CN116199513B - 一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用 - Google Patents

一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用 Download PDF

Info

Publication number
CN116199513B
CN116199513B CN202310478690.0A CN202310478690A CN116199513B CN 116199513 B CN116199513 B CN 116199513B CN 202310478690 A CN202310478690 A CN 202310478690A CN 116199513 B CN116199513 B CN 116199513B
Authority
CN
China
Prior art keywords
powder
carbonate
layer
nio
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310478690.0A
Other languages
English (en)
Other versions
CN116199513A (zh
Inventor
陈天嘉
许艳阳
施晓杰
武和遥
王迪
张永锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Technology
Original Assignee
Inner Mongolia University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Technology filed Critical Inner Mongolia University of Technology
Priority to CN202310478690.0A priority Critical patent/CN116199513B/zh
Publication of CN116199513A publication Critical patent/CN116199513A/zh
Application granted granted Critical
Publication of CN116199513B publication Critical patent/CN116199513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用,涉及无机膜制备技术领域,包括两个多孔陶瓷层和一个陶瓷‑碳酸盐致密层,陶瓷‑碳酸盐致密层两侧分别设有多孔陶瓷层。先制备NiO粉末、Bi0.8Pr0.2O1.5粉末和氧化钆掺杂氧化铈粉末;再通过机械混合合成NiO‑BPO复合氧化物、有机粘合二联法合成NiO‑BPO多孔层前驱体粉体,液相沉积法合成GDC‑碳酸盐复合粉末;最后用有序三层共压法制备即得。本发明制备的陶瓷碳酸盐双相膜与相同厚度单层陶瓷碳酸盐双相膜相比,CO2渗透性能更优、制备工艺简单,且能够在膜两侧分别耦合两个催化反应,可实现“CO2生成—CO2分离—CO2转化利用”三个过程合而为一,整个过程不需额外加入催化剂,做到真正意义上碳的“零排放”。

Description

一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和 应用
技术领域
本发明涉及无机膜制备技术领域,具体涉及一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用。
背景技术
全球温室气体过度排放,使得全球气候异常,温室气体中CO2 为主要组成,因此CO2 的减排和捕集成为了全球的焦点。尤其是作为CO2最大排放来源的高温热电厂烟道气,成为了人们减排和捕集的主要目标。传统的CO2分离膜大多是有机膜,但是有机膜的工作温度较低,高温选择性会大大降低,这使得开发新型的膜材料变得非常必要。
致密陶瓷碳酸盐无机膜是一种高温CO2分离膜,可在500 oC有效分离CO2, 传统的单层或双层陶瓷碳酸盐双相膜其分离或耦合催化反应的分离选择性理论可以达到100%。因此,这种膜非常适合高温源头型CO2的分离,例如火电系统的烟道气源头处CO2分离、煤汽化厂高温水煤气变换反应后的CO2/H2分离等等。此外,该膜还可以耦合催化剂强化催化或者分离过程。
现有申请号为CN202110082114.5的申请文件公开了一种以陶瓷材料为支撑体的陶瓷-碳酸盐致密双相无机膜,该无机膜包含两相,一相是作为支撑体的陶瓷相,另一相是碳酸盐相;该发明的致密无机膜在高温下可以直接分离CO2,该发明的工艺过程较为复杂,有待改良,且该双相无机膜无法有效耦合催化反应形成膜反应器,也无法实现双侧耦合。现有申请号为CN201710028366.3的申请文件公开了一种高效双相CO2电化学分离膜制备方法,提出一种采用碳酸盐水溶液作为固化剂的相转化低温固化碳酸盐与高温浸渍碳酸盐结合的方法制备一种高效陶瓷-碳酸盐双相CO2电化学分离膜,其CO2分离膜在该方法中700℃下CO2分离膜的效率最高,但该CO2分离膜的效率依旧有待提高。现有的技术中的CO2分离膜多为单层或双层结构,无法有效耦合催化反应形成膜反应器,也无法实现双侧耦合。因此,需要本领域技术人员提供一种渗透性能优异、工艺过程简单、分离效率高且能够进行双侧耦合催化反应的陶瓷碳酸盐双相膜。
发明内容
本发明针对上述问题,提供了一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用解决了现有技术的问题。
为了实现上述目的,本发明所采用的技术方案如下:
一种具有夹心结构的三层陶瓷碳酸盐双相膜,包括两个多孔陶瓷层和一个陶瓷-碳酸盐致密层,所述陶瓷-碳酸盐致密层两侧分别设有多孔陶瓷层。
进一步地,本发明提供了上述具有夹心结构的三层陶瓷碳酸盐双相膜的制备方法:
S1:制备NiO粉末、Bi0.8Pr0.2O1.5(BPO)粉末和氧化钆掺杂氧化铈(GDC)粉末;
S2:通过机械混合合成NiO-BPO复合氧化物、通过有机粘合二联法合成NiO-BPO多孔层前驱体粉体,通过液相沉积法合成GDC-碳酸盐复合粉末;
S3:采用有序三层共压法制备三层夹心结构的陶瓷碳酸盐双相膜。
进一步地,所述步骤S1中Bi0.8Pr0.2O1.5(BPO)粉末的制备:将Bi(NO3)3·5H2O 和Pr(NO3)3·6H2O用去离子水溶解,将柠檬酸和乙二醇加入上述混合盐溶液中,经过加热、凝胶化、自燃形成前驱体,前驱体经球磨、焙烧、过筛后获得BPO粉末;氧化钆掺杂氧化铈(GDC)粉末的制备:将Ce(NO3)3·6H2O和Gd(NO3)3·6H2混合溶液滴加入草酸沉淀剂中进行搅拌、静置老化,老化后的沉淀进行烘干、焙烧制得GDC粉末。
进一步地,所述BPO粉末制备中焙烧温度为700℃到900℃,Bi(NO3)3·5H2O 和Pr(NO3)3·6H2O的摩尔比为4:1,所述BPO粉末制备中的Bi(NO3)3·5H2O 与Pr(NO3)3·6H2O的中的金属离子总浓度与柠檬酸、乙二醇的摩尔比为2:3:4;所述GDC粉末制备中的Ce(NO3)3·6H2O和Gd(NO3)3·6H2O的摩尔比为4:1。
进一步地,所述步骤S2中NiO-BPO复合氧化物粉末的制备:将NiO、BPO粉末置于无水乙醇中,经过搅拌、干燥后放于球磨机中球磨,球磨后得到NiO-BPO复合氧化物;NiO-BPO多孔层前驱体粉体的制备:将NiO-BPO复合氧化物粉末与淀粉混合放入玛瑙研钵中,再加入聚乙二醇(PEG)水溶液作为粘合剂,将上述混合物充分研磨,研磨后再进行球磨,最后干燥备用;GDC-碳酸盐复合粉末材料的制备:将混合碳酸盐溶于去离子水中,再加入GDC浸泡于盐溶液中,加入适量表面活性剂辅助碳酸盐离子在GDC颗粒表面的分散,同时进行充分搅拌,搅拌后干燥,最后将混合材料充分球磨后备用。
进一步地,所述NiO-BPO复合氧化物粉末的制备的过程中NiO、BPO粉末的质量比为1:4;所述NiO-BPO多孔层前驱体粉体的制备的过程中PEG水溶液中PEG和去离子水的质量比为1:9;所述NiO-BPO多孔层前驱体粉体的制备中NiO-BPO复合氧化物粉末与淀粉的质量比为17:3;所述GDC-碳酸盐复合粉末材料的制备过程中混合碳酸盐的组分为Li-Na二元混合碳酸盐或Li-Na-K三元混合碳酸盐。
进一步地,所述步骤S3中有序三层共压法的具体操作步骤如下:
S31:将 NiO-BPO复合氧化物粉末均匀撒入不锈钢模具中,利用压片机将NiO-BPO复合氧化物粉末进行预压;
S32:将GDC-碳酸盐复合粉末放于微型静电粉末喷涂设备中,设置喷涂量后利用喷涂笔将GDC-碳酸盐复合粉末均匀的喷涂覆盖于预压好的NiO-BPO复合氧化物粉末薄层上,再用压片机进行预压处理;
S33:清洗静电粉末喷涂设备,待该设备充分干燥后,将NiO-BPO多孔层前驱体粉体置于微型静电粉末喷涂设备中,利用喷涂笔将NiO-BPO多孔层前驱体粉体喷涂于预压好的GDC-碳酸盐复合粉末薄层上,再用压片机进行预压处理;
S34:利用压片机将上述由一层NiO-BPO复合氧化物粉末、一层GDC-碳酸盐复合粉末和另一层NiO-BPO多孔层前驱体粉体组成的三层有序结构再次进行最终的三层共压,形成具有夹心结构三层膜的前驱体;
S35:将具有夹心结构三层膜的前驱体放入马弗炉中,煅烧6 h即得具有夹心三层结构的陶瓷碳酸盐双相膜。
进一步地,利用所述压片机对NiO-BPO复合氧化物粉末进行预压时的压力不超过0.2 MPa;所述三层有序结构的NiO-BPO层、GDC碳酸盐层和NiO-BPO层的三层厚度比例是2:1:2;所述煅烧前驱体的煅烧温度为1250-1350℃。
本发明还提供了一种具有夹心结构的三层陶瓷碳酸盐双相膜的应用,该三层陶瓷碳酸盐双相膜可用于CO2分离和转化,该应用采用上述三层陶瓷碳酸盐双相膜,在膜两侧分别进行水煤气变换反应(CO + H2O→ CO2 + H2)和丙烷脱氢反应(C3H8 + CO2 → C3H6 + CO+ H2O),通过将膜和催化反应耦合的方式可在膜两侧分别制备H2和丙烯。
进一步地,将所述三层陶瓷碳酸盐双相膜完全密封于自制反应器上,将两侧的气路隔开,三层陶瓷碳酸盐双相膜的两侧均先通入10%H2/N2的混合气,用于活化多孔层,活化后停止通气,在膜的一侧通入CO、H2O蒸气、N2的混合气体,进行水煤气变换反应;水煤气变换反应所产生的CO2会被陶瓷膜的致密层分离,渗透到膜的另一侧。在膜的另一侧通入丙烷气体作为吹扫气,使得透过的CO2和丙烷发生丙烷脱氢反应,整个系统的反应温度为550-750oC。这样,陶瓷膜一侧的催化反应产生的CO2会被同步分离到膜的另一侧,然后透过的CO2在膜的另一侧作为反应物进行催化反应,从而将CO2同步消耗掉,实现CO2零排放。
与现有技术相比,本发明的有益效果:
首先,本发明制备的夹心三层结构的陶瓷碳酸盐双相膜比相同厚度单层陶瓷碳酸盐双相膜的CO2渗透性能更优。其次,本发明的多孔层具备催化作用,使得膜本身具备耦合催化反应的潜力,省去了额外催化剂的负载过程,简化了制备工艺。最后,本发明的三层结构的膜区别于传统的双层非对称的膜结构,两侧多孔层均有催化效果,使得本发明的膜可以用于在膜两侧分别耦合两个不同的催化反应,膜一侧的多孔层可以催化高温化学反应生成CO2,生成的CO2会被陶瓷膜的致密层分离渗透到膜的另一侧,分离透过的CO2在膜的另一侧作为反应物参与另一个催化反应,从而被同步消耗掉,能够实现“CO2生成—CO2分离—CO2转化利用”三个过程合而为一的CO2零排放的效果,且整个过程不需要额外加入催化剂,做到真正意义上碳的“零排放”,即膜的一侧催化反应产生的CO2可由膜进行瞬时分离,分离后另一侧的反应又可以同步消耗和转化透过膜层的CO2
附图说明
图1是传统的陶瓷碳酸盐双相膜的分离和耦合催化反应机理示意图;
图2是夹心三层陶瓷碳酸盐双相膜的实物扫描电镜表征的截面图;
图3是夹心三层陶瓷碳酸盐双相膜的分离和耦合催化反应原理示意图;
图4是本实施例反应器示意图。
附图标记:1为多孔陶瓷层,2为陶瓷-碳酸盐致密层,3为通气管路,4为密封胶,5为夹心三层陶瓷碳酸盐膜。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下实施例中所涉及的仪器、试剂、材料等,若无特别说明,均为现有技术中已有的常规仪器、试剂、材料等,可通过正规商业途径获得。下列实施例中所涉及的实验方法、检测方法等,若无特别说明,均为现有技术中已有的常规实验方法、检测方法等。
本实施例中所制备的一种具有夹心结构的三层陶瓷碳酸盐双相膜,其实物扫描电镜表征截面图参见附图2,分离和耦合催化反应原理示意图参见附图3,包括两个多孔陶瓷层1和一个陶瓷-碳酸盐致密层2,其中陶瓷-碳酸盐致密层2两侧分别设有多孔陶瓷层1。
实施例1
本实施例提供了一种具有夹心结构的三层陶瓷碳酸盐双相膜的制备方法,具体包括以下步骤:
S1:制备NiO粉末、Bi0.8Pr0.2O1.5(BPO)粉末和氧化钆掺杂氧化铈(GDC)粉末;
制备NiO粉末:
称取1mol的六水硝酸镍Ni(NO3)2·6H2O放入刚玉坩锅中,置于马弗炉中800℃直接焙烧3h,马弗炉升温速率为5℃/min;焙烧后取出粗NiO粉末,放入球磨罐,球磨24h,球磨速度为1000转/分钟,使得NiO颗粒粒径为20-50nm。
制备Bi0.8Pr0.2O1.5(BPO)粉末:
称取0.08mol的Bi(NO3)3·5H2O 和0.02mol的Pr(NO3)3·6H2O(二者的摩尔比为4:1)放入刚玉碗中用适量去离子水溶解;称取适量柠檬酸和乙二醇加入上述混合盐溶液中,使得金属离子:柠檬酸:乙二醇的摩尔比为2: 3: 4;将刚玉碗置于电火炉上进行蒸煮,使混合溶液经过加热沸腾、凝胶化、自燃过程,获得黑色絮状前驱体粉末;取出粉末前驱体球磨2h,再放入马弗炉中800℃焙烧3h,马弗炉升温速率为5℃/min;焙烧后取出粗BPO粉末,放入球磨罐,球磨24h,球磨速度为1000转/分钟,球磨后的BPO粉体过筛(120目筛子)备用。
其中BPO粉末还为BYO、BYS或某些尖晶石结构的氧化物等一些可以限制熔融盐流动的材料。
制备氧化钆掺杂氧化铈(GDC)粉末:
称取60.3913g Ce(NO3)3·6H2O和15.6938g Gd(NO3)3·6H2O(二者的摩尔比为4:1)放入烧杯中用200 mL去离子水溶解,配制成Gd(NO3)3浓度为0.2 mol/L, Ce(NO3)3的浓度为0.8 mol/L的硝酸混合溶液;再称取34.5182 g含有两个结晶水的草酸放入三口烧瓶中,加入550 mL去离子水,配制成浓度约为0.1 mol/L的草酸溶液,用氨水调节pH为6.8,配制成草酸沉淀剂;再将硝酸盐混合水溶液倒入分液漏斗中,逐滴加入草酸沉淀剂的三口烧瓶中,过程中不断搅拌;待溶液滴加完毕后,继续搅拌2 h,搅拌停止后,静置2 h老化;老化结束后,将沉淀物抽滤洗涤,然后放入烘箱内60℃下过夜烘干,烘干后可得到GDC前躯体,呈现白色;将GDC前躯体放入马弗炉中在800℃下煅烧4 h,升温速率为5℃/min,焙烧后得到粗GDC粉末;将粗GDC粉末,放入球磨罐,球磨24h,球磨速度为1000转/分钟,球磨后的GDC粉体过筛(120目筛子)备用。
S2:分别通过机械混合合成NiO-BPO复合氧化物、有机粘合二联法合成NiO-BPO多孔层前驱体粉体,液相沉积法合成GDC-碳酸盐复合粉末;
合成NiO-BPO复合氧化物粉末:
分别称取24g BPO和6g NiO粉末置于100mL无水乙醇中形成混合溶液,利用电动搅拌机搅拌3h,静置1h;将静置1h后的混合溶液放入烘箱80℃干燥2h,干燥后放于行星式球磨机中球磨,球磨速度为1000转/分钟,球磨时间6h,球磨后的NiO-BPO复合氧化物粉体过筛备用。
合成NiO-BPO多孔层前驱体粉体:
将10g聚乙二醇(PEG)加入盛有90mL去离子水的烧杯中,将烧杯放入油浴中80℃加热,使得聚乙二醇完全溶于去离子水,形成PEG水溶液粘合剂;分别称取17g NiO-BPO复合氧化物粉末与3g淀粉混合放入玛瑙研钵中,研磨1h;向研磨1h后的玛瑙研钵中加入2 ml PEG水溶液粘合剂,再充分研磨1h,研磨后放入烘箱干燥2h,PEG水溶液粘合剂还可以替换成任何具有一定粘性,且是可溶性聚合物的水溶液;将干燥2h后的粉体放入球磨机中进行球磨,球磨后过筛备用。
合成GDC-碳酸盐复合粉末:
分别称取0.1mol碳酸钠和0.1mol碳酸锂放入球磨罐中,以500转/分钟的转速球磨5h,球磨后干燥备用;称取4g 球磨好后的混合碳酸盐溶于100mL去离子水中,再加入20gGDC粉末浸泡于盐溶液中,加入0.01g磺基甜菜碱作为表面活性,进行充分搅拌1h,搅拌后置于烘箱中 80℃干燥至无水分,得到粗GDC-碳酸盐粉末;将干燥后的粗GDC-碳酸盐粉末放入球磨罐中,以1000转/分钟的转速球磨6h,球磨后干燥、过筛后备用。其它实施例中,混合碳酸盐也可以是0.1mol碳酸钠、0.1mol碳酸锂以及0.1mol碳酸钾。
S3:采用有序三层共压法制备三层夹心结构的陶瓷双相膜,具体操作步骤如下:
S31:称取0.5 g NiO-BPO复合氧化物粉末,“螺旋式”均匀撒入直径为20 mm的不锈钢模具中,利用压片机在0.2MPa的压力下将NiO-BPO复合氧化物粉末进行预压;
S32:将10 g GDC-碳酸盐复合粉末放于微型静电粉末喷涂设备中,设置喷涂量后,利用喷涂笔将0.3 g GDC-碳酸盐复合粉末均匀的喷涂覆盖于预压好的NiO-BPO复合氧化物粉末薄层上,再用压片机0.1MPa进行预压处理;
S33:清洗静电粉末喷涂设备,充分干燥后将10 g NiO-BPO多孔层前驱体粉体置于微型静电粉末喷涂设备中,利用喷涂笔将0.5 g NiO-BPO多孔层前驱体粉体喷涂于预压后的GDC-碳酸盐复合粉末薄层上,再用压片机0.1MPa进行预压处理;
S34:设置压片机压力为100 MPa,利用该压片机将上述的一层NiO-BPO复合氧化物粉末、一层GDC-碳酸盐复合粉末和另一层NiO-BPO多孔层前驱体粉体组成的三层有序结构进行最终的三层共压,形成具有夹心结构三层膜的前驱体,此时前驱体的三层厚度之比约为2:1:2;
S35:将该前驱体放入马弗炉中,在1250℃煅烧6 h,升温过程为分为两个阶段,第一个阶段的温度范围为25-350℃,在25-350℃的升温阶段中升温速率为5℃/min;第二个阶段的温度范围为350-1250 ℃,在350-1250 ℃的升温阶段中升温速率为2℃/min;煅烧结束后以3℃/min的速率降温到室温,形成最终的夹心三层结构的陶瓷碳酸盐双相膜。
实施例2
在制备本实施例三层陶瓷碳酸盐双相膜方法中,步骤S1中焙烧温度为700℃,步骤S3内的煅烧温度为1300℃,其余步骤同实施例1。
实施例3
在制备本实施例三层陶瓷碳酸盐双相膜方法中,步骤S1中焙烧温度为900℃,步骤S3内煅烧温度为1350℃,其余步骤同实施例1。
上述实施例制备得到的三层陶瓷碳酸盐双相膜工艺过程简单,下面对上述实施例中所制得的夹心三层结构的陶瓷碳酸盐膜进行性能测试,其中多孔陶瓷层为催化作用,陶瓷-碳酸盐致密层为分离作用,参见附图3,以膜两侧的反应分别为水煤气变换反应(CO +H2O→ CO2 + H2)和丙烷脱氢反应(C3H8 + CO2 → C3H6 + CO + H2O)为例,通过将膜和催化反应耦合的方式可在膜两侧分别制备H2和丙烯。
实验例1
将实施例1制备三层夹心结构的陶瓷碳酸盐膜步骤制备好的陶瓷膜完全密封于自制反应器上,自制反应器包括通气管路3,密封胶4以及夹心三层陶瓷碳酸盐膜5,其中夹心三层陶瓷碳酸盐膜5设置在反应器中心位置,夹心三层陶瓷碳酸盐膜5与反应器接触的两端用密封胶4进行密封,反应器上下两侧分别设有2个通气管路3,如附图4所示,将两侧的气路隔开,三层陶瓷碳酸盐双相膜的两侧均先通入10% H2/N2的混合气,用于活化多孔层,活化后停止通气,在膜的上方通入CO、H2O蒸气、N2的混合气体,气体总流量为30 ml/min,其中N2流量为10 ml/min,CO流量为10 ml/min,H2O流量为10 ml/min,进行水煤气变换反应;水煤气变换反应所产生的CO2会被陶瓷膜的致密层分离,渗透到膜的另一侧。在膜的另一侧通入10ml/min的丙烷气体或惰性气体Ar气作为吹扫气,使得透过的CO2和丙烷发生丙烷脱氢反应,Ar气吹扫时仅为单侧催化反应联合CO2分离过程,此测试可作为膜双侧耦合催化反应的对照实验。整个系统的反应温度为550℃。这样,陶瓷膜一侧的催化反应产生的CO2会被同步分离到膜的另一侧,然后透过的CO2在膜的另一侧作为反应物进行催化反应,从而将CO2同步消耗掉,实现CO2零排放。
实验例2,使用实施例1制备好的三层陶瓷碳酸盐双相膜,在反应温度为600℃,其余条件与实验例1中的条件一致的情况下,进行的膜单侧耦合水煤气变换反应。
实验例3,使用实施例1制备好的三层陶瓷碳酸盐双相膜,在反应温度为650℃时,其余条件与实验例1中的条件一致的情况下,制得的陶瓷碳酸盐膜进行的膜单侧耦合水煤气变换反应。
实验例4,使用实施例1制备好的三层陶瓷碳酸盐双相膜,反应温度为700℃时,其余条件与实验例1中的条件一致的情况下,制得的陶瓷碳酸盐膜进行的膜单侧耦合水煤气变换反应。
实验例5,使用实施例1制备好的三层陶瓷碳酸盐双相膜,反应温度为750℃时,其余条件与实验例1中的条件一致的情况下,制得的陶瓷碳酸盐膜进行的膜单侧耦合水煤气变换反应。
实验例6,使用实施例1制备好的三层陶瓷碳酸盐双相膜,反应温度为550℃时,其余条件与实验例1中的条件一致的情况下,制得的陶瓷碳酸盐膜进行的膜双侧耦合水煤气变换反应。
实验例7,使用实施例1制备好的三层陶瓷碳酸盐双相膜,反应温度为600℃时,其余条件与实验例1中的条件一致的情况下,制得的陶瓷碳酸盐膜进行的膜双侧耦合水煤气变换反应。
实验例8,使用实施例1制备好的三层陶瓷碳酸盐双相膜,反应温度为650℃时,其余条件与实验例1中的条件一致的情况下,制得的陶瓷碳酸盐膜进行的膜双侧耦合水煤气变换反应。
实验例9,使用实施例1制备好的三层陶瓷碳酸盐双相膜,反应温度为700℃时,其余条件与实验例1中的条件一致的情况下,制得的陶瓷碳酸盐膜进行的膜双侧耦合水煤气变换反应。
实验例10,使用实施例1制备好的三层陶瓷碳酸盐双相膜,反应温度为750℃时,其余条件与实验例1中的条件一致的情况下,制得的陶瓷碳酸盐膜进行的膜双侧耦合水煤气变换反应。具体结果如表1、2所示。
表1 膜单侧耦合水煤气变换反应的相应的转化率以及膜的CO2渗透通量
表2 膜双侧分别耦合水煤气变换反应和丙烷脱氢反应的相应的转化率和膜的CO2渗透通量
使用本发明制备得到的三层结构的陶瓷碳酸盐膜,不但可以用来分离捕集CO2,而且还可以分别在膜的两侧耦合两个催化反应,从而同时强化催化反应过程和分离过程。利用陶瓷碳酸盐膜将高温催化反应产生的CO2瞬间分离走,这样不仅可以打破催化反应的平衡,使得反应向着目标产物方向进一步进行,促进催化反应的转化,还能使分离后的CO2透过膜层到达膜的另一侧,此时耦合催化剂可以将吹扫气(如CH4)和CO2进行催化,发生转化反应生成有用的化学原料气(如CO、H2),这样及时的消耗了渗透侧的CO2,增大了膜两侧的CO2分压,使得催化反应促进和强化了CO2的分离过程。
而传统的陶瓷碳酸盐双相膜多为单层或双层结构,其分离或耦合催化反应的机理示意图参见附图1,在进行CO2分离时,无法有效的耦合催化反应形成膜反应器,也无法实现双侧耦合。
从表1和表2中可以看出,当一侧耦合了一个可以消耗CO2的催化反应后,无论是膜的CO2渗透性能还是另一侧的催化反应的反应效果都得到了明显的加强。丙烷脱氢反应一侧可以及时消耗掉CO2,从而增大了两侧CO2分压,促进了CO2的渗透;同时,CO2渗透通量的增加,可进一步移走水煤气变换一侧产生的CO2,从而打破化学平衡,促进了CO的转化和H2的产生,提高了分离效率。充分说明采用该方法制备的具有夹心结构的三层陶瓷碳酸盐双相膜,具有兼顾CO2分离和CO2反应的能力。研究表明,本发明制备的三层结构的陶瓷碳酸盐膜可在运行过程中保持较长的稳定时间。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种具有夹心结构的三层陶瓷碳酸盐双相膜,其特征在于,包括两个多孔陶瓷层和一个陶瓷-碳酸盐致密层,所述陶瓷-碳酸盐致密层两侧分别设有多孔陶瓷层;
所述具有夹心结构的三层陶瓷碳酸盐双相膜由以下制备方法制得:
S1:制备NiO粉末、Bi0.8Pr0.2O1.5粉末和氧化钆掺杂氧化铈粉末;所述Bi0.8Pr0.2O1.5粉末的制备方法为:将Bi(NO3)3·5H2O 和Pr(NO3)3·6H2O用去离子水溶解,将柠檬酸和乙二醇加入Bi(NO3)3·5H2O和Pr(NO3)3·6H2O混合溶液中,经过加热、凝胶化、自燃形成前驱体,前驱体经球磨、焙烧、过筛后获得Bi0.8Pr0.2O1.5粉末;所述氧化钆掺杂氧化铈粉末的制备方法为:将Ce(NO3)3·6H2O和Gd(NO3)3·6H2O的混合溶液滴加入草酸沉淀剂后进行搅拌、静置老化,老化后的沉淀进行烘干、焙烧制得氧化钆掺杂氧化铈粉末;
S2:通过机械混合合成NiO-Bi0.8Pr0.2O1.5复合氧化物,具体操作方法为:将NiO、Bi0.8Pr0.2O1.5粉末置于无水乙醇中,经过搅拌、干燥后放于球磨机中球磨,球磨后得到NiO-Bi0.8Pr0.2O1.5复合氧化物;
通过有机粘合二联法合成NiO-Bi0.8Pr0.2O1.5多孔层前驱体粉体,具体操作方法为:将NiO-Bi0.8Pr0.2O1.5复合氧化物粉末与淀粉混合放入玛瑙研钵中,再加入聚乙二醇水溶液作为粘合剂,将NiO-Bi0.8Pr0.2O1.5复合氧化物粉末、淀粉及聚乙二醇水溶液混合物充分研磨,研磨后再进行球磨,最后干燥备用;
通过液相沉积法合成氧化钆掺杂氧化铈-碳酸盐复合粉末,具体操作方法为:将混合碳酸盐溶于去离子水中,再加入氧化钆掺杂氧化铈浸泡于盐溶液中,加入适量表面活性剂辅助碳酸盐离子在氧化钆掺杂氧化铈颗粒表面的分散,同时进行充分搅拌,搅拌后干燥,最后将混合材料充分球磨后备用;
S3:采用有序三层共压法制备三层夹心结构的陶瓷碳酸盐双相膜,具体操作步骤为:
S31:将NiO-Bi0.8Pr0.2O1.5复合氧化物粉末均匀撒入不锈钢模具中,利用压片机将NiO-Bi0.8Pr0.2O1.5复合氧化物粉末进行预压;
S32:将氧化钆掺杂氧化铈-碳酸盐复合粉末放于微型静电粉末喷涂设备中,设置喷涂量,利用喷涂笔将氧化钆掺杂氧化铈-碳酸盐复合粉末均匀的喷涂覆盖于预压好的NiO-Bi0.8Pr0.2O1.5复合氧化物粉末薄层上,再用压片机进行预压处理;
S33:清洗静电粉末喷涂设备,待该设备充分干燥后,将NiO-Bi0.8Pr0.2O1.5多孔层前驱体粉体置于微型静电粉末喷涂设备中,利用喷涂笔将NiO-Bi0.8Pr0.2O1.5多孔层前驱体粉体喷涂于预压好的氧化钆掺杂氧化铈-碳酸盐复合粉末薄层上,再用压片机进行预压处理;
S34:利用压片机将步骤S33的由一层NiO-Bi0.8Pr0.2O1.5复合氧化物粉末、一层氧化钆掺杂氧化铈-碳酸盐复合粉末和另一层NiO-Bi0.8Pr0.2O1.5多孔层前驱体粉体组成的三层有序结构再次进行三层共压,形成具有夹心结构三层膜的前驱体;
S35:将具有夹心结构三层膜的前驱体放入马弗炉中,煅烧6 h即得具有夹心三层结构的陶瓷碳酸盐双相膜。
2.根据权利要求1所述的一种具有夹心结构的三层陶瓷碳酸盐双相膜,其特征在于:所述Bi0.8Pr0.2O1.5粉末制备中焙烧温度为700℃到900℃,Bi(NO3)3·5H2O 和Pr(NO3)3·6H2O的摩尔比为4:1,所述Bi0.8Pr0.2O1.5粉末制备中的Bi(NO3)3·5H2O 与Pr(NO3)3·6H2O的中的金属离子总浓度与柠檬酸、乙二醇的摩尔比为2:3:4;所述氧化钆掺杂氧化铈粉末制备中的Ce(NO3)3·6H2O和Gd(NO3)3·6H2O的摩尔比为4:1。
3.根据权利要求1所述的一种具有夹心结构的三层陶瓷碳酸盐双相膜,其特征在于:所述NiO-Bi0.8Pr0.2O1.5复合氧化物粉末的制备的过程中NiO、Bi0.8Pr0.2O1.5粉末的质量比为1:4;所述NiO-Bi0.8Pr0.2O1.5多孔层前驱体粉体的制备的过程中聚乙二醇水溶液中聚乙二醇和去离子水的质量比为1:9;所述NiO-Bi0.8Pr0.2O1.5多孔层前驱体粉体的制备中NiO-Bi0.8Pr0.2O1.5复合氧化物粉末与淀粉的质量比为17:3;所述氧化钆掺杂氧化铈-碳酸盐复合粉末材料的制备过程中混合碳酸盐的组分为Li-Na二元混合碳酸盐或Li-Na-K三元混合碳酸盐。
4.根据权利要求1所述的一种具有夹心结构的三层陶瓷碳酸盐双相膜,其特征在于:使用压片机预压处理NiO-Bi0.8Pr0.2O1.5复合氧化物粉末、氧化钆掺杂氧化铈-碳酸盐复合粉末时的压力不超过0.2 MPa;所述三层有序结构的NiO-Bi0.8Pr0.2O1.5复合氧化物粉末层、氧化钆掺杂氧化铈-碳酸盐复合粉末层和NiO-Bi0.8Pr0.2O1.5多孔层前驱体粉体层的三层厚度比例是2:1:2;所述煅烧前驱体的煅烧温度为1250-1350 ℃。
5.一种具有夹心结构的三层陶瓷碳酸盐双相膜的应用,其特征在于:采用权利要求1-4任一所述的三层陶瓷碳酸盐双相膜,在膜的两侧分别进行水煤气变换反应和丙烷脱氢反应。
6.根据权利要求5所述的一种具有夹心结构的三层陶瓷碳酸盐双相膜的应用,其特征在于:具体包括如下步骤:将所述三层陶瓷碳酸盐双相膜完全密封于反应器上,将两侧的气路隔开,三层陶瓷碳酸盐双相膜的两侧均先通入10%H2/N2的混合气,活化后停止通气,在膜的一侧通入CO、H2O蒸气、N2的混合气体,进行水煤气变换反应;在膜的另一侧通入丙烷气体作为吹扫气,使得透过的CO2和丙烷发生丙烷脱氢反应,系统的反应温度为550-750 oC。
CN202310478690.0A 2023-04-28 2023-04-28 一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用 Active CN116199513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310478690.0A CN116199513B (zh) 2023-04-28 2023-04-28 一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310478690.0A CN116199513B (zh) 2023-04-28 2023-04-28 一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116199513A CN116199513A (zh) 2023-06-02
CN116199513B true CN116199513B (zh) 2023-07-18

Family

ID=86517604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310478690.0A Active CN116199513B (zh) 2023-04-28 2023-04-28 一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116199513B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118374045B (zh) * 2024-06-24 2024-08-23 内蒙古工业大学 一种质子-电子混合电导的聚合物双相致密膜及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793711B1 (en) * 1999-12-07 2004-09-21 Eltron Research, Inc. Mixed conducting membrane for carbon dioxide separation and partial oxidation reactions
CN102489175A (zh) * 2011-12-20 2012-06-13 天津工业大学 一种陶瓷/熔盐双相复合气体分离膜的制备方法
US9327231B2 (en) * 2013-09-05 2016-05-03 Arizona Board Of Regents On Behalf Of Arizona State University Tubular ceramic-carbonate dual-phase membranes and methods of manufacture thereof
CN106669437B (zh) * 2017-01-16 2019-04-05 中国矿业大学(北京) 一种高效双相co2电化学分离膜制备方法
EP4070879A1 (en) * 2021-04-09 2022-10-12 Consejo Superior De Investigaciones Científicas (CSIC) Molten salt-ceramic composite membrane with high co2 permeability

Also Published As

Publication number Publication date
CN116199513A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
Hare et al. Enhanced CO2 conversion to CO by silica-supported perovskite oxides at low temperatures
Ding et al. A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas
Miller et al. Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles
Le Gal et al. Dopant incorporation in ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation
TWI603779B (zh) 熱化學燃料製造用觸媒及熱化學燃料製造方法
CN116199513B (zh) 一种具有夹心结构的三层陶瓷碳酸盐双相膜及其制备方法和应用
JP5778309B2 (ja) 水素製造触媒およびそれを用いた水素製造方法
WO2012057162A1 (ja) 一酸化炭素の製造方法及び製造装置
Zhang et al. Coupling water splitting and partial oxidation of methane (POM) in Ag modified La0. 8Ca0. 2Fe0. 94O3-δ hollow fiber membrane reactors for co-production of H2 and syngas
CN106925136A (zh) 一种阴离子掺杂的钙钛矿型混合导体透氢膜材料及其制备方法与应用
Chen et al. Novel CO2-tolerant dual-phase Ce0. 9Pr0. 1O2–δ-La0. 5Sr0. 5Fe0. 9Cu0. 1O3–δ membranes with high oxygen permeability
Jia et al. Hydrogen permeation through dual-phase ceramic membrane derived from automatic phase-separation of SrCe0. 50Fe0. 50O3-δ precursor
Zhu et al. A high stability Ni–La0. 5Ce0. 5O2− δ asymmetrical metal-ceramic membrane for hydrogen separation and generation
EP2040822A1 (en) Oxygen separation membrane
Zhuang et al. Metalloid phosphorus cation doping: An effective strategy to improve permeability and stability through the hydrogen permeable membranes
CN114405528B (zh) 一种用于气体原位干重整的双功能陶瓷膜及其制备方法
Xu et al. Oxygen permeability and stability of dual-phase Ce0. 85Pr0. 15O2-δ-Pr0. 6Sr0. 4Fe0. 9Al0. 1O3-δ membrane for hydrogen production by water splitting
WO2012057161A1 (ja) 一酸化炭素の製造方法及び製造装置
Zeng et al. A chemically stable La0. 2Sr0. 8Fe0. 9Mo0. 1O3-δ-molten carbonate dual-phase membrane for CO2 separation
US9580326B1 (en) Method for carbon dioxide splitting
Su et al. Permeability and stability enhancement of dual-phase membrane by nickel-based porous layer for water splitting
CN100490956C (zh) 一种钙钛矿型含铈系列混合导体透氧膜及制法和应用
JP4430291B2 (ja) 合成ガス製造方法
JP2012061399A (ja) 水素製造用触媒、その触媒の製造方法およびその触媒を用いた水素の製造方法
JP6075155B2 (ja) 酸素透過膜、酸素分離方法及び燃料電池システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant