CN116283310B - 一种基于光固化3d打印极小曲面结构硅氧烷前驱体陶瓷的方法 - Google Patents

一种基于光固化3d打印极小曲面结构硅氧烷前驱体陶瓷的方法 Download PDF

Info

Publication number
CN116283310B
CN116283310B CN202310122145.8A CN202310122145A CN116283310B CN 116283310 B CN116283310 B CN 116283310B CN 202310122145 A CN202310122145 A CN 202310122145A CN 116283310 B CN116283310 B CN 116283310B
Authority
CN
China
Prior art keywords
printing
curved surface
surface structure
photosensitive resin
extremely small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310122145.8A
Other languages
English (en)
Other versions
CN116283310A (zh
Inventor
龚红宇
卢俊斌
景捷
盛明明
王冠通
刘茂云
苗雅岚
张伟彬
张景德
韩桂芳
王伟礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202310122145.8A priority Critical patent/CN116283310B/zh
Publication of CN116283310A publication Critical patent/CN116283310A/zh
Application granted granted Critical
Publication of CN116283310B publication Critical patent/CN116283310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明涉及一种基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,该方法以有机硅树脂、405nm波段光敏树脂、无水乙醇、E133色素为原料配制打印浆料,用3ds Max三维建模软件设计极小曲面结构并导入到3D打印机中,然后设置打印参数进行打印,并对打印后的生坯进行超声洗涤、紫外后固化、烘干、脱脂和烧结过程最终得到结构复杂、孔隙率高、力学性能优异,可应用于电磁波吸收领域的硅氧烷前驱体陶瓷。

Description

一种基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的 方法
技术领域:
本发明涉及一种基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,属于3D打印先进陶瓷技术领域。
背景技术:
近年来,陶瓷材料由于其优异的力学性能、耐高温、耐腐蚀,在电磁吸波、航空航天、国防军工等重要领域中有着广泛的应用前景。然而,传统陶瓷粉末存在硬度大、难加工、烧结温度高等缺点,阻碍了对其进行结构设计的可能性。前驱体陶瓷(PDCs)作为一种先进陶瓷,彻底改变了传统陶瓷的热解方法,为直接低温制备陶瓷提供了新的途径。与此同时,PDCs能够从原子或者分子的层面对产物进行调控,满足了个性化制备陶瓷的需求。
3D打印,又称增材制造,是一种逐层打印三维物体的新工艺,具有制造速度快、效率高、无需模具等特点,适用于陶瓷材料的结构设计。通过3D打印技术与PDCs相结合制备3D打印浆料,没有固液相的混合,避免了传统陶瓷粉末在液相中分散不均匀的问题,提高了3D打印精度。目前,已有报道采用数字光固化(DLP)、直接墨水书写(DIW)、立体光刻(SLA)、选择性激光固化(SLC)、双光子聚合(TPP)、叠层实体制造(LOM)和喷墨打印(IJP)等3D打印技术制备PDCs。其中,DLP 3D打印与PDCs相结合,具有快速成型、打印精度高等优点,有着制备复杂结构陶瓷的前景。
然而,目前DLP 3D打印制备陶瓷存在诸多问题,例如,制备405nm可紫外光固化的DLP3D打印浆料过程繁琐,有时涉及复杂化学反应,且打印烧结后坯体收缩不均,力学性能较差等问题。此外,由于结构陶瓷的应用范围逐渐扩大,已不局限于简单三维结构的模型。极小曲面是指平均曲率为零的曲面。极小曲面结构因具有最大比表面积以及特殊的孔隙结构而广泛获得关注。
目前,利用DLP 3D打印技术来打印极小曲面结构,打印过程繁琐,打印浆料涉及复杂化学反应,且打印烧结后坯体收缩不均。
发明内容:
针对现有技术的不足,本发明提供一种基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,该方法具有浆料配制简单,成型快速,打印的陶瓷为极小曲面结构硅氧烷前驱体陶瓷,力学性能优异。
本发明是通过如下技术方案实现的:
一种基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,包括步骤如下:
(1)利用3ds Max三维建模软件设计极小曲面结构,并对极小曲面的壁厚进行调整,得到的模型以stl格式导出,得到极小曲面结构模型;
(2)将有机硅树脂与无水乙醇,充分搅拌混合,然后加入405nm波段光敏树脂,混合均匀后加入E133色素,增强浆料对紫外光的吸收,提高打印精度,得到光固化浆料,光固化浆料避光,置于暗处搅拌10-20h,于真空干燥箱中进行真空除泡,得到待打印浆料;
(3)在单层固化样品的强度、厚度和成型结构满足打印要求的条件下,选择单层曝光时间为11-13s,层厚为40-60um,将步骤(1)的极小曲面结构模型,以stl格式导入DLP 3D打印机中开始打印,得到生坯;
(4)将生坯洗涤后紫外后固化,真空干燥,得到干燥生坯;
(5)将干燥生坯放入烧结炉中,从室温升高到500-700℃,保温1-4h进行脱脂,降至室温,然后进行烧结,烧结过程为从室温升高到1100-1300℃,保温1-4h,降至室温,得到极小曲面结构硅氧烷前驱体陶瓷。
根据本发明优选的,步骤(2)中,有机硅树脂为甲基苯基有机硅树脂。
甲基有机硅树脂及苯基有机硅树脂无法实现打印。
根据本发明优选的,步骤(2)中,有机硅树脂与无水乙醇质量比为(4-6):(1-3)。
进一步优选的,步骤(2)中,有机硅树脂与无水乙醇质量比为5:2。
溶剂的选择至关重要,本发明的溶剂既无毒,又可以使有机硅树脂、405nm波段光敏树脂溶解成均一相。
根据本发明优选的,步骤(2)中,有机硅树脂与405nm波段光敏树脂的质量比为1:1。
根据本发明优选的,步骤(2)中,405nm波段光敏树脂为环氧丙烯酸405nm波段光敏树脂。
根据本发明优选的,步骤(2)中,E133色素加入后,使质量浓度达到0.1-0.3wt%。
根据本发明优选的,步骤(3)中,浆料的打印参数为单层曝光时间12s,层厚为50um。
本发明的单层曝光时间以及层厚对打印也有着至关重要的影响,曝光时间过短,打印不成型,曝光时间过长,容易导致打印层开裂,降低打印效率。
根据本发明优选的,步骤(3)中,3D打印机为光固化陶瓷打印机PC5003A-50,所使用的建模软件是3ds Max。为现有技术。
根据本发明优选的,步骤(4)中,洗涤为将生坯放入光敏树脂清洗剂中超声清洗5min,去除未反应的405nm波段光敏树脂,随后用无水乙醇进行洗涤。
根据本发明优选的,步骤(4)中,紫外固化时间为15min。
根据本发明优选的,步骤(4)中,真空干燥为80℃真空干燥箱中干燥12h。
根据本发明优选的,步骤(5)中,脱脂温度600℃,升温速率为1℃/min,保温时间为2h。
根据本发明优选的,步骤(5)中,烧结温度为1200℃,升温速率为1℃/min,保温时间为2h。
根据本发明优选的,步骤(5)中,整个过程在N2气氛下进行,降温速率为5℃/min。
本发明的技术特点及优点:
(1)本发明的光固化浆料为405nm可紫外光固化的DLP 3D打印浆料,浆料制备简单,不涉及复杂化学反应,直接简单的物理混合,稳定性强,可打印性强。
(2)本发明利用3ds Max三维建模软件制备极小曲面结构模型并成功打印出硅氧烷前驱体陶瓷,所用的原料为405nm光敏树脂。
(3)本发明得到的极小曲面结构硅氧烷前驱体陶瓷结构复杂、力学性能优异,孔隙率高,可应用于电磁吸波领域。
附图说明:
图1是实施例1步骤(1)3ds Max设计的极小曲面结构模型。
图2是实施例1步骤(3)光固化3D打印后的极小曲面生坯实物图。
图3是在不同单层曝光时间下(8s,10s,12s,15s)的浆料打印成形对比图。
图4是实施例1获得的硅氧烷前驱体陶瓷的XRD图。
图5是甲基苯基有机硅树脂、E133色素、实施例1步骤(3)获得的生坯和环氧丙烯酸405nm波段光敏树脂的热重分析曲线。
图6是实施例1步骤(3)光固化3D打印后的极小曲面生坯的SEM图。
图7是实施例1获得的硅氧烷前驱体陶瓷的电磁吸波性能图。
具体实施方式
为使本领域普通技术人员充分理解本发明的技术方案和有益效果,以下结合附图及具体实施例作进一步的说明。
实施例中的甲基苯基有机硅树脂、环氧丙烯酸405nm波段光敏树脂,均为现有市购产品。
光敏树脂清洗剂按本领域现有技术进行。
实施例1:
一种基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,包括步骤如下:
(1)利用3ds Max三维建模软件设计极小曲面结构,并对极小曲面的壁厚进行调整,最终得到的模型以stl格式导出;
(2)405nm可紫外光固化浆料配制:
称取甲基苯基有机硅树脂200g溶解于80g无水乙醇中,待溶解完全后往溶液中加入200g环氧丙烯酸405nm波段光敏树脂,混合后加入0.48g E133色素以增强浆料对紫外光的吸收,提高打印精度,得到光固化浆料,将光固化浆料用锡纸包好避光,置于暗处搅拌12h;最后将浆料置于真空干燥箱中进行真空除泡,得到待打印浆料;
(3)DLP 3D打印极小曲面结构
单层曝光时间为12s,层厚为50um,3ds Max软件建立极小曲面结构模型,并以stl格式导入DLP 3D打印机中开始打印,打印完成后,用光敏树脂清洗剂对生坯进行超声清洗5min,以去除未反应的405nm波段光敏树脂,随后,生坯用无水乙醇进行洗涤,放入紫外烘箱炉中后固化15min以增强生坯的强度,最后取出生坯放入80℃真空干燥箱中真空干燥12h后取出;得到干燥生坯;
(4)生坯脱脂与烧结过程
将干燥好的生坯放入烧结炉中,整个过程在N2气氛下进行脱脂、烧结,脱脂过程为从室温升高到600℃,升温速率为1℃/min,保温2h;然后以5℃/min的降温速率降到室温后结束;烧结过程为从室温升高到1200℃,升温速率为1℃/min,保温2h。然后以5℃/min的降温速率降到室温后结束。
试验例1:
1、图2是实施例1步骤(3)光固化3D打印后的极小曲面生坯实物图,可以看出本发明打印得到的极小曲面生坯结构复杂、力学性能优异,孔隙率高。
2、图4是实施例1获得的硅氧烷前驱体陶瓷的XRD图,说明本发明有机硅树脂、无水乙醇、405nm波段光敏树脂经简单物理混合后得到的浆料,经打印、烧结后可以成功得到硅氧烷前驱体陶瓷。
3、图5为实施例1光固化浆料各组分、以及打印得到生坯的热重分析曲线。
4、图7是实施例1获得的硅氧烷前驱体陶瓷的电磁吸波性能图,说明本发明有机硅树脂、无水乙醇、405nm波段光敏树脂经简单物理混合后得到的浆料,经打印、烧结后得到的硅氧烷前驱体陶瓷电磁吸波性能优异。
对比例1
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(3),单层曝光时间为8s。
对比例2
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(3),单层曝光时间为10s。
对比例3
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(3),单层曝光时间为15s。
试验例2:
对比例1-3以及实施例1在不同单层曝光时间下8s,10s,15s,12s的浆料打印成形对比见图3。
从图3可以看出,曝光时间过短,小于10s,打印不成型,曝光时间过长,容易导致打印层开裂,降低打印效率。
对比例4
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(1),用甲基有机硅树脂代替甲基苯基有机硅树脂,其它按实施例1进行。
生坯打印不成型。
对比例5
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(1),用苯基有机硅树脂代替甲基苯基有机硅树脂,其它按实施例1进行。
生坯打印不成型。
对比例6
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(1),用四氢呋喃代替无水乙醇,其它按实施例1进行。
甲基苯基有机硅树脂、环氧丙烯酸405nm波段光敏树脂无法完全溶解获得均一的浆料。
实施例2
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(3),单层曝光时间为13s。
实施例3
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(1),无水乙醇的用量为100g。
实施例4
同实施例1所述的基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的方法,不同之处为:
步骤(1),无水乙醇的用量为60g。

Claims (8)

1.一种基于光固化3D打印极小曲面结构硅氧烷前驱体陶瓷的制备方法,包括步骤如下:
(1)利用3ds Max三维建模软件设计极小曲面结构,并对极小曲面的壁厚进行调整,得到的模型以stl格式导出,得到极小曲面结构模型;
(2)将有机硅树脂与无水乙醇,充分搅拌混合,然后加入405nm波段光敏树脂,混合均匀后加入E133色素,增强浆料对紫外光的吸收,提高打印精度,得到光固化浆料,光固化浆料避光,置于暗处搅拌10-20h,于真空干燥箱中进行真空除泡,得到待打印浆料;有机硅树脂为甲基苯基有机硅树脂,有机硅树脂与无水乙醇质量比为(4-6):(1-3);
(3)在单层固化样品的强度、厚度和成型结构满足打印要求的条件下,选择单层曝光时间为11-13s,层厚为40-60um,将步骤(1)的极小曲面结构模型,以stl格式导入DLP 3D打印机中开始打印,得到生坯;
(4)将生坯洗涤后紫外后固化,真空干燥,得到干燥生坯;
(5)将干燥生坯放入烧结炉中,从室温升高到500-700℃,保温1-4h进行脱脂,降至室温,然后进行烧结,烧结过程为从室温升高到1100-1300℃,保温1-4h,降至室温,得到极小曲面结构硅氧烷前驱体陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,有机硅树脂与405nm波段光敏树脂的质量比为1:1。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,405nm波段光敏树脂为环氧丙烯酸405nm波段光敏树脂。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,E133色素加入后,使质量浓度达到0.1-0.3wt%。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,浆料的打印参数为单层曝光时间12s,层厚为50μm。
6.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,洗涤为将生坯放入光敏树脂清洗剂中超声清洗5min,去除未反应的405nm波段光敏树脂,随后用无水乙醇进行洗涤,紫外后固化时间为15min,真空干燥为80℃真空干燥箱中干燥12h。
7.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,脱脂温度600℃,升温速率为1℃/min,保温时间为2h。
8.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,烧结温度为1200℃,升温速率为1℃/min,保温时间为2h,步骤(5)中,整个过程在N2气氛下进行,降温速率为5℃/min。
CN202310122145.8A 2023-02-16 2023-02-16 一种基于光固化3d打印极小曲面结构硅氧烷前驱体陶瓷的方法 Active CN116283310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310122145.8A CN116283310B (zh) 2023-02-16 2023-02-16 一种基于光固化3d打印极小曲面结构硅氧烷前驱体陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310122145.8A CN116283310B (zh) 2023-02-16 2023-02-16 一种基于光固化3d打印极小曲面结构硅氧烷前驱体陶瓷的方法

Publications (2)

Publication Number Publication Date
CN116283310A CN116283310A (zh) 2023-06-23
CN116283310B true CN116283310B (zh) 2024-06-07

Family

ID=86815953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310122145.8A Active CN116283310B (zh) 2023-02-16 2023-02-16 一种基于光固化3d打印极小曲面结构硅氧烷前驱体陶瓷的方法

Country Status (1)

Country Link
CN (1) CN116283310B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375819A1 (en) * 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Use of a thermosetting polymeric powder compostion
CN109665819A (zh) * 2018-12-10 2019-04-23 北京工业大学 一种基于3d打印的多孔极小曲面结构氧化铝陶瓷的制备方法
CN112624753A (zh) * 2020-10-09 2021-04-09 北京工业大学 基于450nm光固化制备极小曲面复杂结构氧化锌陶瓷的方法
CN112960972A (zh) * 2021-03-19 2021-06-15 西北工业大学 宽频可调轻薄结构型陶瓷基吸波材料及跨尺度设计及制备方法
KR20220051933A (ko) * 2020-10-20 2022-04-27 한국세라믹기술원 Sla 방식의 세라믹 3d 프린팅 출력물 소결체 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778504B (zh) * 2014-12-25 2019-11-12 广东生益科技股份有限公司 一种陶瓷化硅树脂组合物及使用它的预浸料与层压板
US11535568B2 (en) * 2016-11-30 2022-12-27 Hrl Laboratories, Llc Monomer formulations and methods for 3D printing of preceramic polymers
US11572313B2 (en) * 2020-02-27 2023-02-07 General Electric Company Ceramic slurries with photoreactive-photostable hybrid binders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375819A1 (en) * 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Use of a thermosetting polymeric powder compostion
CN109665819A (zh) * 2018-12-10 2019-04-23 北京工业大学 一种基于3d打印的多孔极小曲面结构氧化铝陶瓷的制备方法
CN112624753A (zh) * 2020-10-09 2021-04-09 北京工业大学 基于450nm光固化制备极小曲面复杂结构氧化锌陶瓷的方法
KR20220051933A (ko) * 2020-10-20 2022-04-27 한국세라믹기술원 Sla 방식의 세라믹 3d 프린팅 출력물 소결체 제조 방법
CN112960972A (zh) * 2021-03-19 2021-06-15 西北工业大学 宽频可调轻薄结构型陶瓷基吸波材料及跨尺度设计及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Enhanced electromagnetic microwave absorption of SiOC ceramics targeting the integration of structure and function;Feng, YR;《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》;20210816;第6393-6405页 *
热固性硅树脂压注法制备多孔硅基陶瓷型芯研究;杨治刚;余建波;李传军;玄伟东;张振强;邓康;任忠鸣;;无机材料学报(02);第1-8页 *

Also Published As

Publication number Publication date
CN116283310A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US20210139720A1 (en) 3d polymerizable ceramic inks
CN107500781A (zh) 一种多孔陶瓷的制备方法
CN110002883B (zh) 一种光固化3d打印的聚硅氮烷陶瓷制品及其制备方法
CN108503365B (zh) 一种基于光固化技术的碳化硅陶瓷及其制备方法
CN1289739A (zh) 耐火材料成形品的制造方法
CN108676166B (zh) 用于增材制造技术制造陶瓷产品的光敏陶瓷前驱体制备方法
CN113461427A (zh) 一种光固化4d打印陶瓷基前驱体浆料、陶瓷件及制备方法
CN109734450B (zh) 一种用于光固化增材制造的光敏陶瓷液的制备方法
CN115872752B (zh) 一种光固化3d打印用陶瓷浆料及其制备方法、陶瓷及其制备方法
CN104788102A (zh) 激光烧结3d打印技术用纳米氮化硅粉末的制备
KR20190109611A (ko) 3d 프린팅 기반 세라믹 중자의 제조 방법
CN116283310B (zh) 一种基于光固化3d打印极小曲面结构硅氧烷前驱体陶瓷的方法
CN112624753A (zh) 基于450nm光固化制备极小曲面复杂结构氧化锌陶瓷的方法
CN108705775A (zh) 陶瓷前驱体树脂的制备方法、3d打印方法及3d打印机
CN109179373B (zh) 一种抗氧化炭气凝胶材料及其制备方法
CN110903089A (zh) 一种采用3D打印制备的SiOC陶瓷及其制备方法
CN113968738A (zh) 一种用于增材制造的陶瓷先驱体浆料和增材制造工艺
CN116063064A (zh) 一种陶瓷的光固化增材制造方法
CN110451986B (zh) 光固化3D打印SiCN陶瓷先驱体材料及其应用
CN114835900A (zh) 一种超支化聚硼硅氧烷陶瓷前驱体及其制备方法、Si-B-O-C陶瓷的制备方法
Yao et al. 3D printing of high solid Al2O3 ceramics based on green and renewable photosensitive resin with low viscosity and low shrinkage
CN112979333A (zh) 钛酸钾晶须增强的硅基陶瓷型芯3d打印制备方法
CN102581993A (zh) 一种调控硅橡胶模具尺寸的方法
Yu et al. Additive manufacturing and joining double processes of ceramic-resin green bodies using a single-or double-phase photocuring slurry
CN109676123A (zh) 一种光固化成形金属、合金及陶瓷零件的扫描方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant