enhanced mechanical properties and light-triggered antibacterial activity for wound treatment
Liu et al. Polyvinyl alcohol/carboxymethyl chitosan hydrogel loaded with silver nanoparticles exhibited antibacterial and self-healing properties
Fang et al. Near-infrared-activated nanohybrid coating with black phosphorus/zinc oxide for efficient biofilm eradication against implant-associated infections
Li et al. Facilely green synthesis of silver nanoparticles into bacterial cellulose
Yang et al. N-halamine modified ceria nanoparticles: Antibacterial response and accelerated wound healing application via a 3D printed scaffold
Zhou et al. Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections
Liu et al. Chitosan-based carbon nitride-polydopamine‑silver composite dressing with antibacterial properties for wound healing
CN110464873B (zh) 具有消除表面生物膜功能的医用钛植入体的制备方法
Yang et al. Designment of polydopamine/bacterial cellulose incorporating copper (II) sulfate as an antibacterial wound dressing
CN112156171A (zh) 光响应性释放万古霉素的锌有机框架复合材料的制备方法及其应用
CN107254742B (zh) 用于医用敷料的含纳米银聚乙烯醇/丝胶复合纤维网
Zhu et al. Dynamically evolving piezoelectric nanocomposites for antibacterial and repair-promoting applications in infected wound healing
Li et al. Fabrication of dual physically cross-linked polyvinyl alcohol/agar hydrogels with mechanical stability and antibacterial activity for wound healing
Xu et al. Engineering ultrasound-activated piezoelectric hydrogels with antibacterial activity to promote wound healing
Jiang et al. Preparation of pH-responsive oxidized regenerated cellulose hydrogels compounded with nano-ZnO/chitosan/aminocyclodextrin ibuprofen complex for wound dressing
Tao et al. Stanene nanosheets-based hydrogel for sonodynamic treatment of drug-resistant bacterial infection
CN116284872B (zh) 一种纳米复合水凝胶及其制备方法和应用
CN111803695B (zh) 一种基于银掺杂碳点的no释放型伤口敷料的制备方法及其产品和应用
Han et al. Multifunctional hemostatic polysaccharide-based sponge enhanced by tunicate cellulose: A promising approach for photothermal antibacterial activity and accelerated wound healing
Liu et al. An NIR light-driven AgBiS 2@ ZIF-8 hybrid photocatalyst for rapid bacteria-killing
CN116726229A (zh) 一种纳米纤维创面修复材料及其制备方法和应用
CN116920165A (zh) 一种原位产氧的水凝胶及其制备方法和应用
Wang et al. Spiky surface topography of heterostructured nanoparticles for programmable acceleration of multistage wound healing
CN115304053B (zh) 碳纳米点、可注射碳纳米点-ε-聚赖氨酸水凝胶及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant