CN116239379B - 一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用 - Google Patents

一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用 Download PDF

Info

Publication number
CN116239379B
CN116239379B CN202211507137.7A CN202211507137A CN116239379B CN 116239379 B CN116239379 B CN 116239379B CN 202211507137 A CN202211507137 A CN 202211507137A CN 116239379 B CN116239379 B CN 116239379B
Authority
CN
China
Prior art keywords
perovskite
solidified body
zircon
doped perovskite
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211507137.7A
Other languages
English (en)
Other versions
CN116239379A (zh
Inventor
郭伟明
艾曲
孙世宽
陈原彬
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202211507137.7A priority Critical patent/CN116239379B/zh
Publication of CN116239379A publication Critical patent/CN116239379A/zh
Application granted granted Critical
Publication of CN116239379B publication Critical patent/CN116239379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于高放射性固态核废料固化处理技术领域,公开了一种Ce‑Cr‑Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用。所述共掺钙钛锆石型陶瓷固化体的化学式为Ca1‑xCexZrTi2‑ 2xCrxFexO7,其中x=0.05~0.35。本发明是将钛酸钙、二氧化钛、氧化锆、氧化铈、铁粉和铬粉混合、球磨、干燥、成型后,将陶坯在650~900℃煅烧,再升温至1200~1400℃进行烧结,制得Ce‑Cr‑Fe共掺的钙钛锆石陶瓷固化体。本发明制备的钙钛锆石陶瓷固化体主要相为钙钛锆石,避免了相分离,致密度高,化学性质稳定,核素浸出率低,适合长期深层地质存储。

Description

一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用
技术领域
本发明属于高放射性核废物处理技术领域,更具体地,涉及一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用。
背景技术
核能作为一种高密度的清洁能源,在全球迅速发展,在核燃料循环的整个过程中,开采、转换、燃料制造、放射性制药工业、核电厂、燃料循环配套设施、研究以及开发活动均会产生放射性废物。作为核能终端裂变堆和后处理产生的高放射性废物,包含半衰期长(钚239半衰期为24100年)、放射性强(α/ β 粒子和 γ 射线)、毒性高(钚摄入半致死量为0.089 毫克)的锕系元素和裂变元素。同时,反应堆与后处理里的不锈钢结构部件中的铁、铬元素,通常与α 废物和高放射性核废物共存,钢制结构与锕系元素等高放射性核废物的分离成本高、化学去污工艺复杂、二次废液产生量大,因此,协同安全处理与处置高放射性核废物与不锈钢构件,使其与土水系统和生物圈实现充分、可靠和长期的隔离,在核设施退役和乏燃料后处理运行中有着非常重要的现实意义。由于核素半衰期较长、毒性高、放射性强,在实验过程中通常采用氧化铈模拟高放射性废物中氧化钚。
钙钛锆石(CaZrTi2O7)作为一种固化高放射性废物的宿主相,可在Al、Fe、Cr等元素作为电荷补偿元素的情况下,实现固化多种核素(钚、镎、铀等)。其中Al、Fe、Cr及模拟核素均以氧化物形式掺杂得到钙钛锆石固化体,在2020发表的文献Influence of TransitionMetal Charge Compensation Species on Phase Assemblage inZirconolite Ceramicsfor Pu Immobilisation中报道,通过固态反应烧结,以Cr2O3和CeO2掺杂形成的Cr-Ce共掺钙钛锆石陶瓷固化体(Ca1-xCexZrTi2-2xCr2xO7)具有较高的气孔率;以Fe2O3、CeO2掺杂形成的Fe-Ce共掺钙钛锆石陶瓷固化体(Ca1-xCexZrTi2-2xFe2xO7)生成较多钙钛矿杂质相(当掺杂量为x=0.35时,钙钛矿含量为3.46±0.60 wt.%),其中钙钛矿会降降低钙钛锆石的抗浸出性能。两者均不能很好的实现放射性废物固化体的长期深地存储。到目前为止,Fe和Cr元素仅作为电荷补偿元素,且以氧化物的形式单独参与核废料固化,未涉及到因核废料污染的不锈钢(主要成分为铁、铬)的固化问题,同时其不锈钢与高放射性核废物分离工艺复杂、成本高。
发明内容
为了解决现有技术中存在的缺点和不足之处,本发明首要目的在于提供一种Ce-Cr-Fe共掺钙钛锆石型陶瓷固化体。
本发明的另一目的在于提供上述Ce-Cr-Fe共掺钙钛锆石型陶瓷的制备方法。为了更好的贴合实际核废料及其污染的不锈钢处理情况,同时实现简化工艺,降低成本,本发明将核废料污染的不锈钢破碎后与核废料协同固化的理念,以铈元素模拟钚核素,金属铁和铬模拟不锈钢,通过固态反应烧结制备Ce-Cr-Fe共掺钙钛锆石固化体。
本发明的再一目的在于提供上述Ce-Cr-Fe共掺钙钛锆石型陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种Ce-Cr-Fe共掺钙钛锆石型陶瓷固化体,所述共掺钙钛锆石型陶瓷固化体的化学式为Ca1-xCexZrTi2-2xCrxFexO7,其中x=0.05~0.35。
优选地,所述共掺钙钛锆石型陶瓷固化体是将钛酸钙、二氧化钛、氧化锆、氧化铈、铁粉和铬粉混合,加入溶剂和氧化锆磨球进行球磨混合,干燥后过筛得到混合粉体;再将混合粉体进行干压成型成陶坯,将陶坯在650~900℃煅烧,再升温至1200~1400℃进行烧结,随后降至室温制得。
优选地,所述铁粉的粒径为10~200μm;所述铬粉的粒径为10~200μm;所述钛酸钙、二氧化钛、氧化锆、氧化铈的粒径均为20nm~10μm。
优选地,所述溶剂为无水乙醇或丙酮。
优选地,所述干压成型的压力为30~40MPa。
所述的Ce-Cr-Fe共掺钙钛锆石陶瓷固化体的制备方法,包括以下具体步骤:
S1. 将钛酸钙、二氧化钛、氧化锆、氧化铈、铁粉和铬粉混合,加入溶剂和氧化锆磨球进行球磨混合,干燥后过筛,得到混合粉体;
S2. 将混合粉体在30~40MPa进行干压成型,制得陶坯;
S3. 将陶坯于马弗炉升温至650~900℃保温;然后升温至1200~1400℃保温,再降温至室温,制得Ce-Cr-Fe共掺钙钛锆石陶瓷固化体。
优选地,步骤S1中所述球磨的转速为200~300r/min,所述球磨的时间为12~24h,所述过筛的孔径为100~200目。
优选地,步骤S1中所述升温和降温的速率均为5~10℃/min;升温至650~900℃保温的时间为5~10,升温至1200~1400℃保温的时间为10~24h。所述的Ce-Cr-Fe共掺钙钛锆石陶瓷固化体在处理高放废物领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1. 本发明以铈元素模拟钚核素,金属铁和铬模拟不锈钢,通过固态反应烧结制备Ce-Cr-Fe共掺钙钛锆石固化体,实现了Ce、Cr、Fe元素同时固溶到钙钛锆石中,对放射性核素及核素污染的不锈钢的协同模拟固化。
2. 本发明相比于Ce-Fe共掺钙钛锆石陶瓷固化体的主要相为钙钛锆石,避免了相分离,生成的有害相钙钛矿有所减少,相比于Ce-Cr共掺钙钛锆石陶瓷固化体中的气孔率有所减少,具有更加优良的抗浸出性能。
3. 本发明制备的钙钛锆陶瓷石固化体主要相为钙钛锆石,避免了相分离,以金属单质Cr和Fe为原料,更贴合实际地实现对核废料污染的不锈钢的模拟固化,简化了工艺,降低了成本工艺,致密度高(98%以上),化学性质稳定,热稳定性好,核素浸出率低,适合长期深层地质存储。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
将x=0.5时,化学式Ca1-xCexZrTi2-2xCrxFexO7对应的钛酸钙、二氧化钛(50nm)、氧化锆、氧化铈、铁粉(50μm)和铬粉(50μm)进行混合,将其加入无水乙醇和氧化锆球中,在行星球磨机球磨以转速300r/min球磨4h,干燥后将混合粉体30MPa干压成陶坯,然后放如马弗炉中以5℃/min速率升温至800℃煅烧并保温5h,再以5℃/min的速率升温至1400℃并保温10h,随后以5℃/min速率降至室温,制得Ce-Cr-Fe共掺钙钛锆石固化体。
该钙钛锆石陶瓷固化体致密度为99.58%,钙钛锆石含量为99.565±0.1 wt.%,含微氧化锆、氧化铈,无有害相钙钛矿,核素浸出率为5.068±0.1×10-6g·m-2·d-1。由此可知,核素浸出率较低,说明该共掺钙钛锆石固化体的化学性质稳定,热稳定性好。
实施例2
与实施例1不同在于:将二氧化钛(50nm)、氧化锆、氧化铈、铁粉(50μm)、铬粉(50μm)原料按x=0.1时,化学式Ca1-xCexZrTi2-2xCrxFexO7对应原料进行混合,制得Ce-Cr-Fe共掺钙钛锆石固化体。
该钙钛锆石陶瓷固化体致密度为99.32%,钙钛锆石含量为99.488±0.1 wt.%,含微氧化锆,无有害相钙钛矿,核素浸出率为4.896±0.1×10-6g·m-2·d-1
实施例3
与实施例1不同在于:将二氧化钛(50nm)、氧化锆、氧化铈、铁粉(50μm)、铬粉(50μm)原料按x=0.15时,化学式Ca1-xCexZrTi2-2xCrxFexO7对应原料进行混合,制得Ce-Cr-Fe共掺钙钛锆石固化体。
该钙钛锆石陶瓷固化体致密度为99.09%,钙钛锆石含量为99.396±0.1 wt.%,含微氧化锆,无有害相钙钛矿,核素浸出率为5.153±0.1×10-6g·m-2·d-1
实施例4
与实施例1不同在于:将二氧化钛(50nm)、氧化锆、氧化铈、铁粉(50μm)、铬粉(50μm)原料按x=0.2时,化学式Ca1-xCexZrTi2-2xCrxFexO7对应原料进行混合,制得Ce-Cr-Fe共掺钙钛锆石固化体。
该钙钛锆石陶瓷固化体致密度为98.78%,钙钛锆石含量为99.281±0.1 wt.%,钙钛矿含量为0.39±0.1 wt.%,含微量氧化锆,核素浸出率为6.256±0.1×10-6g·m-2·d-1
实施例5
与实施例1不同在于:将二氧化钛(50nm)、氧化锆、氧化铈、铁粉(50μm)、铬粉(50μm)原料按x=0.25时,化学式Ca1-xCexZrTi2-2xCrxFexO7对应原料进行混合,制得Ce-Cr-Fe共掺钙钛锆石固化体。
该钙钛锆石陶瓷固化体致密度为98.82%,钙钛锆石含量为98.96±0.1 wt.%,钙钛矿含量为0.69±0.1 wt.%,含微量氧化锆,核素浸出率为6.563±0.1×10-6g·m-2·d-1
实施例6
与实施例1不同在于:将二氧化钛(50nm)、氧化锆、氧化铈、铁粉(50μm)、铬粉(50μm)原料按x=0.3时,化学式Ca1-xCexZrTi2-2xCrxFexO7对应原料进行混合,制得Ce-Cr-Fe共掺钙钛锆石固化体。
该钙钛锆石陶瓷固化体致密度为98.78%,钙钛锆石含量为98.73±0.1 wt.%,钙钛矿含量为1.02±0.1 wt.%,含微量氧化锆,核素浸出率为6.991±0.1×10-6g·m-2·d-1
实施例7
与实施例1不同在于:将二氧化钛(50nm)、氧化锆、氧化铈、铁粉(50μm)、铬粉(50μm)原料按x=0.35时,化学式Ca1-xCexZrTi2-2xCrxFexO7对应原料进行混合,制得Ce-Cr-Fe共掺钙钛锆石固化体。
该钙钛锆石陶瓷固化体致密度为98.53%,钙钛锆石含量为98.59±0.1 wt.%,钙钛矿含量为1.39±0.1 wt.%,含微量氧化锆,核素浸出率为7.263±0.1×10-6g·m-2·d-1
本发明的钙钛锆石陶瓷固化体以钙钛锆石为主相,致密度高,核素浸出率较低,说明该共掺钙钛锆石固化体的化学性质稳定,热稳定性好。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内 。

Claims (5)

1.一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体,其特征在于,所述共掺钙钛锆石陶瓷固化体的化学式为Ca1-xCexZrTi2-2xCrxFexO7,其中x=0.05~0.35;
所述的Ce-Cr-Fe共掺钙钛锆石陶瓷固化体的制备方法,包括以下具体步骤:
S1. 将钛酸钙、二氧化钛、氧化锆、氧化铈、铁粉和铬粉混合,加入溶剂和氧化锆磨球进行球磨混合,干燥后过筛,得到混合粉体;
S2. 将混合粉体在30~40MPa进行干压成型,制得陶坯;
S3. 将陶坯于马弗炉升温至650~900℃保温;然后升温至1200~1400℃保温,再降温至室温,制得Ce-Cr-Fe共掺钙钛锆石陶瓷固化体;所述升温和降温的速率均为5~10℃/min;升温至650~900℃保温的时间为5~10h,升温至1200~1400℃保温的时间为10~24h。
2.根据权利要求1所述的Ce-Cr-Fe共掺钙钛锆石陶瓷固化体,其特征在于,步骤S1中所述铁粉的粒径为10~200μm;所述铬粉的粒径为10~200μm;所述钛酸钙、二氧化钛、氧化锆、氧化铈的粒径均为20nm~10μm。
3.根据权利要求1所述的Ce-Cr-Fe共掺钙钛锆石陶瓷固化体,其特征在于,步骤S1中所述溶剂为无水乙醇或丙酮。
4.根据权利要求1所述的Ce-Cr-Fe共掺钙钛锆石陶瓷固化体,其特征在于,步骤S1中所述球磨的转速为200~300r/min,所述球磨的时间为12~24h,所述过筛的孔径为100~200目。
5.权利要求1-4任一项所述的Ce-Cr-Fe共掺钙钛锆石陶瓷固化体在处理高放射性废物领域中的应用。
CN202211507137.7A 2022-11-29 2022-11-29 一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用 Active CN116239379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211507137.7A CN116239379B (zh) 2022-11-29 2022-11-29 一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211507137.7A CN116239379B (zh) 2022-11-29 2022-11-29 一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116239379A CN116239379A (zh) 2023-06-09
CN116239379B true CN116239379B (zh) 2024-01-09

Family

ID=86628393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211507137.7A Active CN116239379B (zh) 2022-11-29 2022-11-29 一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116239379B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274976A (en) * 1978-07-14 1981-06-23 The Australian National University Treatment of high level nuclear reactor wastes
US7078581B1 (en) * 1999-11-12 2006-07-18 British Nuclear Fuels Plc Encapsulation of waste
CN103992095A (zh) * 2014-05-26 2014-08-20 西南科技大学 富钙钛锆石型人造岩石的自蔓延高温合成与致密化方法
CN110092588A (zh) * 2019-05-13 2019-08-06 中国建筑材料科学研究总院有限公司 一种硼硅酸盐玻璃陶瓷固化基材及其制备方法和应用
CN110970146A (zh) * 2019-11-27 2020-04-07 中国建筑材料科学研究总院有限公司 一种硼硅酸盐玻璃陶瓷固化基材及其制备方法和应用
CN112939467A (zh) * 2020-12-30 2021-06-11 广东省科学院生态环境与土壤研究所 一种含铁的钙钛锆石玻璃陶瓷基材及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274976A (en) * 1978-07-14 1981-06-23 The Australian National University Treatment of high level nuclear reactor wastes
US7078581B1 (en) * 1999-11-12 2006-07-18 British Nuclear Fuels Plc Encapsulation of waste
CN103992095A (zh) * 2014-05-26 2014-08-20 西南科技大学 富钙钛锆石型人造岩石的自蔓延高温合成与致密化方法
CN110092588A (zh) * 2019-05-13 2019-08-06 中国建筑材料科学研究总院有限公司 一种硼硅酸盐玻璃陶瓷固化基材及其制备方法和应用
CN110970146A (zh) * 2019-11-27 2020-04-07 中国建筑材料科学研究总院有限公司 一种硼硅酸盐玻璃陶瓷固化基材及其制备方法和应用
CN112939467A (zh) * 2020-12-30 2021-06-11 广东省科学院生态环境与土壤研究所 一种含铁的钙钛锆石玻璃陶瓷基材及其制备方法

Also Published As

Publication number Publication date
CN116239379A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN110092588B (zh) 一种硼硅酸盐玻璃陶瓷固化基材及其制备方法和应用
Streit et al. Nitrides as a nuclear fuel option
Delahaye et al. Application of the UMACS process to highly dense U1− xAmxO2±δ MABB fuel fabrication for the DIAMINO irradiation
KR101624620B1 (ko) 양이온 교환 수지를 적용하여 우라늄 및 적어도 하나의 악티니드 및/또는 란타니드를 포함하는 혼합 연료를 제조하는 방법
CN102779561B (zh) 一种烧绿石型稀土锆酸盐固化锕系核素的方法
CN110970146A (zh) 一种硼硅酸盐玻璃陶瓷固化基材及其制备方法和应用
CN106045495B (zh) 一种吸附放射性核素的多孔氟磷灰石陶瓷制备方法
CN106782736B (zh) Mox燃料芯块废品的干法回收工艺
CN102208223B (zh) 一种锶铯共固化体的制备方法
JP2014529738A5 (zh)
Ledergerber et al. Preparation of transuranium fuel and target materials for the transmutation of actinides by gel coconversion
Burakov et al. Synthesis of zircon for immobilization of actinides
Yudintsev et al. Brannerite, UTi 2 O 6: Crystal chemistry, synthesis, properties, and use for actinide waste immobilization
Remy et al. Fabrication of uranium dioxide ceramic pellets with controlled porosity from oxide microspheres
Balakrishna ThO2 and (U, Th) O2 Processing-A Review
CN116239379B (zh) 一种Ce-Cr-Fe共掺钙钛锆石陶瓷固化体及其制备方法和应用
JP4690623B2 (ja) 廃棄物固定化用のセラミック媒質及び再処理核燃料集合体からの廃棄物を固定化する方法
KR20100133089A (ko) 방사성 희토류 산화물이 함유된 세라믹 고화체의 제조방법 및 이에 따라 제조되는 밀도, 열적 안정성 및 내침출성이 향상된 세라믹 고화체
Cheung et al. The intermediate level liquid molybdenum-99 waste treatment process at the Australian nuclear science and technology organisation
JP5668112B2 (ja) 放射性セシウムが捕集されたセシウム廃フィルタセラミックインゴット及びその製造方法
Jorion et al. Zirconolite for minor actinide containment and alpha irradiation resistance
Jostsons Synroc-progress and future prospects
Nästren et al. Granulation and infiltration processes for the fabrication of minor actinide fuels, targets and conditioning matrices
Oversby et al. Comparison of ceramic waste forms produced by hot uniaxial pressing and by cold pressing and sintering
Vance et al. Ansto's Waste form Research and Development Capabilities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant