CN116217234A - 一种高导电碳化硅红外辐射陶瓷及其制备方法和应用 - Google Patents

一种高导电碳化硅红外辐射陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN116217234A
CN116217234A CN202310068409.6A CN202310068409A CN116217234A CN 116217234 A CN116217234 A CN 116217234A CN 202310068409 A CN202310068409 A CN 202310068409A CN 116217234 A CN116217234 A CN 116217234A
Authority
CN
China
Prior art keywords
silicon carbide
infrared radiation
sintering
radiation ceramic
highly conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310068409.6A
Other languages
English (en)
Inventor
陈健
祝明
黄政仁
姚秀敏
陈忠明
刘学建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202310068409.6A priority Critical patent/CN116217234A/zh
Publication of CN116217234A publication Critical patent/CN116217234A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0033Devices characterised by their operation having Schottky barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种高导电碳化硅红外辐射陶瓷及其制备方法和应用,所述高导电碳化硅红外辐射陶瓷包括:SiC主相、分散于SiC主相中的导电相填料碳纳米管及烧结助剂;按质量分数100wt%计,所述SiC主相的质量分数为93.4~95.4wt%,碳纳米管的质量分数为3~5wt%,烧结助剂的质量分数为0~1.6wt%。

Description

一种高导电碳化硅红外辐射陶瓷及其制备方法和应用
技术领域
本发明属于碳化硅陶瓷领域,具体涉及一种高导电碳化硅红外辐射陶瓷及其制备方法和应用。
背景技术
随着工业现代化程度的不断提高,各领域对材料提出了更高的要求,往往需要材料具有结构与性能一体化的特性。碳化硅(SiC)陶瓷具有密度低、导热系数高、热膨胀系数低、高温力学性能优良、耐腐蚀、抗氧化等优点,是一种极具吸引力的结构材料。此外,SiC陶瓷还具有良好的功能特性,如良好的红外辐射性能,已作为发射体材料用于国际热核实验反应堆(ITER)-电子回旋发射(ECE)诊断系统。事实上,碳化硅陶瓷作为一种新一代的中远红外光源材料可以应用于更广泛的领域,但其较差的电学性能限制了其应用范围。
晶界处肖特基势垒的存在是导致SiC陶瓷呈现高电阻、非线性伏安特性等电学性能的主要原因。基于此,若采用SiC陶瓷作为红外光源材料制成用电器件将存在以下问题:SiC陶瓷的高电阻特性使得红外光源器件在通电后响应速度较慢,因此使用前需要预热较长时间;而SiC陶瓷的非线性伏安特性将导致红外光源器件在工作时难以稳定控制辐射功率或准确测量温度数据。因此,有必要对SiC陶瓷的电学性能进行优化来实现SiC陶瓷线性导电的效果,同时保持其高红外辐射性能,广泛应用于红外光源器件中。
发明内容
本发明提供了一种高导电碳化硅红外辐射陶瓷及其制备方法和应用,旨在改善SiC陶瓷电学性能的同时保持其高红外辐射性能,本发明在SiC陶瓷基体中引入导电相填料是一种简单且有效的方法。根据Schottky-Mott理论,导电相可以与SiC之间形成更低的肖特基势垒高度,这将进一步降低SiC陶瓷的电阻率和非线性系数。
第一方面,本发明提供了一种高导电碳化硅红外辐射陶瓷,所述高导电碳化硅红外辐射陶瓷包括:SiC主相、分散于SiC主相中的导电相填料碳纳米管及烧结助剂;按质量分数100wt%计,所述SiC主相的质量分数为93.4~95.4wt%,碳纳米管的质量分数为3~5wt%,烧结助剂的质量分数为0~1.6wt%。
较佳地,所述碳纳米管为单壁碳纳米管或多壁碳纳米管,所述碳纳米管的直径为5~15nm,长度为10~30μm;所述碳纳米管的含量在3~5wt%变化时,所述高导电碳化硅红外辐射陶瓷的密度为3.00~3.03g·cm-3,相对密度为96~97%,电阻率为16.5~73.5Ω·cm,呈现线性导电,其非线性系数仅为1.000~1.001,室温红外发射率为0.67~0.68。
较佳地,所述烧结助剂包括B源和C源,所述B源为B4C、硼粉或硼酸中的至少一种,优选为B4C;所述C源为无定形碳、炭黑、酚醛树脂、果糖中的至少一种,优选为炭黑,B4C的质量分数为0.4~0.8wt%,炭黑的质量分数为0.8~1.2wt%。
第二方面,本发明还提供了一种所述高导电碳化硅红外辐射陶瓷的制备方法,包括以下步骤:
(1)碳纳米管分散液的制备。称取碳纳米管、分散剂至烧杯中,加入适量无水乙醇,经高功率超声处理后得到碳纳米管分散液;
(2)混合粉体的制备。按照设计比例称取SiC粉体和烧结助剂,将其与步骤(1)制得的碳纳米管分散液混合,经球磨处理得到混合浆料;随后经烘干、破碎、造粒处理得到混合粉体;
(3)称取步骤(2)制得的混合粉体于石墨模具中,经烧结处理得到高导电碳化硅红外辐射陶瓷。
较佳地,在所述步骤(1)中,所述分散剂为聚乙烯吡咯烷酮(PVP)、十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)中的至少一种,所述分散剂的加入量为碳纳米管添加量的5~25wt%,优选为10~15wt%。
较佳地,在所述步骤(1)中,所述高功率超声处理条件为:功率为800~1000W,超声时间为0.5~1h。
较佳地,在所述步骤(2)中,所述球磨处理条件为:球磨转速为200~400r·min-1,球磨时间为2~6h。
较佳地,在所述步骤(2)中,所述烘干处理温度为70℃,干燥时间为12小时;造粒方法可为喷雾造粒或过尼龙筛。
较佳地,在所述步骤(3)中,所述烧结可选为热压烧结(HP)或放电等离子体烧结(SPS),优选为放电等离子体烧结,所述放电等离子体烧结参数为:轴向压力为25~50MPa,优选为30~40MPa;烧结温度为1850~2000℃,优选为1950~2000℃;升温速率为50~100℃·min-1;保温时间为5~10min;烧结气氛为真空气氛或氩气气氛,优选为真空气氛。
第三方面,本发明提供了一种上述高导电碳化硅红外辐射陶瓷在红外光源器件材料中的应用。
本发明通过将具有高导电特性和高红外辐射性能的碳纳米管引入到SiC基体中,制成具有高导电、高红外辐射特性的SiC陶瓷材料。碳纳米管是一种二维纳米材料,具有较大的长径比,将其分散于SiC基体中有望在较少的添加量下形成导电网络,即样品内部发生渗流效应,实现线性导电的效果。较少第二相填料的引入也有利于保持碳化硅陶瓷原有的优良性能。本发明采用放电等离子体烧结技术以实现快速烧结,碳纳米管引入到SiC基体中可增强素坯的导电性,可改善脉冲电流在素坯中的分布,进而使得烧结过程中素坯内部的热量分布更加均匀。这有利于烧结过程中样品中气孔的排出,从而获得更为均匀致密的碳化硅陶瓷。显然更致密的结构有利于电子传导过程的进行,有利于样品电导率的提升。此外,碳纳米管具有高红外辐射性能(C-C键的红外发射率可达0.95),这使得碳纳米管的加入不会劣化碳化硅陶瓷的红外辐射性能。
有益效果
本发明实现了SiC陶瓷的电阻率、非线性系数调控,同时使材料保持SiC陶瓷自身优异的红外发射性能,获得了具有低电阻率、线性导电的SiC红外辐射陶瓷,有望应用于红外光源器件中。
附图说明
图1为碳纳米管含量为3wt%和5wt%时碳化硅陶瓷的伏安特性曲线;
图2为无碳纳米管添加时碳化硅陶瓷的伏安特性曲线。
具体实施方式
为进一步阐释本发明的发明内容、特点与实际效果,下面结合实施例对本发明作详细说明。需要指出的是,本发明的设计的改性方法并不局限于这些具体的实施方式。在不背离本发明设计的精神与内涵的前提下,本领域技术人员在阅读本发明的内容的基础上进行的等价替换和修改,也在本发明要求保护的范围内。
本发明提供了一种高导电碳化硅红外辐射陶瓷,所述高导电碳化硅红外辐射陶瓷包括:SiC主相、分散于SiC主相中的导电相填料碳纳米管及烧结助剂;按质量分数100wt%计,所述SiC主相的质量分数为93.4~95.4wt%,碳纳米管的质量分数为3~5wt%,烧结助剂的质量分数为0~1.6wt%。
所述碳纳米管为单壁碳纳米管或多壁碳纳米管,所述碳纳米管的直径为5~15nm,长度为10~30μm;随着所述碳纳米管引入量的增加,所述碳化硅陶瓷的电阻率逐渐降低,电学特性由非线性转向线性,红外发射率略微升高。当所述碳纳米管的含量在3~5wt%变化时,所述高导电碳化硅红外辐射陶瓷的密度为3.00~3.03g·cm-3,相对密度为96~97%,电阻率为16.5~73.5Ω·cm,呈现线性导电,其非线性系数仅为1.000~1.001,室温红外发射率为0.67~0.68。
所述烧结助剂包括B源和C源,所述B源为B4C、硼粉或硼酸中的至少一种,优选为B4C;所述C源为无定形碳、炭黑、酚醛树脂、果糖中的至少一种,优选为炭黑,B4C的质量分数为0.4~0.8wt%,C源的质量分数为0.8~1.2wt%;B4C粉体的粒径可为1~3μm,炭黑的粒径可为0.2~0.5μm。
以下示例性说明本发明提供的具有各向异性电学性能的碳化硅压敏陶瓷材料的制备方法,所述制备方法可以包括以下步骤:
(1)碳纳米管分散液的制备。称取碳纳米管、分散剂至烧杯中,加入适量无水乙醇,经高功率超声处理后得到碳纳米管分散液。
所述分散剂为聚乙烯吡咯烷酮(PVP)、十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)中的至少一种,所述分散剂的加入量为碳纳米管添加量的5~25wt%,优选为10~15wt%。
所述高功率超声处理条件为:功率为800~1000W,超声时间为0.5~1h。
(2)混合粉体的制备。按照设计比例称取SiC粉体和烧结助剂,将其与步骤(1)制得的碳纳米管分散液混合,经球磨处理得到混合浆料;随后经烘干、破碎、造粒处理得到混合粉体。
所述球磨处理条件为:采用行星球磨方法,以SiC磨球为球磨介质,球磨转速为200~400r·min-1,球磨时间为2~6h,要求混合均匀的前提下尽可能保证碳纳米管结构的完整性。
所述烘干处理温度为70℃,干燥时间为12小时;造粒方法可为喷雾造粒或过尼龙筛,粉体的细度要求为过100目尼龙筛。
(3)称取步骤(2)制得的混合粉体于石墨模具中,经烧结处理得到高导电碳化硅红外辐射陶瓷。
为了保证碳纳米管能完整存在于烧结完成的样品中,所述烧结为热压烧结或放电等离子体烧结,优选为放电等离子体烧结,所述放电等离子体烧结参数为:轴向压力为25~50MPa,优选为30~40MPa;烧结温度为1850~2000℃,优选为1950~2000℃;升温速率为50~100℃·min-1;保温时间为5~10min;烧结气氛为真空气氛或氩气气氛,优选为真空气氛。
实施例1
(1)碳纳米管分散液的制备。称取碳纳米管3g、聚乙烯吡咯烷酮0.3g置于烧杯中,加入100g无水乙醇,采用高功率超声仪以1000W的功率超声1h,得到分散良好的碳纳米管分散液;
(2)混合粉体的制备。称取95.4g SiC粉体、0.6g B4C粉体和1g炭黑置于球磨罐中,加入步骤(1)制得的分散良好的碳纳米管分散液,并加入100g SiC球作为球磨介质,将球磨罐置于行星球磨机上以300r·min-1的转速球磨4h得到均匀混合浆料;随后将所得浆料置于烘箱中在70℃下干燥12h,经破碎后过100目尼龙筛,得到混合粉体。
(3)称取适量步骤(2)制得的混合粉体于石墨模具中,采用放电等离子体烧结得到碳化硅陶瓷;其中,烧结温度为2000℃,保温时间为10min,升温速率为100℃·min-1,轴向压力为40MPa,烧结气氛为真空。
采用阿基米德排水法测试密度,测得高导电碳化硅陶瓷的密度为3.02g·cm-3,相对密度为96.23%;采用带有金积分球的傅里叶红外光谱仪进行红外发射率的测试,测得高导电碳化硅陶瓷的红外发射率为0.674;使用Keithley2450多通道测试仪进行电学性能测试,碳纳米管含量为3wt%时碳化硅陶瓷在不同方向上的伏安特性曲线如图1所示,电阻率为73.5Ω·cm,非线性系数为1.001。
实施例2
本实施例2中高导电碳化硅红外辐射陶瓷的制备过程参照实施例1,区别仅在于:步骤(1)中称取碳纳米管为5g,聚乙烯吡咯烷酮为0.5g,步骤(2)中称取的SiC粉体为93.4g。测得高导电碳化硅陶瓷的密度为3.02g·cm-3,相对密度为96.65%;测得的高导电碳化硅陶瓷的红外发射率为0.675;碳纳米管含量为5wt%时碳化硅陶瓷在不同方向上的伏安特性曲线如图1所示,电阻率为16.5Ω·cm,非线性系数为1.000。
对比例1
对比例1中高导电碳化硅红外辐射陶瓷的制备过程参照过程参照实施例1,区别在于:未添加碳纳米管,无需经过步骤(1)获得碳纳米管分散液,步骤(2)中称取的SiC粉体为98.4g。测得高导电碳化硅陶瓷的密度为3.01g·cm-3,相对密度为94.33%;测得的高导电碳化硅陶瓷的红外发射率为0.659;未添加碳纳米管的碳化硅陶瓷在不同方向上的伏安特性曲线如图2所示,电阻率为2.21×105Ω·cm,非线性系数为1.928。

Claims (10)

1.一种高导电碳化硅红外辐射陶瓷,其特征在于,所述高导电碳化硅红外辐射陶瓷包括:SiC主相、分散于SiC主相中的导电相填料碳纳米管及烧结助剂;按质量分数100wt%计,所述SiC主相的质量分数为93.4~95.4wt%,碳纳米管的质量分数为3~5wt%,烧结助剂的质量分数为0~1.6wt%。
2.根据权利要求1所述的高导电碳化硅红外辐射陶瓷,其特征在于,当所述碳纳米管的含量在3~5wt%变化时,所述高导电碳化硅红外辐射陶瓷的密度为3.00~3.03g·cm-3,相对密度为96~97%,电阻率为16.5~73.5Ω·cm,呈现线性导电,其非线性系数仅为1.000~1.001,室温红外发射率为0.67~0.68。
3.根据权利要求1或2所述的高导电碳化硅红外辐射陶瓷,其特征在于,所述烧结助剂包括B源和C源,所述B源为B4C、硼粉或硼酸中的至少一种,优选为B4C;所述C源为无定形碳、炭黑、酚醛树脂、果糖中的至少一种,优选为炭黑,B4C的质量分数为0.4~0.8wt%,炭黑的质量分数为0.8~1.2wt%。
4.一种权利要求1-3中任一项所述的高导电碳化硅红外辐射陶瓷的制备方法,其特征在于,包括以下步骤:
(1)碳纳米管分散液的制备:称取碳纳米管、分散剂至烧杯中,加入适量无水乙醇,经高功率超声处理后得到碳纳米管分散液;
(2)混合粉体的制备:按照设计比例称取SiC粉体和烧结助剂,将其与步骤(1)制得的碳纳米管分散液混合,经球磨处理得到混合浆料;随后经烘干、破碎、造粒处理得到混合粉体;
(3)称取步骤(2)制得的混合粉体于石墨模具中,经烧结处理得到高导电碳化硅红外辐射陶瓷。
5.根据权利要求4所述的高导电碳化硅红外辐射陶瓷的制备方法,其特征在于,在所述步骤(1)中,所述分散剂为聚乙烯吡咯烷酮、十二烷基硫酸钠、十六烷基三甲基溴化铵中的至少一种,所述分散剂的加入量为碳纳米管添加量的5~25wt%,优选为10~15wt%。
6.根据权利要求4或5所述的高导电碳化硅红外辐射陶瓷的制备方法,其特征在于,在所述步骤(1)中,所述高功率超声处理条件为:功率为800~1000W,超声时间为0.5~1小时。
7.根据权利要求4-6中任一项所述的高导电碳化硅红外辐射陶瓷的制备方法,其特征在于,在所述步骤(2)中,所述球磨处理条件为:球磨转速为200~400转/分钟,球磨时间为2~6小时。
8.根据权利要求4-7中任一项所述的高导电碳化硅红外辐射陶瓷的制备方法,其特征在于,在所述步骤(2)中,所述烘干处理温度为70℃,干燥时间为12小时;造粒方法可为喷雾造粒或过尼龙筛。
9.根据权利要求4-8中任一项所述的高导电碳化硅红外辐射陶瓷的制备方法,其特征在于,在所述步骤(3)中,所述烧结可选为热压烧结或放电等离子体烧结,优选为放电等离子体烧结,所述放电等离子体烧结参数为:轴向压力为25~50MPa,优选为30~40MPa;烧结温度为1850~2000℃,优选为1950~2000℃;升温速率为50~100℃/分钟;保温时间为5~10分钟;烧结气氛为真空气氛或氩气气氛,优选为真空气氛。
10.一种权利要求1-3中任一项所述的高导电碳化硅红外辐射陶瓷在红外光源器件材料中的应用。
CN202310068409.6A 2023-02-06 2023-02-06 一种高导电碳化硅红外辐射陶瓷及其制备方法和应用 Pending CN116217234A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310068409.6A CN116217234A (zh) 2023-02-06 2023-02-06 一种高导电碳化硅红外辐射陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310068409.6A CN116217234A (zh) 2023-02-06 2023-02-06 一种高导电碳化硅红外辐射陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116217234A true CN116217234A (zh) 2023-06-06

Family

ID=86590420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310068409.6A Pending CN116217234A (zh) 2023-02-06 2023-02-06 一种高导电碳化硅红外辐射陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116217234A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786693A (zh) * 2012-08-31 2012-11-21 哈尔滨理工大学 一种聚硅烷/多壁碳纳米管复合材料及其制备方法
US20150246851A1 (en) * 2012-09-20 2015-09-03 The Penn State Research Foundation Process For Production Of Graphene/Silicon Carbide Ceramic Composites
CN113831134A (zh) * 2021-10-27 2021-12-24 中国科学院上海硅酸盐研究所 一种各向异性的碳化硅导电陶瓷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786693A (zh) * 2012-08-31 2012-11-21 哈尔滨理工大学 一种聚硅烷/多壁碳纳米管复合材料及其制备方法
US20150246851A1 (en) * 2012-09-20 2015-09-03 The Penn State Research Foundation Process For Production Of Graphene/Silicon Carbide Ceramic Composites
CN113831134A (zh) * 2021-10-27 2021-12-24 中国科学院上海硅酸盐研究所 一种各向异性的碳化硅导电陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. LANFANT ET AL.: ""Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites"", 《CERAMICS INTERNATIONAL》, vol. 45, no. 2, pages 2566 - 2575 *
KATJA KÖNIG ET AL.: ""Fabrication of CNT-SiC/SiC composites by electrophoretic deposition"", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, vol. 30, no. 5, pages 1131 - 1137, XP026854586 *
WEI FENG ET AL.: ""Thermal and mechanical properties of SiC SiC-CNTs composites fabricated by CVI combined with electrophoretic deposition"", 《MATERIALS SCIENCE & ENGINEERING A》, vol. 626, no. 25, pages 500 - 504, XP029136459, DOI: 10.1016/j.msea.2014.12.105 *

Similar Documents

Publication Publication Date Title
CN109338167B (zh) 一种碳纳米管复合材料的制备方法
CN110157931B (zh) 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法
CN112830790B (zh) 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
CN106498313A (zh) 高强高延性CNTs‑SiCp增强铝基复合材料及其制备方法
CN112723891B (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN112358308A (zh) 一种氧化物复合核燃料芯块及其制备方法
CN114149786B (zh) 界面极化增强型TiO2/RGO吸波材料的制备方法
CN118028716B (zh) 一种3c电子产品用增强型铝基碳化硅材料、制备工艺及应用
CN111187075A (zh) 一种自分散超细ZrC-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN102041554B (zh) 一种具有场发射性质的掺N的SiC纳米线的制备方法
CN112624768B (zh) 一种具有弱负介电性能的陶瓷基三元复合材料及制备方法
CN116217234A (zh) 一种高导电碳化硅红外辐射陶瓷及其制备方法和应用
Zhu et al. Electrical conductivity and infrared radiation performance of SiC-CNT composite ceramics
CN108417278B (zh) 一种高辐照稳定性的金属型燃料芯块的制备方法
CN108877975B (zh) 一种中子屏蔽防护材料
CN110642233B (zh) 一种c掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法
CN109797306A (zh) 一种碳纳米管-铜复合材料的制备方法
CN111139453A (zh) 一种高导电铜/石墨烯复合材料的制备方法
CN109020587B (zh) 一种氮化硼纳米管增韧碳化钛中子吸收陶瓷的制备方法
CN114804886B (zh) 一种碳改性纳米碳化硅复合材料的制备方法及作为辐照探测器材料的应用
CN113956853B (zh) 一种液态金属复合材料热性能的调控方法、以及液态金属复合材料
CN101318220A (zh) 纳米碳包裹铜纳米粒子的制备方法及作为导热填料的应用
CN110845282B (zh) 一种定向修补结构缺陷的导热填料、制备方法及复合含能材料
Subhash et al. Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering
CN116161962A (zh) 一种具有各向异性电学性能的碳化硅压敏陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20230606