CN116283737A - 一种吡啶盐类有机光敏剂及其制备方法和应用 - Google Patents

一种吡啶盐类有机光敏剂及其制备方法和应用 Download PDF

Info

Publication number
CN116283737A
CN116283737A CN202210638597.7A CN202210638597A CN116283737A CN 116283737 A CN116283737 A CN 116283737A CN 202210638597 A CN202210638597 A CN 202210638597A CN 116283737 A CN116283737 A CN 116283737A
Authority
CN
China
Prior art keywords
pys
reaction
tpe
phenyl
pyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210638597.7A
Other languages
English (en)
Inventor
尹伟东
籍少敏
何禧瞳
邢龙江
霍延平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202210638597.7A priority Critical patent/CN116283737A/zh
Publication of CN116283737A publication Critical patent/CN116283737A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/18Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pyridine Compounds (AREA)

Abstract

本专利申请公开了一种吡啶盐类有机光敏剂及其制备方法。该吡啶盐类有机光敏剂基于四苯基乙烯或N‑苯基咔唑为核的吡啶盐类化合物,具体有TPE‑Py、TPE‑Pys‑M、TPE‑Pys‑B、TPE‑Pys‑BP、BK‑Py、BK‑Pys‑M、BK‑Pys‑B、BK‑Pys‑BP、BKD‑Pys‑BP、BKB‑Pys‑BP和BKT‑Pys‑BP共计12种。该吡啶啶盐类有机光敏剂结合吡啶盐强吸电子能力与四苯乙烯和咔唑的供电子特性,使得分子HOMO‑LOMO轨道更加分离,这有利于降低ΔEst;同时利用二苯甲酮强的系间蹿跃能力,可以增强轨道自旋耦合(SOC),从而使得活性氧生成能力增强,进而提高光动力治疗效果。

Description

一种吡啶盐类有机光敏剂及其制备方法和应用
技术领域
本专利申请涉及有机发光材料领域,更具体地,涉及一种吡啶盐类有机光敏剂及其制备方法和应用。
背景技术
恶性肿瘤对人类身体健康、社会经济发展造成了严重的影响,目前对肿瘤的诊断与治疗仍是化学、生物、医学工作者研究重点和难点。近几年荧光成像诊断与光学治疗因具有高灵敏度成像、高度靶向治疗的优点成为肿瘤诊断与治疗的研究热点。光动力治疗因其无创性、无抗药性等优点逐渐进入人们的视野。
当然光动力治疗在发展的同时,也同样面临着挑战,比如说如何解决肿瘤靶向,如何跟传统治疗模式结合,以及如何开发更高效的光敏剂等。因此,寻找一种能提高活性氧产率的高效光敏剂来实现肿瘤诊疗一体化是本领域研究人员亟待解决的问题。
发明内容
为克服上述现有技术存在的问题之一,本发明提供了一种吡啶盐类有机光敏剂,该吡啶盐类有机光敏剂具有高活性氧产生效率的优点。
本发明的又一目的在于,提供一种吡啶盐类有机光敏剂的制备方法。
本发明的另一目的是提供一种吡啶盐类有机光敏剂的应用。
为解决上述技术问题,本发明采用的技术方案是:
一种吡啶盐类有机光敏剂,所述吡啶盐类有机光敏剂为基于四苯基乙烯的吡啶盐,且具有下列所示分子结构中的一种:
Figure SMS_1
本专利申请还提供上述吡啶盐类有机光敏剂的制备方法,包括如下步骤:
S11.中间体4-溴甲基二苯甲酮(BP-M-Br)的制备
将4-甲基二苯甲酮和N-溴代丁二酰亚胺(NBS)在高压汞灯照射下,并由过氧化苯甲酰(BPO)引发NBS溴代反应,得到苄基处溴取代的4-溴甲基二苯甲酮(BP-M-Br);
S12.最终产物4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶(TPE-Py)的制备
利用铃木偶联反应,将1-(4-溴苯基)-1,2,2-三苯乙烯,4-吡啶硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶(TPE-Py);
S13.最终产物TPE-Pys-M、TPE-Pys-B和TPE-Pys-BP的制备
利用门舒特金反应(Menshutkin反应),将步骤S12得到的产物TPE-Py同碘甲烷,苄基溴和步骤S11产物BP-M-Br在四氢呋喃中回流,分别得到1-甲基-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-碘化铵(TPE-Pys-M),1-苄基-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-溴化铵(TPE-Pys-B)和1-(4-苯甲酰基苄基)-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-溴化铵(TPE-Pys-BP)。
优选的,所述步骤S11中的NBS溴代需要惰性气体保护,反应时间为3~6小时。
优选的,所述步骤S12中的所用的溶剂为THF:CH3OH=1:1,所用催化剂为Pd(PPh3)4(6-8%),且需需要惰性气体保护。
优选的,所述TPE-Py与CH3I的摩尔比为1:(2~3),而苄溴和BP-M-Br的反应摩尔比为1:(1~1.05),反应温度为80℃,时间12小时。
本专利申请中还提供另一种吡啶盐类有机光敏剂,所述吡啶盐类有机光敏剂为基于N-苯基咔唑的吡啶盐,且具有下列所示分子结构中的一种:
Figure SMS_2
本专利申请还提供上述吡啶盐类有机光敏剂的制备方法,包括如下步骤:
S21.最终产物9-(4-(4-吡啶基)苯基)-9H-咔唑(BK-Py)的制备
利用铃木偶联反应(Suzuki偶联反应),将9-(4-溴苯基)咔唑,4-吡啶硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-(4-吡啶基)苯基)-9H-咔唑(BK-Py);
S22.最终产物4-(4-(9H-咔唑-9-基)苯基)-1-甲基吡啶-1-碘化铵(BK-Pys-M),4-(4-(9H-咔唑-9-基)苯基)-1-苄基吡啶-1-溴化铵(BK-Pys-B)和4-(4-(9H-咔唑-9-基)苯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BK-Pys-BP)的制备
利用门舒特金反应(Menshutkin反应),将步骤S21得到的产物BK-Py同碘甲烷,苄基溴和步骤S11产物BP-M-Br在四氢呋喃中回流,得到4-(4-(9H-咔唑-9-基)苯基)-1-甲基吡啶-1-碘化铵(BK-Pys-M),4-(4-(9H-咔唑-9-基)苯基)-1-苄基吡啶-1-溴化铵(BK-Pys-B)和4-(4-(9H-咔唑-9-基)苯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BK-Pys-BP);
S23.中间体1-(4-苯甲酰苄基)-4-甲基吡啶-1-溴化铵(BP-M-Pys)的制备
利用门舒特金反应(Menshutkin反应),将S11产物4-溴甲基二苯甲酮同4-甲基吡啶在四氢呋喃中回流,得到1-(4-苯甲酰苄基)-4-甲基吡啶-1-溴化铵(BP-M-Pys);
S24.中间体9-(4-溴苯基)咔唑-4苯甲醛(BKB-CHO)的制备
利用铃木偶联反应(Suzuki偶联反应),将9-(4-溴苯基)咔唑,4-甲酰基苯硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-溴苯基)咔唑-4苯甲醛(BKB-CHO);
S25.中间体9-(4-溴苯基)咔唑-4噻吩醛(BKT-CHO)的制备
利用铃木偶联反应(Suzuki偶联反应),将9-(4-溴苯基)咔唑,5-醛基-2-噻吩硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-溴苯基)咔唑-4噻吩醛(BKT-CHO);
S26.最终产物BKD-Pys-BP、BKB-Pys-BP和BKT-Pys-BP的制备
将步骤S23得到的产物BP-M-Pys同N-(4-甲酰基苯基)咔唑,BKB-CHO和BKT-CHO在少量哌啶催化下进行脱水缩合分别得到(E)-4-(4-(9H-咔唑-9-基)苯乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKD-Pys-BP),(E)-4-(2-(4'-(9H-咔唑-9-基)-[1,1'-联苯]-4-基)乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKB-Pys-BP)和(E)-4-(2-(5-(4-(9H-咔唑-9-基)苯基)噻吩-2-基)乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKT-Pys-BP)。
优选的,所述步骤22中,所述中间体BK-Py与CH3I的摩尔比为1:(2~3),BK-Py与BP-M-Br的反应摩尔比为1:(1~1.05),反应温度为80℃,时间12小时。
优选的,所述步骤S23中BP-M-Br与4-甲基吡啶的反应摩尔比为1:1。
本专利申请还提供了一种光动力治疗用有机光敏剂,所述有机光敏剂采用如上述的吡啶盐类有机光敏剂。
与现有技术相比,本专利申请的有益效果是:
本专利申请提供的基于四苯基乙烯和N-苯基咔唑的吡啶盐类有机光敏剂合成方法,是利用螺旋桨型四苯基乙烯和N-苯基咔唑作为基本骨架,通过修饰吡啶盐制备的一系列聚集诱导发光材料。结合吡啶盐强吸电子能力与四苯乙烯或咔唑的供电子特性,使得分子HOMO-LOMO轨道更加分离,这有利于降低ΔEst(最低激发单重态与最低激发三重态之间的能极差,the energy gap between the lowest excited singlet(S1)and the lowestexcited triplet(T1).);同时利用二苯甲酮强的系间蹿跃能力,可以增强轨道自旋耦合(SOC),从而使得活性氧生成能力增强,进而提高光动力治疗效果。基于聚集诱导发光(AIE)型高效光敏剂的发展与应用将会为肿瘤定位与治疗开辟新道路。
附图说明
图1为步骤S11制得的化合物BP-M-Br的1H NMR图。
图2为步骤S12制得的化合物TPE-Py的1H NMR图。
图3为步骤S13制得的化合物TPE-Pys-M的1H NMR图。
图4为步骤S13制得的化合物TPE-Pys-M的13C NMR图。
图5为步骤S13制得的化合物TPE-Pys-B的1H NMR图。
图6为步骤S13制得的化合物TPE-Pys-B的13C NMR图。
图7为步骤S13制得的化合物TPE-Pys-BP的1H NMR图。
图8为步骤S13制得的化合物TPE-Pys-BP的13C NMR图。
图9为步骤S21制得的化合物BK-Py的1H NMR图。
图10为步骤S22制得的化合物BK-Pys-M的1H NMR图。
图11为步骤S22制得的化合物BK-Pys-M的13C NMR图。
图12为步骤S22制得的化合物BK-Pys-B的1H NMR图。
图13为步骤S22制得的化合物BK-Pys-B的13C NMR图。
图14为步骤S22制得的化合物BK-Pys-BP的1H NMR图。
图15为步骤S22制得的化合物BK-Pys-BP的13C NMR图。
图16为步骤S23制得的化合物BP-M-Pys的1H NMR图。
图17为步骤S24制得的化合物BKB-CHO的1H NMR图。
图18为步骤S25制得的化合物BKT-CHO的1H NMR图。
图19为步骤S26制得的化合物BKD-Pys-BP的1H NMR图。
图20为步骤S26制得的化合物BKD-Pys-BP的13C NMR图。
图21为步骤S26制得的化合物BKB-Pys-BP的1H NMR图。
图22为步骤S26制得的化合物BKB-Pys-BP的13C NMR图。
图23为步骤S26制得的化合物BKT-Pys-BP的1H NMR图。
图24为步骤S26制得的化合物BKT-Pys-BP的13C NMR图。
图25为步骤S12和步骤S13所得产物(TPE-Py,TPE-Pys-M,TPE-Pys-B,TPE-Pys-BP)在二甲基亚砜中的紫外吸收谱和固体的光致发光谱。
图26为步骤S12和步骤S13所得产物(TPE-Py,TPE-Pys-M,TPE-Pys-B,TPE-Pys-BP)在二氯甲烷和正己烷混合溶剂中的AIE特征谱图。
图27为步骤S12和步骤S13所得产物(TPE-Py,TPE-Pys-M,TPE-Pys-B,TPE-Pys-BP)的活性氧生成能力折线图。
图28为步骤S21、22和S26所得产物(BK-Py,BK-Pys-M,BK-Pys-B,BK-Pys-BP,BKD-Pys-BP,BKB-Pys-BP,BKT-Pys-BP)在二甲基亚砜中的紫外吸收谱和固体的光致发光谱。
图29为步骤S21、22和S26所得产物(BK-Py,BK-Pys-M,BK-Pys-B,BK-Pys-BP,BKD-Pys-BP,BKB-Pys-BP,BKT-Pys-BP)在二氯甲烷和正己烷混合溶剂中的AIE特征谱图。
图30为步骤S21、22和S26得产物(BK-Py,BK-Pys-M,BK-Pys-B,BK-Pys-BP,BKD-Pys-BP,BKB-Pys-BP,BKT-Pys-BP)的活性氧生成能力折线图。
具体实施方式
下面将结合实施例对本专利申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本专利申请,而不应视为限制本专利申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
需要说明的是:
本专利申请中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方法可以相互组合形成新的技术方案。
本专利申请中,如果没有特别的说明,百分数(%)或者份指的是相对于组合物的重量百分数或重量份。
本专利申请中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。
本专利申请中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“6~15”表示本文中已经全部列出了“4~6”之间的全部实数,“4~6”只是这些数值组合的缩略表示。
本专利申请所公开的“范围”以下限和上限的形式,可以分别为一个或多个下限,和一个或多个上限。
本专利申请中,除非另有说明,各个反应或操作步骤可以顺序进行,也可以按照顺序进行。优选的,本文中的反应方法是顺序进行的。
除非另有说明,本文中所用的专业与科学术语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法或材料也可应用于本专利申请中。
本专利申请提供了一种吡啶盐类有机光敏剂,该吡啶盐类有机光敏剂为基于四苯基乙烯的吡啶盐,且具有下列所示分子结构中的一种:
Figure SMS_3
上述从左至右,第二个至第四个吡啶盐类有机光敏剂分别命名为:1-甲基-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-碘化铵(简称:TPE-Pys-M),1-苄基-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-溴化铵(简称:TPE-Pys-B)和1-(4-苯甲酰基苄基)-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-溴化铵(简称:TPE-Pys-BP)。
本专利申请同时提供了基于N-苯基咔唑的吡啶盐有机光敏剂,且具有下列所示分子结构中的一种:
Figure SMS_4
上述从左至右,第二个至第七个吡啶盐类有机光敏剂分别命名为:4-(4-(9H-咔唑-9-基)苯基)-1-甲基吡啶-1-碘化铵(简称:BK-Pys-M),4-(4-(9H-咔唑-9-基)苯基)-1-苄基吡啶-1-溴化铵(简称:BK-Pys-B),4-(4-(9H-咔唑-9-基)苯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(简称:BK-Pys-BP),(E)-4-(4-(9H-咔唑-9-基)苯乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(简称:BKD-Pys-BP),(E)-4-(2-(4'-(9H-咔唑-9-基)-[1,1'-联苯]-4-基)乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(简称:BKB-Pys-BP)和(E)-4-(2-(5-(4-(9H-咔唑-9-基)苯基)噻吩-2-基)乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(简称:BKT-Pys-BP)。
本专利申请提供的基于四苯基乙烯和N-苯基咔唑的吡啶盐类有机光敏剂可作为聚集诱导发光材料。本专利申请中的吡啶盐类有机光敏剂结合吡啶盐强吸电子能力与四苯乙烯或咔唑的供电子特性,使得分子HOMO-LOMO轨道更加分离,这有利于降低ΔEst;同时利用二苯甲酮强的系间蹿跃能力,可以增强轨道自旋耦合(SOC),从而使得活性氧生成能力增强,进而提高光动力治疗效果。基于AIE型高效光敏剂的发展与应用将会为肿瘤定位与治疗开辟新道路。
本专利申请还提供了基于四苯基乙烯的吡啶盐类有机光敏剂合成方法。该方法包括以下步骤:
S11.中间体4-溴甲基二苯甲酮(BP-M-Br)的制备
将4-甲基二苯甲酮和N-溴代丁二酰亚胺(NBS)在高压汞灯(125W)照射下,并由过氧化苯甲酰(BPO)引发NBS溴代反应,得到苄基处溴取代的4-溴甲基二苯甲酮(BP-M-Br)。
S12.最终产物4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶(TPE-Py)的制备
利用铃木偶联反应(Suzuki偶联反应),将1-(4-溴苯基)-1,2,2-三苯乙烯,4-吡啶硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶(TPE-Py)。
S13.最终产物TPE-Pys-M、TPE-Pys-B和TPE-Pys-BP的制备
利用舒特金反应(Menshutkin反应),将步骤S12得到的产物TPE-Py同碘甲烷,苄基溴和步骤S11产物BP-M-Br在四氢呋喃中回流,分别得到1-甲基-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-碘化铵(TPE-Pys-M),1-苄基-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-溴化铵(TPE-Pys-B)和1-(4-苯甲酰基苄基)-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-溴化铵(TPE-Pys-BP)。
在本专利申请的一些优选实施例的步骤S11中,4-甲基二苯甲酮、NBS的摩尔比为1:(1.05~1.1),BPO添加量为5mg/1mol反应。在该NBS溴代反应中用以BPO作为引发剂,添加时间为温度升至50℃左右。
在本专利申请的一些优选实施例中,步骤S11的反应需要光照引发,需采用自镇流高压汞灯作为光源来提供能量,所用汞灯的功率为125W,在使用过程中每1h关灯一次,15分钟后重启照明。
在本专利申请的一些优选实施例中,步骤S11的反应以CCl4作为反应溶剂,反应前尽可能保证溶解。该甲基溴代反应的条件为在惰性气体保护下进行加热回流,惰性氛围有氮气氛围、氩气氛围和氦气氛围。更优选的,所述步骤中的惰性氛围选择氮气(N2)氛围。
在本专利申请的一些优选实施例中,步骤S11结束后,将反应液冷却到室温后利用旋转蒸发得到粗产物,粗产物用二氯甲烷溶解后硅胶拌样,后用石油醚作为洗脱剂进行硅胶柱色谱分离出所需产物。
本专利申请更优选的实施例中,步骤S11的具体操作步骤如下:
将4-甲基二苯甲酮(0.98g,196.24g/mol,5mmol)和N-溴代丁二酰亚胺(NBS,0.98g,177.98g/mol,5.5mmol)加入到100mL三口圆底烧瓶中,过氧化苯甲酰(BPO,25mg)单独置于气球中,然后用CCl4(30mL)溶解原料,反应在N2环境中升温至50℃,后将BPO少量分次加入到反应体系中,添加完毕后升温至80℃并开启高压汞灯(125W),高压汞灯每1小时关闭一次,共计光照4小时。最后,减压浓缩反应液,用柱层析法分离产物,以石油醚作为洗脱剂,便可得到白色固体(产率:95%)。
该反应方程式如下:
Figure SMS_5
如图1所示,中间体BP-M-Br通过核磁图谱表征可被获取。该中间体BP-M-Br的核磁数据为:1H NMR(400MHz,CDCl3)δ(TMS,ppm):7.82-7.77(m,4H),7.60(dd,J=10.5,4.3Hz,1H),7.53-7.46(m,4H),4.54(s,2H)。
在本专利申请的一些优选实施例的步骤S12中,铃木反应(Suzuki反应)所选催化剂为四三苯基膦钯,所用碱为碳酸钾或碳酸钠,且1-(4-溴苯基)-1,2,2-三苯乙烯,4-吡啶硼酸,碳酸钾和四三苯基膦钯的摩尔比为1:1.5:2:(5%-8%)。
在本专利申请的一些优选实施例中,步骤S12反应溶剂选择为四氢呋喃(THF)和甲醇(CH3OH)(体积比=1:1),在使用过程中优先加入四氢呋喃,再加入甲醇以保证溶解。反应的条件为在惰性气体保护下进行加热回流,惰性氛围有氮气氛围、氩气氛围和氦气氛围,所述步骤中的惰性氛围为氮气氛围。最后将反应温度设为80℃,反应时间为24小时。
在本专利申请的一些优选实施例中,步骤S12结束后,将反应液冷却到室温,减压浓缩除去反应液后,用二氯甲烷将粗产物溶解硅胶拌样,后利用柱层析方法,用石油醚和乙酸乙酯混合液作为洗脱剂进行柱层析分离提纯,体积比例为(乙酸乙酯:石油醚=50:1),最后得到最终产物之一:TPE-Py。
本专利申请更优选的实施例中,步骤S12的具体操作步骤如下:
1-(4-溴苯基)-1,2,2-三苯乙烯(2.87g,410.07g/mol,7mmol),4-吡啶硼酸(1.3g,122.92g/mol,10.5mmol),四三苯基膦钯(Pd(PPh3)4,0.48g,1155.57g/mol,0.42mmol)和碳酸钾(K2CO3,1.93g,138.21g/mol,14mmol)依此加入到100mL两口圆底烧瓶中,然后将四氢呋喃和甲醇按体积比=1:1加入到圆底烧瓶中。该反应在N2氛围中升温至80℃反应24h,反应结束后减压浓缩得到粗产物,并用柱层析法分离提纯,洗脱剂为乙酸乙酯:石油醚=50:1(体积比),最后得到白色固体(产率:80%)。
该反应方程式如下:
Figure SMS_6
如图2所示,化合物TPE-Py通过核磁图谱表征可被获取。该合物TPE-Py的核磁数据为:1H NMR(400MHz,CDCl3)δ8.60(d,J=6.2Hz,2H),7.44(d,J=6.2Hz,2H),7.39(d,J=8.4Hz,2H),7.17-7.09(m,11H),7.08-7.00(m,6H)。
在本专利申请的一些优选实施例中,步骤S13中,门舒特金反应(Menshutkin反应)所选溶剂有二氯甲烷、乙醇、四氢呋喃,更优选地,采用极性非质子溶剂四氢呋喃作为反应溶剂,使原料完全溶解,但溶剂不易过量,恰好溶解为宜。反应温度采用80℃,反应时间24h。
在本专利申请的一些优选实施例中,在步骤S13中由于碘甲烷易挥发,更优选采用TPE-Py与碘甲烷摩尔比为1:(2~3)进行反应,而非1:(1~1.05);其余两个产物均采用1:(1~1.05)进行反应。反应过程中会有固体析出,可以将圆底烧瓶中边缘吸附的产物用刮刀重新刮至溶剂中,使充分反应。
在本专利申请的一些优选实施例中,步骤S13结束后,使反应液充分冷却,使产物以固体形式沉淀析出,后进行抽滤,收集滤渣,然后用正己烷少量多次洗涤粗产物。更优选地,采用离心机进行洗涤除杂。最后真空干燥得到产物,得到的产物基本达到分析测试要求。更优选地,也可采用中性氧化铝进行柱色谱分离,采用的洗脱剂先后顺序为二氯甲烷、乙酸乙酯、甲醇。
本专利申请更优选的实施例中,步骤S13的具体操作步骤如下:
步骤131TPE-Pys-M的制备
将TPE-Py(0.21g,409.53g/mol,0.5mmol)溶解在20mL四氢呋喃中,随后准确量取碘甲烷(0.21g,141.9g/mol,1.5mmol)加入到反应液中,升温至80℃反应24h,待反应结束后,将反应液中的沉淀进行过滤,滤渣用四氢呋喃和正己烷的混合液洗涤数次得到粗产物。粗产物采用中性氧化铝过柱分离,淋洗剂的使用顺序为二氯甲烷,乙酸乙酯,甲醇。最后所得到产物为黄色固体(产率:86%)。
该反应方程式如下:
Figure SMS_7
如图3核磁氢谱和图4碳谱所示,化合物TPE-Pys-M表征可被获取。核磁数据为:1HNMR(400MHz,CDCl3)δ9.24(d,J=6.7Hz,2H),8.12(d,J=6.7Hz,2H),7.54(d,J=8.4Hz,2H),7.22(d,J=8.4Hz,2H),7.17-7.09(m,9H),7.06-6.99(m,6H),4.63(s,3H).13C NMR(100MHz,CDCl3)δ155.79,148.93,145.41,143.37,142.97,142.93,142.79,139.22,132.89,131.31,131.28,131.23,130.91,128.09,128.03,127.77,127.24,127.21,126.99,124.32,48.63。
步骤132TPE-Pys-B的制备
将TPE-Py(0.21g,409.53g/mol,0.5mmol)溶解在20mL四氢呋喃中,随后准确量取苄基溴(0.094g,171.04g/mol,0.55mmol)加入到反应液中,随后升温至80℃反应24h,薄层色谱监测反应完成后,将反应液中的沉淀进行过滤,滤渣用四氢呋喃和正己烷的混合液洗涤数次得到粗产物。粗产物采用中性氧化铝过柱分离,淋洗剂的使用顺序为二氯甲烷,乙酸乙酯,甲醇。最终所得产物为黄绿色固体(产率:88%)。
该反应方程式如下:
Figure SMS_8
如图5的核磁氢谱和图6的碳谱所示,化合物TPE-Pys-B表征可被获取。核磁数据为:1H NMR(400MHz,DMSO)δ9.19(d,J=6.7Hz,2H),8.48(d,J=6.8Hz,2H),7.91(d,J=8.4Hz,2H),7.55(d,J=6.3Hz,2H),7.45(d,J=7.1Hz,3H),7.25-7.11(m,11H),7.08-6.97(m,6H),5.84(s,2H).13C NMR(101MHz,DMSO)δ154.65,148.04,145.15,143.20,143.18,143.03,142.71,139.86,135.07,132.36,131.58,131.17,131.14,131.06,129.73,129.67,129.14,128.55,128.53,128.35,128.22,127.54,127.36,124.92,62.64。
步骤133TPE-Pys-BP的制备
将TPE-Py(0.41g,409.53g/mol,1mmol)和BP-M-Br(0.31g,275.15g/mol,1.1mol)溶解在30mL四氢呋喃中,然后将反应液升温至80℃反应24h,反应过程中会有大量固体析出,薄层色谱法监测反应结束后,将反应液中的沉淀进行过滤,滤渣用四氢呋喃和正己烷的混合液洗涤数次得到粗产物。粗产物采用中性氧化铝过柱分离,淋洗剂的使用顺序为二氯甲烷,乙酸乙酯,甲醇。最后得到产物为黄绿色固体(产率:85%)。
该反应的反应方程式如下:
Figure SMS_9
如图7的核磁氢谱和图8的碳谱所示,化合物TPE-Pys-BP表征可被获取得到。核磁数据为:1H NMR(400MHz,DMSO)δ9.24(d,J=6.5Hz,2H),8.53(d,J=6.6Hz,2H),7.93(d,J=8.3Hz,2H),7.79(d,J=8.1Hz,2H),7.71(dd,J=12.1,7.8Hz,5H),7.57(t,J=7.5Hz,2H),7.26-7.11(m,11H),7.02(dd,J=17.3,9.4Hz,6H),5.98(s,2H).13C NMR(101MHz,DMSO)δ195.72,154.82,148.07,145.40,143.19,143.02,142.74,139.85,139.28,138.06,137.07,133.48,132.39,131.54,131.17,131.15,131.06,130.73,130.15,129.15,128.54,128.35,128.26,127.56,127.37,124.99,62.09。
本专利申请还提供了基于N-苯基咔唑吡啶盐类有机光敏剂合成方法。该方法包括以下步骤:
S21.最终产物9-(4-(4-吡啶基)苯基)-9H-咔唑(BK-Py)的制备
利用铃木偶联反应(Suzuki偶联反应),将9-(4-溴苯基)咔唑,4-吡啶硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-(4-吡啶基)苯基)-9H-咔唑(BK-Py);
S22.最终产物4-(4-(9H-咔唑-9-基)苯基)-1-甲基吡啶-1-碘化铵(BK-Pys-M),4-(4-(9H-咔唑-9-基)苯基)-1-苄基吡啶-1-溴化铵(BK-Pys-B)和4-(4-(9H-咔唑-9-基)苯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BK-Pys-BP)的制备
利用门舒特金反应(Menshutkin反应),将步骤S21得到的产物BK-Py同碘甲烷,苄基溴和步骤S11产物BP-M-Br在四氢呋喃中回流,得到4-(4-(9H-咔唑-9-基)苯基)-1-甲基吡啶-1-碘化铵(BK-Pys-M),4-(4-(9H-咔唑-9-基)苯基)-1-苄基吡啶-1-溴化铵(BK-Pys-B)和4-(4-(9H-咔唑-9-基)苯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BK-Pys-BP);
S23.中间体1-(4-苯甲酰苄基)-4-甲基吡啶-1-溴化铵(BP-M-Pys)的制备
利用门舒特金反应(Menshutkin反应),将S21产物4-溴甲基二苯甲酮同4-甲基吡啶在四氢呋喃中回流,得到1-(4-苯甲酰苄基)-4-甲基吡啶-1-溴化铵(BP-M-Pys);
S24.中间体9-(4-溴苯基)咔唑-4苯甲醛(BKB-CHO)的制备
利用Suzuki偶联反应,将9-(4-溴苯基)咔唑,4-甲酰基苯硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-溴苯基)咔唑-4苯甲醛(BKB-CHO);
S25.中间体9-(4-溴苯基)咔唑-4噻吩醛(BKT-CHO)的制备
利用Suzuki偶联反应,将9-(4-溴苯基)咔唑,5-醛基-2-噻吩硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-溴苯基)咔唑-4噻吩醛(BKT-CHO);
S26.最终产物BKD-Pys-BP、BKB-Pys-BP和BKT-Pys-BP的制备
将步骤S23得到的产物BP-M-Pys同N-(4-甲酰基苯基)咔唑,BKB-CHO和BKT-CHO在少量哌啶催化下进行脱水缩合分别得到(E)-4-(4-(9H-咔唑-9-基)苯乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKD-Pys-BP),(E)-4-(2-(4'-(9H-咔唑-9-基)-[1,1'-联苯]-4-基)乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKB-Pys-BP)和(E)-4-(2-(5-(4-(9H-咔唑-9-基)苯基)噻吩-2-基)乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKT-Pys-BP)。
在本专利申请的一些优选实施例的步骤S21中,Suzuki反应所选催化剂为四三苯基膦钯(5%-8%eq),所用碱为碳酸钾(2eq),其中硼酸过量(1.5eq),反应所用溶剂体系为四氢呋喃和甲醇(体积比=1:1)。反应在N2氛围中回流24h后,薄层色谱监测反应进程。
在本专利申请的一些优选实施例中,在步骤S21结束后,将反应液冷却到室温,减压浓缩除去反应液后,粗产物采用柱层析法分离提纯产物,所用淋洗剂为石油醚和乙酸乙酯,比例为50:1,最后得到BK-Py。
本专利申请更优选的实施例中,步骤S21的具体操作步骤如下:
9-(4-溴苯基)-咔唑(0.96g,322.21g/mol,3mmol),4-吡啶硼酸(0.55g,122.92g/mol,4.5mmol),四三苯基膦钯(Pd(PPh3)4,0.21g,1155.57g/mol,0.18mmol)和碳酸钾(K2CO3,0.83g,138.21g/mol,6mmol)依此加入到100mL两口圆底烧瓶中,然后将四氢呋喃和甲醇按1:1加入到烧瓶中。该反应在N2氛围中升温至80℃反应24h,反应结束后减压浓缩得到粗产物,并用柱层析法分离提纯,洗脱剂为乙酸乙酯和石油醚混合体系(体积比=50:1),最后得到白色固体(产率:83%)。
该反应方程式如下:
Figure SMS_10
如图9核磁图谱所示,产物TPE-Py表征可被获得。核磁数据为:1H NMR(400MHz,CDCl3)δ8.72(d,J=5.9Hz,2H),8.16(d,J=7.7Hz,2H),7.85(d,J=8.5Hz,2H),7.69(d,J=8.4Hz,2H),7.58(dd,J=4.5,1.5Hz,2H),7.51 -7.38(m,4H),7.31(t,J=7.0Hz,2H)。
在本专利申请的一些优选实施例中,步骤S22中Menshutkin反应所选溶剂有二氯甲烷、乙醇、四氢呋喃。更优选地,采用极性非质子溶剂四氢呋喃作为反应溶剂,使原料完全溶解,但溶剂不易过量,恰好溶解为宜。
在本专利申请的一些优选实施例中,步骤S22中反应温度采用80℃,反应时间24h。
在本专利申请的一些优选实施例中,步骤S22中BK-Py与碘甲烷的摩尔比为1:(1~1.05),考虑到碘甲烷易挥发,故采用摩尔比为1:(2~3)进行反应;而BK-Py与苄溴、BP-M-Br的反应则采用摩尔比为1:(1~1.05)进行。
在本专利申请的一些优选实施例中,步骤S22反应后的产物在烧瓶内部析出后,用刮刀重新刮至反应液中,使之充分反应。
在本专利申请的一些优选实施例中,步骤S22反应结束后,使反应液充分冷却,产物以固体形式沉淀析出,后进行抽滤,收集滤渣,然后用正己烷和四氢呋喃的混合液,少量多次洗涤粗产物;更优选地,采用离心机进行洗涤除杂,最后真空干燥得到产物,得到的产物基本达到分析测试要求;更优选地,也可采用中性氧化铝进行柱色谱分离,采用的洗脱剂先后顺序为二氯甲烷、乙酸乙酯、甲醇。
本专利申请更优选的实施例中,步骤S22的具体操作步骤如下:
步骤221BK-Pys-M的制备
将BK-Py(0.16g,320.40g/mol,0.5mmol)溶解在20mL四氢呋喃中,随后准确量取碘甲烷(0.21g,141.9g/mol,1.5mmol)加入到反应液中,升温至80℃反应24h,待反应结束后,将反应液中的沉淀进行过滤,滤渣用四氢呋喃和正己烷的混合液洗涤数次得到粗产物。粗产物采用中性氧化铝柱层析分离,淋洗剂的使用顺序为二氯甲烷,乙酸乙酯,甲醇。最后所得到产物为黄色固体(产率:85%)。
该反应方程式如下:
Figure SMS_11
如图10的核磁氢谱和图11碳谱所示,化合物BK-Pys-M表征可以被获取得到。化合物BK-Pys-M的核磁数据为:1H NMR(600MHz,dmso)δ9.09(d,J=6.8Hz,2H),8.63(d,J=6.7Hz,2H),8.39(d,J=8.4Hz,2H),8.29(d,J=7.8Hz,2H),7.94(d,J=8.1Hz,2H),7.53(d,J=8.1Hz,2H),7.49(t,J=7.6Hz,2H),7.35(t,J=7.3Hz,2H),4.40(s,3H).13C NMR(151MHz,dmso)δ153.67,146.12,140.70,140.02,132.49,130.46,127.69,126.95,124.53,123.61,121.14,121.11,110.22,47.64。
步骤222BK-Pys-B的制备
将BK-Py(0.16g,320.40g/mol,0.5mmol)溶解在20mL四氢呋喃中,随后准确量取苄基溴(0.094g,171.04g/mol,0.55mmol)加入到反应液中,随后升温至80℃反应24h,薄层色谱监测反应完成后,将反应液中的沉淀进行过滤,滤渣用四氢呋喃和正己烷的混合液洗涤数次得到粗产物。粗产物采用中性氧化铝柱层析分离,淋洗剂的使用顺序为二氯甲烷,乙酸乙酯,甲醇。最终所得产物为黄绿色固体(产率:86%)。
该反应方程式如下:
Figure SMS_12
如图12的核磁氢谱和图13的碳谱所示,化合物BK-Pys-B表征可以被获取得到。核磁数据为:1H NMR(400MHz,CDCl3)δ9.55(d,J=5.8Hz,2H),8.26(d,J=5.4Hz,2H),8.15(d,J=7.8Hz,2H),8.00(d,J=8.4Hz,2H),7.83(d,J=8.3Hz,2H),7.70(d,J=7.5Hz,2H),7.50(d,J=8.2Hz,2H),7.47–7.42(m,5H),7.34(t,J=7.0Hz,2H),6.31(s,2H).13C NMR(101MHz,DMSO)δ154.58,145.35,140.88,140.03,136.79,134.99,132.50,130.70,129.91,129.76,129.33,127.71,127.00,125.43,123.67,121.20,110.28,62.94。
步骤223BK-Pys-BP的制备
将BK-Py(0.16g,320.40g/mol,0.5mmol)和BP-M-Br(0.15g,275.15g/mol,0.55mol)溶解在20mL四氢呋喃中,然后将反应液升温至80℃反应24h,反应过程中会有大量固体析出,薄层色谱法监测反应结束后,将反应液中的沉淀进行过滤,滤渣用四氢呋喃和正己烷的混合液洗涤数次得到粗产物。粗产物采用中性氧化铝柱色谱分离,淋洗剂的使用顺序为二氯甲烷,乙酸乙酯,甲醇。最后得到产物为黄绿色固体(产率:87%)。
该反应的反应方程式如下:
Figure SMS_13
如图14的核磁氢谱和图15的碳谱所示,化合物BK-Pys-BP表征可以被获取得到。核磁数据为:1H NMR(600MHz,dmso)δ9.39(d,J=7.0Hz,2H),8.72(d,J=7.0Hz,2H),8.41(d,J=8.7Hz,2H),8.29(d,J=7.7Hz,2H),7.96(d,J=8.6Hz,2H),7.84(d,J=8.4Hz,2H),7.80(d,J=8.3Hz,2H),7.76(d,J=7.0Hz,2H),7.71(t,J=7.4Hz,1H),7.59(t,J=7.8Hz,2H),7.53(d,J=8.2Hz,2H),7.49(t,J=7.6Hz,2H),7.35(t,J=6.9Hz,2H),6.07(s,2H).13C NMR(151MHz,dmso)δ195.69,154.72,145.56,140.92,140.00,139.07,138.16,137.05,133.45,132.41,130.75,130.69,130.12,129.31,129.11,127.68,126.95,125.46,123.65,121.15,110.24,67.45,62.32。
在本专利申请的一些优选实施例中,步骤S23中Menshutkin反应选用溶剂为四氢呋喃,BP-M-Br与4-甲基吡啶的反应摩尔比为1:1,反应在80℃下回流24h,产物在反应期间以固体形式析出。
在本专利申请的一些优选实施例中,步骤S23结束后,由于产物熔点较低,在室温下为油状,故将反应液趁热过滤,将滤纸上油状产物用正己烷少量多次洗涤,而后溶于二氯甲烷后减压蒸馏尽可能完全除去二氯甲烷,最后得到BP-M-Pys。
本专利申请更优选的实施例中,步骤S23的具体操作步骤如下:
BP-M-Pys的制备
将BP-M-Br(1.5g,275.15g/mol,5.5mmol)和4-甲基吡啶(0.51g,93.13g/mol,5.5mmol)溶于30mL四氢呋喃中,在80℃下回流24h,薄层色谱监测反应结束后过滤产物,正己烷少量多次洗涤后用二氯甲烷溶解旋干,产物为褐色油状物。
该反应的反应方程式如下:
Figure SMS_14
如图16的核磁氢谱所示,化合物BP-M-Pys表征可以被获取得到,化合物BP-M-Pys核磁数据为:1H NMR(400MHz,CDCl3)δ9.47(d,J=6.6Hz,2H),7.85(t,J=6.9Hz,4H),7.75–7.66(m,4H),7.57(t,J=7.4Hz,1H),7.44(t,J=7.7Hz,2H),6.36(s,2H),2.61(s,3H)。
在本专利申请的一些优选实施例中,步骤S24中Suzuki反应所选催化剂为四三苯基膦钯(5%-8%eq),所用碱为碳酸钾(2eq),由于副反应硼酸自偶联影响,故4-甲酰基苯硼酸应过量(1.5eq),该反应所用溶剂体系为四氢呋喃和甲醇(1:1)。反应在N2氛围中回流24h后,薄层色谱监测反应进程。
在本专利申请的一些优选实施例中,步骤S24结束后,将反应液冷却到室温,减压浓缩除去反应液后,粗产物采用柱层析法分离提纯产物,所用淋洗剂为石油醚和乙酸乙酯,比例为100:1,最后得到BKD-CHO。
本专利申请更优选的实施例中,步骤S24的具体操作步骤如下:
BKB-CHO的制备
9-(4-溴苯基)-咔唑(0.96g,322.21g/mol,3mmol),4-甲酰基苯硼酸(0.67g,149.94g/mol,4.5mmol),四三苯基膦钯(Pd(PPh3)4,0.21g,1155.57g/mol,0.18mmol)和碳酸钾(K2CO3,0.83g,138.21g/mol,6mmol)依此加入到100mL两口圆底烧瓶中,然后将四氢呋喃和甲醇按1:1加入到烧瓶中。该反应在N2氛围中升温至80℃反应24h,反应结束后减压浓缩得到粗产物,并用柱层析法分离提纯,洗脱剂为乙酸乙酯:石油醚的体积比=100:1,最后得到白色固体(产率:80%)。
该反应方程式如下:
Figure SMS_15
如图17的核磁图谱所示,化合物BKB-CHO表征可被获取得到。核磁数据为:1H NMR(400MHz,CDCl3)δ10.09(s,1H),8.16(d,J=7.7Hz,2H),8.01(d,J=8.3Hz,2H),7.86(dd,J=8.2,6.0Hz,4H),7.69(d,J=8.5Hz,2H),7.51-7.38(m,4H),7.31(t,J=7.4Hz,2H)。
在本专利申请的一些优选实施例中,步骤S25中Suzuki反应所选催化剂为四三苯基膦钯(5%-8%eq),所用碱为碳酸钾(2eq),5-醛基-2-噻吩硼酸应过量(1.5eq),所用溶剂体系为四氢呋喃和甲醇(1:1)。
在本专利申请的一些优选实施例中,步骤S25中,由于该反应涉及到杂环噻吩基团,反应转化率会下降,故将反应条件优化为回流48h,并用薄层色谱监测反应进程。
在本专利申请的一些优选实施例中,步骤S25结束后,将反应液冷却到室温,减压浓缩除去反应液后,粗产物采用柱层析法分离提纯产物,所用淋洗剂为石油醚和乙酸乙酯,体积比例为100:1,最后得到BKT-CHO。
本专利申请更优选的实施例中,步骤S25的具体操作步骤如下:
BKT-CHO的制备
9-(4-溴苯基)-咔唑(0.96g,322.21g/mol,3mmol),5-醛基-2-噻吩硼酸(0.71g,155.97g/mol,4.5mmol),四三苯基膦钯(Pd(PPh3)4,0.21g,1155.57g/mol,0.18mmol)和碳酸钾(K2CO3,0.83g,138.21g/mol,6mmol)依此加入到100mL两口圆底烧瓶中,然后将四氢呋喃和甲醇按1:1加入到烧瓶中。该反应在N2氛围中升温至80℃反应48h,反应结束后减压浓缩得到粗产物,并用柱层析法分离提纯,洗脱剂为乙酸乙酯:石油醚=100:1,最后得到白色固体(产率:35%)。
该反应方程式如下:
Figure SMS_16
如图18所示,通过对步骤25反应所得产物的核磁图谱的测试和表征,可知已获得化合物BKT-CHO。核磁数据为:1H NMR(400MHz,CDCl3)δ9.93(s,1H),8.15(d,J=7.7Hz,2H),7.90(d,J=8.5Hz,2H),7.79(d,J=3.9Hz,1H),7.66(d,J=8.5Hz,2H),7.51-7.40(m,5H),7.35-7.28(m,2H)。
在本专利申请的一些优选实施例中,步骤S26反应由于属于脱水缩合反应,尽量采用超干无水有机溶剂,致使反应在进行时平衡右移,故使用干乙醇进行反应。
在本专利申请的一些优选实施例中,在步骤S26中,由于溶解性问题,所以采用二氯甲烷和干乙醇的混合体系,且反应用哌啶作为碱进行催化。
在本专利申请的一些优选实施例中,在步骤S26结束后,将反应液冷却到室温,减压浓缩除去反应液后,粗产物采用柱层析法分离提纯产物,故采用中性氧化铝过柱分离,淋洗剂使用先后顺序为二氯甲烷、乙酸乙酯和甲醇,最后得到BKD-Pys-BP,BKB-Pys-BP,BKT-Pys-BP。
本专利申请更优选的实施例中,步骤S26的具体操作步骤如下:
步骤261BKD-Pys-BP的制备
N-(4-甲酰基苯基)咔唑(0.30g,271.32g/mol,1.1mmol),BP-M-Pys(0.37g,368.27g/mol,1mmol)加入50mL圆底烧瓶中,用干燥的二氯甲烷和乙醇混合液30mL(10+20)溶解,而后两滴哌啶滴入反应液中,反应在80℃下反应48h。反应结束后冷却至室温,减压浓缩反应液后采用中性氧化铝柱层析分离,淋洗剂使用先后顺序为:二氯甲烷、乙酸乙酯和甲醇。产物为橙色固体(产率:43%)。
该反应方程式如下:
Figure SMS_17
如图19的核磁氢谱和20的碳谱所示,化合物BKD-Pys-BP表征可被获取得到。化合物BKD-Pys-BP的核磁数据为:1H NMR(400MHz,CDCl3)δ9.28(d,J=5.6Hz,2H),8.23(d,J=5.7Hz,2H),8.14(d,J=7.7Hz,2H),8.03(d,J=16.2Hz,1H),7.93(d,J=8.3Hz,2H),7.88 -7.73(m,6H),7.66(d,J=8.3Hz,2H),7.61(t,J=7.4Hz,1H),7.52–7.45(m,4H),7.44(s,2H),7.31(t,J=7.5Hz,3H),6.27(s,2H).13C NMR(101MHz,CDCl3)δ195.84,153.93,144.44,141.86,140.20,138.88,137.21,136.78,133.16,133.00,131.56,131.04,130.11,129.38,128.50,127.10,126.19,125.30,124.52,123.76,122.50,120.56,120.46,109.79,44.61.
步骤262BKB-Pys-BP的制备
BKB-CHO(0.38g,347.42g/mol,1.1mmol),BP-M-Pys(0.37g,368.27g/mol,1mmol)加入50mL圆底烧瓶中,用干燥的二氯甲烷和乙醇混合液30mL(10+20)溶解,而后两滴哌啶滴入反应液中,反应在80℃下反应48h。反应结束后冷却至室温,减压浓缩反应液后采用中性氧化铝柱层析分离,淋洗剂使用先后顺序为:二氯甲烷、乙酸乙酯和甲醇。产物为红色固体(产率:47%)。
该反应方程式如下:
Figure SMS_18
如图21的核磁氢谱和22的碳谱所示,化合物BKB-Pys-BP表征可被获取得到。化合物BKB-Pys-BP的核磁数据为:1H NMR(400MHz,DMSO)δ9.18(d,J=6.6Hz,2H),8.36(d,J=6.6Hz,2H),8.28(d,J=7.8Hz,2H),8.17(d,J=16.3Hz,1H),8.08(d,J=8.4Hz,2H),7.96(q,J=8.4Hz,4H),7.83(d,J=8.2Hz,21H),7.79-7.69(m,8H),7.58(t,J=7.6Hz,2H),7.48(d,J=3.2Hz,4H),7.36-7.29(m,2H),5.94(s,1H).13C NMR(101MHz,DMSO)δ195.74,153.93,152.17,145.10,141.48,141.33,140.45,139.29,138.53,138.08,137.19,137.10,135.03,133.50,130.79,130.17,129.54,129.15,128.90,127.86,127.58,126.82,124.83,123.94,123.33,121.09,120.70,110.18,25.60。
步骤263BKT-Pys-BP的制备
BKT-CHO(0.39g,353.44g/mol,1.1mmol),BP-M-Pys(0.37g,368.27g/mol,1mmol)加入50mL圆底烧瓶中,用干燥的二氯甲烷和乙醇混合液30mL(10+20)溶解,而后两滴哌啶滴入反应液中,反应在80℃下反应48h。反应结束后冷却至室温,减压浓缩反应液后采用中性氧化铝柱层析分离,淋洗剂使用先后顺序为:二氯甲烷、乙酸乙酯和甲醇。产物为橙色固体(产率:30%)。
该反应方程式如下:
Figure SMS_19
如图23的核磁氢谱和24的碳谱所示,化合物BKT-Pys-BP表征可被获取得到。化合物BKT-Pys-BP的核磁数据为:1H NMR(400MHz,CDCl3)δ9.23(d,J=5.5Hz,2H),8.13(d,J=7.7Hz,2H),8.08-8.01(m,3H),7.81-7.72(m,8H),7.57(d,J=7.0Hz,3H),7.52-7.39(m,7H),7.37(d,J=7.1Hz,1H),7.30(d,J=7.8Hz,2H),6.84(d,J=15.8Hz,1H),6.24(s,2H).13C NMR(101MHz,CDCl3)δ195.84,153.55,148.18,144.14,140.42,139.77,138.73,138.10,137.49,136.78,135.56,134.71,132.92,132.02,130.99,130.11,129.33,128.47,127.38,127.34,126.11,125.05,123.76,123.59,120.56,120.43,120.33,109.72,44.55。
本专利申请提供的一系列以四苯乙烯吡啶盐或N-苯基咔唑为核的吡啶盐有机光敏剂的制备及提高活性氧产生效率的方法,是利用NBS溴代反应、Suzuki偶联和Menshutkin等经典反应制备的有机吡啶盐小分子。通过设计Donor-Accept(D-A)体系,使得HOMO-LOMO轨道的分离程度增大,有利于降低ΔEst;二苯甲酮的引入进一步提高系间穿越率,使更多的激发态能量转移到三线态,进而促进活性氧的高效生成。该设计策略能大幅度改善光敏剂的活性氧产生能力,可以用于光动力治疗等方面的应用研究。
另外,本专利申请提供的吡啶盐类有机光敏剂能够作为光动力治疗光敏剂材料,利用N+离子的亲水性特点以及与一些亚细胞结构之间的静电相互作用来实现靶向性,具备高靶向性,实现高效的光动力治疗,具有很好的应用前景。
性能测试
以步骤S12和步骤S13制备的化合物TPE-Py,TPE-Pys-M,TPE-Pys-B和TPE-Pys-BP为测试对象,测试结果如图25至图27所示。
图25(a)为岛津UV-2700紫外可见分光光度计测得的化合物TPE-Py,TPE-Pys-M,TPE-Pys-B和TPE-Pys-BP在溶液状态下的吸收图谱,浓度为1×10-5mol/L。从紫外可见光谱分析可知,将吡啶转换为吡啶盐后,由于增强了分子体系中的D-A强度,使得波长发生了明显的红移。图25(b)为爱丁堡FLS980测试所得化合物TPE-Py,TPE-Pys-M,TPE-Pys-B和TPE-Pys-BP在固体下的荧光发射光谱,激发分别是:323nm,366nm,372nm和374nm。
图26为爱丁堡FLS980测试所得化合物TPE-Py,TPE-Pys-M,TPE-Pys-B和TPE-Pys-BP的聚集诱导发射(AIE)特性曲线,测试溶液浓度为1×10-5mol/L,所选溶剂体系为二氯甲烷和正己烷。从图26可以看到,四个分均有典型的AIE特征,四苯乙烯作为典型的螺旋桨型化合物,在不良溶剂环境中,由于聚集致使分子内运动受限,从而增大了其辐射跃迁途径,表现出在聚集状态下的强荧光发射。
图27为活性氧生成水平测试,该测试选用2,7-二氯二氢荧光素二乙酸酯(DCFH)作为活性氧生成指示剂(1×10-5mol/L),在不同光照时间下(0s,15s,30s,45s,60s,75s,90s,120s,150,180s)测试TPE-Py,TPE-Pys-M,TPE-Pys-B和TPE-Pys-BP(浓度:1×10-6mol/L)的活性氧生成能力。该测试的原理为DCFH本身无荧光,该化合物可以被活性氧快速氧化(苯酚氧化为醌结构),从而生成强荧光产物2',7'-二氯荧光素(2',7'-Dichlorofluorescein,DCF),该过程可以用荧光光谱仪实时检测525纳米处的荧光强度变化,荧光强度越高说明活性氧产生越多。
由图27可知,TPE-Py,TPE-Pys-M和TPE-Pys-B的活性氧生成水平近乎可以忽略;而当引入二苯甲酮结构时,TPE-Pys-BP的活性氧水平显著上升,超过了商用的孟加拉玫瑰红(RB),其中RB分子结构中没有二苯甲酮结构。所以该设计策略可以作为一种活性氧增强的方法,这为制备高效活性氧生成光敏剂提供了参考,可以应用于光动力治疗领域。
以步骤21,步骤22和步骤26制备的化合物BK-Py,BK-Pys-M,BK-Pys-B,BK-Pys-BP,BKD-Pys-BP,BKB-Pys-BP和BKT-Pys-BP为测试对象,测试结果如图28至图30所示。
图28(a)是BK-Py,BK-Pys-M,BK-Pys-B,BK-Pys-BP,BKD-Pys-BP,BKB-Pys-BP和BKT-Pys-BP在溶液(DMSO)状态下的紫外吸收光谱,浓度为1×10-5mol/L。从紫外吸收可以看出随着体系D-A强度和共轭程度的增大,紫外吸收发生了明显的红移。图28(b)是固体化合物的荧光光谱,激发分别是:323nm,376nm,385nm,387nm,408nm,392nm和443nm。光谱分布也表明该体系合成了全可见区光谱发射的荧光材料(400~685nm)。
图29(a,b)为爱丁堡FLS980测试所得化合物BK-Py,BK-Pys-M,BK-Pys-B,BK-Pys-BP,BKD-Pys-BP,BKB-Pys-BP和BKT-Pys-BP的聚集诱导发射(AIE)特性曲线,测试溶液浓度为1×10-5mol/L,所选溶剂体系为二氯甲烷和正己烷。从图29可以看到,将BK-Py修饰成吡啶盐后,成功实现了ACQ到AIE性质的转变。
图30为活性氧生成水平测试,图30a为该测试选用DCFH作为活性氧生成指示剂(1×10-5mol/L),在不同光照时间下(0s,15s,30s,45s,60s,75s,90s,120s,150s,180s)测试了BK-Py,BK-Pys-M,BK-Pys-B,BK-Pys-BP,BKD-Pys-BP,BKB-Pys-BP和BKT-Pys-BP(浓度:1×10-6mol/L)的活性氧生成能力。由图30a可知,随着二苯甲酮的引入,活性氧产生了从无到有的转变,从图30b中对比BKD-Pys-BP,BKB-Pys-BP与BKT-Pys-BP活性氧生成能力,还可以得出:随着噻吩的引入,使得活性氧产生能力大大增强,这可以作为一种高效的光敏剂应用于肿瘤诊疗一体化应用中。
本专利申请提供的一系列四苯乙烯吡啶盐及N-苯基咔唑为核的吡啶盐化合物的制备及提高活性氧产生效率的方法,是利用NBS溴代反应、Suzuki偶联和Menshutkin等经典反应制备的有机吡啶盐小分子。通过设计Donor-Accept(D-A)体系,使得HOMO-LOMO轨道的分离程度增大,有利于降低ΔEst;二苯甲酮的引入进一步提高系间穿越率,使更多的激发态能量转移到三线态,进而促进活性氧的高效生成。该设计策略能大幅度改善光敏剂的活性氧产生能力,可以用于光动力治疗等方面的应用研究。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了若干个本专利申请的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

1.一种吡啶盐类有机光敏剂,其特征在于,所述吡啶盐类有机光敏剂为基于四苯基乙烯的吡啶盐,且具有下列所示分子结构中的一种:
Figure FDA0003681508880000011
2.权利要求1所述吡啶盐类有机光敏剂的制备方法,其特征在于,包括以下步骤:
S11.中间体4-溴甲基二苯甲酮(BP-M-Br)的制备
将4-甲基二苯甲酮和N-溴代丁二酰亚胺(NBS)在高压汞灯照射下,并由过氧化苯甲酰(BPO)引发NBS溴代反应,得到苄基处溴取代的4-溴甲基二苯甲酮(BP-M-Br);
S12.最终产物4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶(TPE-Py)的制备
利用铃木偶联反应,将1-(4-溴苯基)-1,2,2-三苯乙烯,4-吡啶硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶(TPE-Py);
S13.最终产物TPE-Pys-M、TPE-Pys-B和TPE-Pys-BP的制备
利用门舒特金反应,将步骤S12得到的产物TPE-Py同碘甲烷,苄基溴和步骤S11产物BP-M-Br在四氢呋喃中回流,分别得到1-甲基-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-碘化铵(TPE-Pys-M),1-苄基-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-溴化铵(TPE-Pys-B)和1-(4-苯甲酰基苄基)-4-(4-(1,2,2-三苯基乙烯基)苯基)吡啶-1-溴化铵(TPE-Pys-BP)。
3.根据权利要求2所述的吡啶盐类有机光敏剂的制备方法,其特征在于,所述步骤S11中的NBS溴代需要惰性气体保护,反应时间为3~6小时。
4.根据权利要求2所述的吡啶盐类有机光敏剂的制备方法,其特征在于,所述步骤S12中所用的溶剂为四氢呋喃和甲醇,两者体积比为1:1,所用催化剂为摩尔分数为6-8%的Pd(PPh3)4,且需需要惰性气体保护。
5.根据权利要求2所述的吡啶盐类有机光敏剂的制备方法,其特征在于,所述TPE-Py与CH3I的摩尔比为1:(2~3),而苄溴和BP-M-Br的反应摩尔比为1:(1~1.05),反应温度为80℃,时间12小时。
6.一种吡啶盐类有机光敏剂,其特征在于,所述吡啶盐类有机光敏剂为基于N-苯基咔唑的吡啶盐,且具有下列所示分子结构中的一种:
Figure FDA0003681508880000021
7.权利要求6所述吡啶盐类有机光敏剂的制备方法,其特征在于,包括以下步骤:
S21.最终产物9-(4-(4-吡啶基)苯基)-9H-咔唑(BK-Py)的制备
利用铃木偶联反应,将9-(4-溴苯基)咔唑,4-吡啶硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-(4-吡啶基)苯基)-9H-咔唑(BK-Py);
S22.最终产物4-(4-(9H-咔唑-9-基)苯基)-1-甲基吡啶-1-碘化铵(BK-Pys-M),4-(4-(9H-咔唑-9-基)苯基)-1-苄基吡啶-1-溴化铵(BK-Pys-B)和4-(4-(9H-咔唑-9-基)苯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BK-Pys-BP)的制备
利用门舒特金反应,将步骤S21得到的产物BK-Py同碘甲烷,苄基溴和步骤S11产物BP-M-Br在四氢呋喃中回流,得到4-(4-(9H-咔唑-9-基)苯基)-1-甲基吡啶-1-碘化铵(BK-Pys-M),4-(4-(9H-咔唑-9-基)苯基)-1-苄基吡啶-1-溴化铵(BK-Pys-B)和4-(4-(9H-咔唑-9-基)苯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BK-Pys-BP);
S23.中间体1-(4-苯甲酰苄基)-4-甲基吡啶-1-溴化铵(BP-M-Pys)的制备
利用门舒特金反应,将所述步骤S11的产物4-溴甲基二苯甲酮同4-甲基吡啶在四氢呋喃中回流,得到1-(4-苯甲酰苄基)-4-甲基吡啶-1-溴化铵(BP-M-Pys);
S24.中间体9-(4-溴苯基)咔唑-4苯甲醛(BKB-CHO)的制备
利用铃木偶联反应,将9-(4-溴苯基)咔唑,4-甲酰基苯硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-溴苯基)咔唑-4苯甲醛(BKB-CHO);
S25.中间体9-(4-溴苯基)咔唑-4噻吩醛(BKT-CHO)的制备
利用铃木偶联反应,将9-(4-溴苯基)咔唑,5-醛基-2-噻吩硼酸,碳酸钾和四三苯基膦钯溶于四氢呋喃和甲醇的混合体系中,在N2保护及80℃下反应来制备9-(4-溴苯基)咔唑-4噻吩醛(BKT-CHO);
S26.最终产物BKD-Pys-BP、BKB-Pys-BP和BKT-Pys-BP的制备
将步骤S23得到的产物BP-M-Pys同N-(4-甲酰基苯基)咔唑,BKB-CHO和BKT-CHO在少量哌啶催化下进行脱水缩合分别得到(E)-4-(4-(9H-咔唑-9-基)苯乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKD-Pys-BP),(E)-4-(2-(4'-(9H-咔唑-9-基)-[1,1'-联苯]-4-基)乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKB-Pys-BP)和(E)-4-(2-(5-(4-(9H-咔唑-9-基)苯基)噻吩-2-基)乙烯基)-1-(4-苯甲酰苄基)吡啶-1-溴化铵(BKT-Pys-BP)。
8.根据权利要求7所述吡啶盐类有机光敏剂的制备方法,其特征在于,所述步骤22中,所述中间体BK-Py与CH3I的摩尔比为1:(2~3),BK-Py与BP-M-Br的反应摩尔比为1:(1~1.05),反应温度为80℃,时间12小时。
9.根据权利要求7所述吡啶盐类有机光敏剂的制备方法,其特征在于,所述步骤S23中BP-M-Br与4-甲基吡啶的反应摩尔比为1:1。
10.一种光动力治疗用有机光敏剂,其特征在于,所述有机光敏剂采用如权利要求1或权利要求6所述的吡啶盐类有机光敏剂。
CN202210638597.7A 2022-06-07 2022-06-07 一种吡啶盐类有机光敏剂及其制备方法和应用 Pending CN116283737A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210638597.7A CN116283737A (zh) 2022-06-07 2022-06-07 一种吡啶盐类有机光敏剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210638597.7A CN116283737A (zh) 2022-06-07 2022-06-07 一种吡啶盐类有机光敏剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116283737A true CN116283737A (zh) 2023-06-23

Family

ID=86785629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210638597.7A Pending CN116283737A (zh) 2022-06-07 2022-06-07 一种吡啶盐类有机光敏剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116283737A (zh)

Similar Documents

Publication Publication Date Title
Morales et al. Design, synthesis, and structural and spectroscopic studies of push–pull two-photon absorbing chromophores with acceptor groups of varying strength
Zhang et al. Effect of the electron donor/acceptor orientation on the fluorescence transduction efficiency of the d-PET effect of carbazole-based fluorescent boronic acid sensors
Chen et al. Fluorophore-labeling tetraphenylethene dyes ranging from visible to near-infrared region: AIE behavior, performance in solid state, and bioimaging in living cells
Liu et al. Synthesis, crystal structures and two-photon absorption properties of a series of terpyridine-based chromophores
Janiga et al. Quadrupolar, emission-tunable π-expanded 1, 4-dihydropyrrolo [3, 2-b] pyrroles–synthesis and optical properties
Paitandi et al. Pyrazole appended quinoline-BODIPY based arene ruthenium complexes: their anticancer activity and potential applications in cellular imaging
CN102352118A (zh) 一种近红外荧光染料及制备和应用
JP6675758B2 (ja) ホスファフルオレセイン化合物若しくはその塩、又はそれを用いた蛍光色素
Tang et al. Heavy atom enhanced generation of singlet oxygen in novel indenofluorene-based two-photon absorbing chromophores for photodynamic therapy
CN108864733A (zh) 一种近红外碳罗丹明荧光染料及其合成方法
Xu et al. High-efficient carbazole-based photo-bleachable dyes as free radical initiators for visible light polymerization
Nitisha et al. Accessing [g]-face π-expanded fluorescent coumarins by Scholl cyclization
Han et al. Novel ratio fluorescence probes for selectively detecting zinc ion based on Y-type quinoxaline framework
CN110922375A (zh) 一种检测粘度的荧光探针及其制备方法和应用
Luo et al. Indolo-quinoline boron difluoride dyes: synthesis and spectroscopic properties
JPWO2015111647A1 (ja) ホスホール化合物及びそれを含有する蛍光色素
CN105348308A (zh) 一种中位含芴桥联的双氟化硼络合二吡咯甲川衍生物及其制备方法
CN116283737A (zh) 一种吡啶盐类有机光敏剂及其制备方法和应用
Yin et al. Molecular engineering to enhance the reactive oxygen species generation of AIEgens and exploration of their versatile applications
Cen et al. Photodynamic Antitumor Activity of 5, 15‐Bis (perfluorophenyl)‐10‐(4‐carboxyphenyl) corrole and its Gallium (III) and Phosphorus (V) Complexes
CN105968130B (zh) 一种中位含咔唑及桥联基团的双中心氟化硼络合二吡咯甲川衍生物及其制备方法
CN115160345A (zh) 一类氮杂吲哚-七甲川菁染料、其合成方法及应用
Cai et al. Multipolar symmetric and asymmetric N–heterocyclic compounds with efficient two− photon absorption
Baskar et al. 3-Pyridylvinyl benzoxazole-derived multifunctional organic materials—from solid-state photoreactivity to photophysical and electrochemical properties
JP5794506B2 (ja) ホスフィン化合物、その製造方法およびそれを用いた過酸化物捕捉剤

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination