CN116196973B - 一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用 - Google Patents

一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用 Download PDF

Info

Publication number
CN116196973B
CN116196973B CN202211693153.XA CN202211693153A CN116196973B CN 116196973 B CN116196973 B CN 116196973B CN 202211693153 A CN202211693153 A CN 202211693153A CN 116196973 B CN116196973 B CN 116196973B
Authority
CN
China
Prior art keywords
mno
micro
motor
solution
bio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211693153.XA
Other languages
English (en)
Other versions
CN116196973A (zh
Inventor
李嘉
邢宁宁
赵蔚琳
左敏
刘晨章
高硕�
周东阳
李晓晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202211693153.XA priority Critical patent/CN116196973B/zh
Publication of CN116196973A publication Critical patent/CN116196973A/zh
Application granted granted Critical
Publication of CN116196973B publication Critical patent/CN116196973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/32Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种生物基模板CA‑MnO2@Co‑N/C磁性微马达及其制备方法和应用。本发明构建了一种以天然牛角瓜纤维为生物模板,在其外表面逐层生长以强磁性的Co‑N/C和MnO2纳米片作为功能单元的三维多层级管状微马达,进一步进行CA修饰后增强微马达的纳米酶活性和类芬顿催化活性。MnO2纳米片催化分解H2O2释放大量气泡,为微马达自主运动提供驱动力,确保具有催化活性的微马达在整个污染水体中进行连续贯穿的运动,将其催化分解产生的活性物种均匀分布于污染水体中,其本身的自驱动运动也增加了流体扰动,促进了苯胺分子与微马达的活性位点的接触,快速高效地对水体中的苯胺进行比色检测和催化降解,实现了水体环境中有机污染物的动态检测和降解。

Description

一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和 应用
技术领域
本发明属于化学合成及有机物检测和降解技术领域,具体涉及一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用。
背景技术
近年来中国的快速发展加快了城镇化和工业化的进程,城乡污水和各类工业废水的大量排放致使各种难降解的有机污染物急剧增加。过量的污水已经超过了环境水体的自净能力,不仅严重破坏生态环境,还可能衍生出多种致病菌等,对人体健康造成影响。其中,苯胺类化合物被广泛应用在印染、制药、轮胎制造及农药等工业生产中,这些企业产生的废水除了具有多种无机盐成分外,还含有高毒性的苯胺类物质,极大地破坏了生态环境。因此,合理有效地检测并降解苯胺类污染物对保护生态环境和人类健康具有重要的现实意义。
生物为了适应自然的需求而不断进化出许多精巧的结构,比如很多天然植物纤维,都具有中空管状结构或者其他特殊的结构。这些天然的植物纤维直径约在10-30 μm,非常适合作为生物模板制备出具有中空结构的微纳米材料,应用于环境治理领域。近年来,基于微纳米材料与器件的环境治理技术应用越来越广泛,特别是具有自驱动性能的微纳马达。以天然植物纤维为模板制备的管状微马达,具有中空管状结构,内外表面均可进行各种功能单元的修饰,其独特的运动净化过程可更加高效和全面的完成环境治理工作,这是因为微马达的连续运动能够实现活性催化材料通过整个受污染的区域,进行长距离的降解,而且气泡驱动的微马达可通过气泡的脱落和破裂加速扰乱流体边界层,通过剧烈的流体扰动来增加污染物与催化剂材料的接触几率。此外,微马达可将污染物降解技术与传感技术相结合,同时应用于一个平台上,制备一种多功能的自驱动微马达。
综上所述,研发一种可自主驱动,对苯胺实现快速检测和降解的方法具有重要意义。
发明内容
针对现有技术对苯胺无法实现现场简单快速地分析同时高效地降解,部分检测技术需要昂贵的仪器和专业的技术人员,静态的催化剂材料灵敏度低、功能单一的问题,本发明提供了一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用,CA-MnO2@Co-N/C磁性微马达可同时实现水体中痕量苯胺的灵敏检测和快速降解。
本发明通过以下技术方案实现:
一种生物基模板CA-MnO2@Co-N/C磁性微马达,通过以下方法制备得到:
(1)PDA-C的制备:将牛角瓜纤维置于N2气氛下高温煅烧得到C管,C管和多巴胺置于乙醇水混合溶剂中混合均匀,然后加入三羟甲基甲胺Tris水溶液,室温下搅拌反应2~3h,过滤搜集产物,烘干得PDA-C;
(2)Co-N/C的制备:将步骤(1)制备的PDA-C均匀分散于氯化钴和2-甲基咪唑组成的前驱体溶液中,进行溶剂热反应,反应结束后,经过滤、洗涤、干燥得ZIF-67/C,ZIF-67/C在N2气氛下高温煅烧得Co-N/C;
(3)CA-MnO2@Co-N/C微马达的制备:步骤(2)中制备的Co-N/C加入到硫酸锰溶液搅拌均匀,缓慢加入KMnO4溶液,搅拌反应20-30 min,过经滤、洗涤、烘干得到MnO2@Co-N/C微马达,MnO2@Co-N/C微马达均匀分散于柠檬酸溶液中,搅拌反应30~60min,经过滤、烘干得到CA-MnO2@Co-N/C微马达。
进一步地,步骤(1)中高温煅烧温度为500-600℃,煅烧时间为1~2h;步骤(2)中溶剂热反应温度为120~130℃,反应时间为4~5h;步骤(2)中煅烧温度为500~600℃,煅烧时间为1~2h,升温速率为0.8~1.5℃/min。
进一步地,步骤(1)中C管与多巴胺的质量比为1:4,混合溶剂中水和乙醇的体积比为3:4,Tris水溶液的浓度为25 mM;混合溶剂加入量3.5L/g C管,为Tris水溶液加入量为1L/g C管。
进一步地,步骤(2)中所述的氯化钴为CoCl2•6H2O;所述的前驱体溶液的制备方法为将氯化钴和2-甲基咪唑分别溶于甲醇中。
进一步地,PDA-C、 CoCl2•6H2O和2-甲基咪唑的质量比为0.02:1.71:5.19。
进一步地,所述的硫酸锰为MnSO4•H2O,硫酸锰溶液的摩尔浓度为5mM,KMnO4溶液的摩尔浓度为5 mM;所述的柠檬酸溶液的摩尔浓度是5 mM。
进一步地,所述的Co-N/C、硫酸锰溶液与KMnO4溶液的投料比为5mg:3mL:3mL;所述的MnO2@Co-N/C与柠檬酸溶液的投料比为1mg:1mL。
本发明中,所述的生物基模板CA-MnO2@Co-N/C磁性微马达的制备方法,包括以下步骤:
(1)PDA-C的制备:将牛角瓜纤维置于N2气氛下高温煅烧得到C管,C管和多巴胺置于乙醇水混合溶剂中混合均匀,然后加入三羟甲基甲胺Tris水溶液,室温下搅拌反应2~3h,过滤搜集产物,烘干得PDA-C;
(2)Co-N/C的制备:将步骤(1)制备的PDA-C均匀分散于氯化钴和2-甲基咪唑组成的前驱体溶液中,进行溶剂热反应,反应结束后,经过滤、洗涤、干燥得ZIF-67/C,ZIF-67/C在N2气氛下高温煅烧得Co-N/C;
(3)CA-MnO2@Co-N/C微马达的制备:步骤(2)中制备的Co-N/C加入到硫酸锰溶液搅拌均匀,缓慢加入KMnO4溶液,搅拌反应20-30 min,过经滤、洗涤、烘干得到MnO2@Co-N/C微马达,MnO2@Co-N/C微马达均匀分散于柠檬酸溶液中,搅拌反应30~60min,经过滤、烘干得到CA-MnO2@Co-N/C微马达。
本发明中,所述的生物基模板CA-MnO2@Co-N/C磁性微马达在苯胺检测中的应用。
本发明中,所述的生物基模板CA-MnO2@Co-N/C磁性微马达在苯胺降解中的应用。
本发明选择一种天然牛角瓜纤维为模板制备C管,提供了一种尺寸适宜的中空管状结构,在其表面均匀生长ZIF-67,通过高温煅烧得到MOF衍生的磁性Co-N/C,在其表面继续原位生长一层MnO2纳米片,最后进行CA修饰。Co-N/C保留了ZIF-67菱形十二面体的形貌,比表面积大,孔洞丰富,避免了纳米颗粒的团聚,其强磁性可实现磁导向,便于回收避免二次污染。Co-N/C是一种很好的纳米酶,也是一种活性很高的类芬顿催化剂,可同时实现污染物的比色检测和芬顿降解。MnO2纳米片可催化分解H2O2产生大量气泡,从微马达表面脱落,同时为其提供反向驱动力。MnO2也具有纳米酶活性和类芬顿活性,其与Co-N/C的协同作用可进一步增强微马达的催化活性,CA修饰使微马达表面带负电荷,可将更多的TMB分子吸附到微马达表面,此外,CA还具有增强类芬顿催化活性的作用,可同时提高微马达的比色检测性能和催化降解能力。因此该微马达可同时实现水体中痕量苯胺的灵敏检测和快速降解。该微马达的多层级结构具有高的比表面积和孔隙度,菱形十二面体的Co-N/C和二维片状MnO2都提供了高暴露的活性位点,便于与污染物的结合。此外,微马达的自驱动性加速了微流体混合,促进苯胺快速吸附到微马达表面与活性物种结合完成检测和降解。
有益效果
本发明设计构建一种以天然牛角瓜纤维为生物模板,在其外表面逐层生长以强磁性的Co-N/C和MnO2纳米片作为功能单元的三维多层级管状微马达,进一步进行CA修饰后增强微马达的纳米酶活性和类芬顿催化活性。MnO2纳米片催化分解H2O2释放大量气泡,为微马达自主运动提供驱动力,确保具有催化活性的微马达在整个污染水体中进行连续贯穿的运动,将其催化分解产生的活性物种均匀分布于污染水体中,其本身的自驱动运动也增加了流体扰动,促进了苯胺分子与微马达的活性位点的接触,快速高效地对水体中的苯胺进行比色检测和催化降解,实现了水体环境中有机污染物的动态检测和降解。
附图说明
图1为生物基模板CA-MnO2@Co-N/C磁性微马达的XRD图谱;
图2为ZIF-67/C、Co-N/C和CA-MnO2@Co-N/C磁性微马达的SEM照片,其中,(a)、(b)为ZIF-67/C的SEM照片,(c)、(d)为Co-N/C的SEM照片,(e)、(f)为CA-MnO2@Co-N/C磁性微马达的SEM照片;
图3为生物基模板CA-MnO2@Co-N/C磁性微马达的磁滞回线图;
图4为生物基模板CA-MnO2@Co-N/C磁性微马达在不同浓度H2O2中运动延时图像、运动轨迹图、运动机理图以及运动速度与H2O2浓度的关系图;其中,(a)-(d)为生物基模板CA-MnO2@Co-N/C磁性微马达在不同浓度H2O2中时间间隔为1s的延时运动图像,(e)为生物基模板CA-MnO2@Co-N/C磁性微马达磁导向运动延时图像,(f)为生物基模板CA-MnO2@Co-N/C磁性微马达在不同浓度H2O2中的运动轨迹图,(g)为生物基模板CA-MnO2@Co-N/C磁性微马达的运动机理图,(h)为生物基模板CA-MnO2@Co-N/C磁性微马达在不同浓度H2O2中的运动速度柱状图;
图5为生物基模板CA-MnO2@Co-N/C磁性微马达比色检测苯胺的紫外可见吸收光谱图及线性关系曲线;其中,(a)为CA-MnO2@Co-N/C磁性微马达显色体系在不同浓度苯胺存在下的紫外可见吸收光谱图,(b)为CA-MnO2@Co-N/C磁性微马达检测苯胺的线性关系的校正曲线(0-100 μM),(c)为CA-MnO2@Co-N/C磁性微马达检测苯胺的线性关系的校正曲线(0-30μM),(d)是苯胺比色检测机理图;
图6为不同降解条件下苯胺的降解率随时间变化的关系图;其中,(a)为不同pH条件下CA-MnO2@Co-N/C磁性微马达对苯胺降解率与时间的关系曲线图,(b)为不同降解体系对苯胺的降解率与时间的关系曲线图,(c)为CA-MnO2@Co-N/C磁性微马达催化降解苯胺的机理图。
具体实施方式
下面将本发明实施例中的技术方案进行清楚、完整的描述,所描述的实施例仅是本发明部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)PDA-C的制备:取1g牛角瓜纤维置于管式炉中,在N2保护下于600℃煅烧1h得到牛角瓜纤维衍生的碳管(C管);称取100 mg C管,均匀分散在150 mL蒸馏水和200 mL乙醇的混合溶剂中,磁力搅拌10 min,加入400 mg多巴胺,继续搅拌,然后加入100 mL Tris的水溶液(25 mM),室温下继续搅拌2 h,过滤收集产物,用蒸馏水洗涤三次,于60℃烘干,得到PDA-C;
(2)Co-N/C的制备:准确称取1.71g CoCl2•6H2O溶解于40 mL甲醇中,搅拌至溶解,加入20 mg 步骤(1)制备的PDA-C,然后加入CoCl2•6H2O溶液(5.19 g 二甲基咪唑,溶解于40mL甲醇),搅拌均匀后将混合物转移至反应釜中,于120℃溶剂热反应4 h,反应结束后,自然冷却至室温,过滤收集样品,用甲醇洗涤3-5次,60℃烘干得ZIF-67/C,ZIF-67/C置于管式炉中,N2气氛下于550℃下煅烧2h,升温速率为1℃/min,得到磁性Co-N/C;
(3)CA-MnO2@Co-N/C微马达的制备:将50 mg步骤(2)中制备的Co-N/C加入到30 mL浓度为5 mM的MnSO4•H2O溶液中,机械搅拌均匀后,缓慢滴加入30 mL浓度为5 mM的KMnO4溶液,继续搅拌反应30 min,经滤产物60℃烘干得到MnO2@Co-N/C微马达;50mg MnO2@Co-N/C微马达均匀分散于50 mL浓度为5 mM的柠檬酸(CA)溶液中,磁力搅拌30 min,过滤、蒸馏水洗涤2次、60℃烘干得到CA-MnO2@Co-N/C微马达。
图1为生物基模板CA-MnO2@Co-N/C磁性微马达的XRD图谱,由图1可知,ZIF-67的衍射峰尖锐,说明结晶度较好,在2θ=7.53°,10.35°,12.71°,14.71°,16.40°,17.91°,22.08°,24.44°和26.61°的衍射峰,分别对应于ZIF-67的(011),(002),(112),(022),(013),(222),(114),(233)和(134)晶面。惰性气氛下高温煅烧后,ZIF-67的衍射峰消失,得到了由ZIF-67衍生的单质Co的衍射峰,在XRD图谱中可以明显看到44.38°,51.56°,和75.81°处的特征衍射峰,其分别对应于单质Co的(111),(200)和(220)晶面(PDF#15-0806)。在其表面原位生长MnO2后,XRD图谱在19.24°,36.82°,37.66°,44.27°,58.93°,和65.82°处的衍射峰,分别对应于MnO2的(111),(311),(222),(400),(511)和(440)晶面(PDF#44-0992)。以上分析表明成功制备了CA-MnO2@Co-N/C磁性微马达。
图2为ZIF-67/C、Co-N/C和CA-MnO2@Co-N/C磁性微马达的SEM照片,其中,(a)、(b)为ZIF-67/C的SEM照片,从图中可以看出,ZIF-67均匀地包裹在C管上,尺寸约为600 nm,呈规则的菱形十二面体;(c)、(d)为Co-N/C的SEM照片,从图中可以明显看出高温煅烧后,由ZIF-67衍生的Co-N/C仍然保持菱形十二面体形貌,主要由单质Co的纳米颗粒组成,煅烧过程中由于配体的消失,在表面留下明显的孔洞;(e)、(f)为CA-MnO2@Co-N/C磁性微马达的SEM照片从图中可以看出,Co-N/C表面均匀包裹一层MnO2纳米片,纳米片厚度约为28 nm,而且并没有破坏Co-N/C的原始形貌。
图3为生物基模板CA-MnO2@Co-N/C磁性微马达的磁滞回线图;从图中可以看出,室温下CA-MnO2@Co-N/C磁性微马达样品的磁滞回线呈经典的S型曲线,说明所制备的微马达具有超顺磁性,其饱和磁化强度为9.37 emu/g。该微马达具有强磁性,在外加磁场的情况下可以迅速响应(图3插图照片),从而为磁导向运动和磁性回收提供了前提。
实施例2
对实施例1中制备的CA-MnO2@Co-N/C磁性微马达在不同浓度H2O2中的运动情况进行研究,结果如图4所示。图4为微马达在不同浓度H2O2中的运动延时图像、运动轨迹、运动机理以及运动速度图;图4(a)-(d)分别是微马达在1 wt%,3 wt%,5 wt%和7 wt%的H2O2中的运动延时图像,从图中可以看出,在微马达尾部明显看到一串气泡,随着H2O2浓度的增大,微马达运动距离越来越远,其运动轨迹主要呈螺旋形,如图4(f)所示;图4(e)是外加磁场后对微马达进行磁导向的运动延时图像,从图中够可以看出微马达的运动方向随着磁铁的位置而发生明显的变化;图4(g)是微马达运动机理图,氧气气泡的产生主要是微马达内层的MnO2纳米片催化分解H2O2产生大量O2气泡,随着气泡的脱落,为微马达提供反向冲力,推动微马达向相反方向运动;从图4(h) 为CA-MnO2@Co-N/C磁性微马达在不同浓度H2O2中的运动速度柱状,从图中可以看出,随着H2O2浓度的增大,微马达运动速度越来越高,在7 wt%的H2O2中,其运动速度达到了398.83 μm/s。
实施例3
苯胺的比色检测
配制不同浓度的苯胺储备液(0-100 μM),取不同浓度的苯胺溶液200 μL分别加入到含2.4 mL NaAc-HAc缓冲溶液(0.2 M,pH 5.0)中,100 μL 浓度为10 mM的TMB,100 μL 浓度为0.5 mg/mL的微马达混悬液,200 μL 浓度为100 mM的H2O2溶液的显色体系中,30 ℃孵育5 min,离心去除微马达后,用紫外可见分光光度计测量652 nm的吸光度。
图5为CA-MnO2@Co-N/C磁性微马达比色检测苯胺的紫外可见吸收光谱图及线性关系曲线。图5(a)是CA-MnO2@Co-N/C磁性微马达显色体系在不同浓度苯胺存在下的紫外可见吸收光谱图,图5(b)和5(c)是CA-MnO2@Co-N/C磁性微马达比色检测苯胺的线性关系校正曲线图,图5(d)是苯胺比色检测的机理图。由图5(a)可知,在0~100 μM范围内,随着苯胺浓度的增加,显色体系在652 nm处的吸光度逐渐降低。从图5(b)和5(c)可以看出,显色体系溶液的颜色由深蓝色逐渐变为无色,在652 nm处的吸光度与苯胺浓度呈良好的线性关系,0-30μM范围内的线性回归方程为Abs=0.68879-0.01638[s] (R2=0.98991);苯胺的检测限(LOD)为0.185 μM (S/N=3)。由图5(d)可知,微马达中的MnO2和Co-N/C具有类过氧化物酶活性,酸性条件下可催化分解H2O2产生强氧化性的羟基自由基(•OH),将无色的TMB氧化为蓝色的oxTMB。还原性苯胺加入显色体系后,可通过氧化还原反应将oxTMB还原为无色的TMB。通过这种肉眼可见的颜色变化实现对苯胺的比色检测。
实施例4
苯胺的催化降解
配制浓度为1 g/L的苯胺储备液50 mL。降解反应总体积控制在V=10 mL。取五只干净的离心管(50 mL),分别编号1#、2#、3#、4#、5#,依次加入pH 3.0,4.0,5.0,6.0,7.0缓冲液8.9 mL,苯胺储备液100 μL,最终苯胺浓度是10 mg/L,分别称取2 mg马达加入到上述五支离心管中,最后加入1 mL 30%H2O2,H2O2最终浓度是3%。开始计录降解时间,分别在降解反应开始后的0 min,10 min,30 min,60 min,90 min,120 min,150 min,180 min取出1 mL溶液放入2 mL离心管中,离心后取200 μL上清液加入到显色体系中,静置5 min,离心取上清液,用紫外可见分光光度计测量652 nm的吸光度。
取六只干净的离心管(50 mL),分别编号1#、2#、3#、4#、5#、6#,分别加入pH 5.0缓冲液8.9 mL,再分别取100 μL苯胺储备液加入到上述缓冲溶液中。在1#离心管中加入1 mL30% H2O2;在2#离心管中依次加入2 mg Co-N/C,1 mL 30% H2O2;在3#离心管中依次加入2mg MnO2,1 mL 30% H2O2;在4#离心管中依次加入2 mg MnO2@Co-N/C磁性微马达,1 mL 30%H2O2;在5#离心管中依次加入2 mg CA-MnO2@Co-N/C磁性微马达,1 mL 30% H2O2;在6#离心管中依次加入2 mg CA-MnO2@Co-N/C磁性微马达,1 mL蒸馏水,磁力搅拌;分别在降解反应开始后的0 min,10 min,30 min,60 min,90 min,120 min,150 min,180 min取出1 mL降解反应溶液放入2 mL离心管中,离心后取200 μL上清液加入到显色体系中。静置5 min,离心取上清液,用紫外可见分光光度计测量652 nm的吸光度。
图6为不同条件下苯胺的降解率随时间变化的关系图。图6(a)是不同pH条件下CA-MnO2@Co-N/C磁性微马达对苯胺的降解率与时间关系曲线,图6(b)是不同降解体系对苯胺的降解率与时间的关系曲线,图6(c)是CA-MnO2@Co-N/C磁性微马达催化降解苯胺的机理图。由图6(a)可知,CA-MnO2@Co-N/C磁性微马达在pH 5.0时催化活性最高,180 min时苯胺的去除率达到了82.8%。由图6(b)可知在CA-MnO2@Co-N/C磁性微马达的降解体系中,苯胺的去除率最高,约为80%,而单独的Co-N/C和MnO2对苯胺的降解率较低,在180 min时苯胺的去除率分别约为58%%和60%,这主要因为CA-MnO2@Co-N/C磁性微马达的自主运动、CA增强类芬顿催化活性和O2气泡的脱落和破裂都有助于增强微马达降解体系的催化性能;微马达的自主运动和气泡的脱落和破裂能够增强溶液的扰动和污染物的主动扩散,从而提高催化剂与苯胺分子的碰撞几率,而且Co-N/C和MnO2的协同作用也进一步增强了CA-MnO2@Co-N/C磁性微马达降解体系的降解能力。从图6(c)中可以看出,CA-MnO2@Co-N/C磁性微马达催化降解苯胺主要是Co-N/C和MnO2的类芬顿催化活性,在H2O2存在下可产生大量活性基团•OH,强氧化性的•OH将苯胺降解为一系列中间产物,随着 •OH的进一步氧化,中间产物继续分解为小分子物质,最终矿化为CO2和H2O。

Claims (10)

1.一种生物基模板CA-MnO2@Co-N/C磁性微马达,其特征在于,通过以下方法制备得到:
(1)PDA-C的制备:将牛角瓜纤维置于N2气氛下高温煅烧得到C管,C管和多巴胺置于乙醇水混合溶剂中混合均匀,然后加入三羟甲基氨基甲烷Tris水溶液,室温下搅拌反应2~3h,过滤收集产物,烘干得PDA-C;
(2)Co-N/C的制备:将步骤(1)制备的PDA-C均匀分散于氯化钴和2-甲基咪唑组成的前驱体溶液中,进行溶剂热反应,反应结束后,经过滤、洗涤、干燥得ZIF-67/C,ZIF-67/C在N2气氛下高温煅烧得Co-N/C;
(3)CA-MnO2@Co-N/C微马达的制备:步骤(2)中制备的Co-N/C加入到硫酸锰溶液中搅拌均匀,缓慢加入KMnO4溶液,搅拌反应20-30 min,过经滤、洗涤、烘干得到MnO2@Co-N/C微马达,MnO2@Co-N/C微马达均匀分散于柠檬酸溶液中,搅拌反应30~60min,经过滤、烘干得到CA-MnO2@Co-N/C微马达。
2.根据权利要求1所述的生物基模板CA-MnO2@Co-N/C磁性微马达,其特征在于,步骤(1)中高温煅烧温度为500-600℃,煅烧时间为1~2h;步骤(2)中溶剂热反应温度为120~130℃,反应时间为4~5h;步骤(2)中煅烧温度为500~600℃,煅烧时间为1~2h,升温速率为0.8~1.5℃/min。
3. 根据权利要求1所述的生物基模板CA-MnO2@Co-N/C磁性微马达,其特征在于,步骤(1)中C管与多巴胺的质量比为1:4,混合溶剂中水和乙醇的体积比为3:4,Tris水溶液的浓度为25 mM;混合溶剂加入量3.5L/g C管,Tris水溶液加入量为1L/g C管。
4.根据权利要求1所述的生物基模板CA-MnO2@Co-N/C磁性微马达,其特征在于,步骤(2)中所述的氯化钴为CoCl2•6H2O;所述的前驱体溶液的制备方法为将氯化钴和2-甲基咪唑分别溶于甲醇中。
5.根据权利要求4所述的生物基模板CA-MnO2@Co-N/C磁性微马达,其特征在于,PDA-C、CoCl2•6H2O和2-甲基咪唑的质量比为0.02:1.71:5.19。
6. 根据权利要求1所述的生物基模板CA-MnO2@Co-N/C磁性微马达,其特征在于,所述的硫酸锰为MnSO4•H2O,硫酸锰溶液的摩尔浓度为5mM,KMnO4溶液的摩尔浓度为5 mM;所述的柠檬酸溶液的摩尔浓度是5 mM。
7.根据权利要求6所述的生物基模板CA-MnO2@Co-N/C磁性微马达,其特征在于,所述的Co-N/C、硫酸锰溶液与KMnO4溶液的投料比为5mg:3mL:3mL;所述的MnO2@Co-N/C与柠檬酸溶液的投料比为1mg:1mL。
8.一种权利要求1~7任一项权利要求所述的生物基模板CA-MnO2@Co-N/C磁性微马达的制备方法,其特征在于,包括以下步骤:
(1)PDA-C的制备:将牛角瓜纤维置于N2气氛下高温煅烧得到C管,C管和多巴胺置于乙醇水混合溶剂中混合均匀,然后加入三羟甲基氨基甲烷Tris水溶液,室温下搅拌反应2~3h,过滤收集产物,烘干得PDA-C;
(2)Co-N/C的制备:将步骤(1)制备的PDA-C均匀分散于氯化钴和2-甲基咪唑组成的前驱体溶液中,进行溶剂热反应,反应结束后,经过滤、洗涤、干燥得ZIF-67/C,ZIF-67/C在N2气氛下高温煅烧得Co-N/C;
(3)CA-MnO2@Co-N/C微马达的制备:步骤(2)中制备的Co-N/C加入到硫酸锰溶液中搅拌均匀,缓慢加入KMnO4溶液,搅拌反应20-30 min,过经滤、洗涤、烘干得到MnO2@Co-N/C微马达,MnO2@Co-N/C微马达均匀分散于柠檬酸溶液中,搅拌反应30~60min,经过滤、烘干得到CA-MnO2@Co-N/C微马达。
9.一种权利要求1~7任一项权利要求所述的生物基模板CA-MnO2@Co-N/C磁性微马达在苯胺检测中的应用。
10.一种权利要求1~7任一项权利要求所述的生物基模板CA-MnO2@Co-N/C磁性微马达在苯胺降解中的应用。
CN202211693153.XA 2022-12-28 2022-12-28 一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用 Active CN116196973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211693153.XA CN116196973B (zh) 2022-12-28 2022-12-28 一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211693153.XA CN116196973B (zh) 2022-12-28 2022-12-28 一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116196973A CN116196973A (zh) 2023-06-02
CN116196973B true CN116196973B (zh) 2024-05-14

Family

ID=86516358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211693153.XA Active CN116196973B (zh) 2022-12-28 2022-12-28 一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116196973B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331872A (zh) * 2017-07-02 2017-11-07 湖南科技大学 一种基于石墨烯/碳纳米管的二氧化锰/银复合纳米材料的制备方法及其应用
CN108686649A (zh) * 2018-05-09 2018-10-23 济南大学 一种基于脱脂棉生物形态的Mn3O4/ZnO/ACFs微马达光催化剂及其应用
CN111495367A (zh) * 2020-06-01 2020-08-07 西安科技大学 一种磁性聚苯胺-多孔碳-Fe3O4光芬顿催化剂的制备方法及其应用
CN111715254A (zh) * 2019-03-19 2020-09-29 南开大学 一种氮修饰多孔碳包覆钴纳米颗粒催化剂的制备方法
CN112705269A (zh) * 2020-11-25 2021-04-27 哈尔滨工业大学(深圳) 沸石咪唑酯骨架zif67四氧化三铁微米马达的制备及其应用
KR20220039643A (ko) * 2020-09-21 2022-03-29 포항공과대학교 산학협력단 삼중 응답 나노 모터, 이의 제조에 사용되는 조성물 및 이의 제조방법
CN115487864A (zh) * 2022-05-31 2022-12-20 济南大学 一种催化型GOx@Fe-MOF@HNTs管状微纳马达及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102476054B (zh) * 2010-11-29 2013-12-04 中国科学院大连化学物理研究所 一种Ag/MnyOx/C催化剂及其制备和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331872A (zh) * 2017-07-02 2017-11-07 湖南科技大学 一种基于石墨烯/碳纳米管的二氧化锰/银复合纳米材料的制备方法及其应用
CN108686649A (zh) * 2018-05-09 2018-10-23 济南大学 一种基于脱脂棉生物形态的Mn3O4/ZnO/ACFs微马达光催化剂及其应用
CN111715254A (zh) * 2019-03-19 2020-09-29 南开大学 一种氮修饰多孔碳包覆钴纳米颗粒催化剂的制备方法
CN111495367A (zh) * 2020-06-01 2020-08-07 西安科技大学 一种磁性聚苯胺-多孔碳-Fe3O4光芬顿催化剂的制备方法及其应用
KR20220039643A (ko) * 2020-09-21 2022-03-29 포항공과대학교 산학협력단 삼중 응답 나노 모터, 이의 제조에 사용되는 조성물 및 이의 제조방법
CN112705269A (zh) * 2020-11-25 2021-04-27 哈尔滨工业大学(深圳) 沸石咪唑酯骨架zif67四氧化三铁微米马达的制备及其应用
CN115487864A (zh) * 2022-05-31 2022-12-20 济南大学 一种催化型GOx@Fe-MOF@HNTs管状微纳马达及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Metal-Organic-Framework based Catalytic Micromotor for Enhanced Water Decontamination";Shengnan Wang等;《ChemistrySelect》;20220121;第7卷(第3期);e202104034 (1-5) *

Also Published As

Publication number Publication date
CN116196973A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
Zhu et al. Research progress on removal of phthalates pollutants from environment
Ma et al. Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor
Akhtar et al. Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: a novel approach
WO2013100262A1 (en) Method for treating water containing organics
PT103332A (pt) Sistema de biossorção produzido a partir de biofilmes suportados em zeólito faujasite (fau), processo para a obtenção e sua utilização na remoção de crómio hexavalente (cr(vi))
Gao et al. Facile synthesis of cobalt doped BiOCl ultrathin nanosheets as superior photocatalyst for degradation of carbamazepine under visible light
CN110038518B (zh) 一种尺寸可控的zif-8磁性自驱动微管马达吸附剂及其应用
CN102020359B (zh) 利用黄孢原毛平革菌同时去除废水中镉和二氯酚的方法
CN102836702A (zh) 一种过渡金属离子印迹负载型M-POPD-TiO2-漂珠复合光催化剂及其制备方法和应用
Senila et al. The potential application of natural clinoptilolite-rich zeolite as support for bacterial community formation for wastewater treatment
CN104211126A (zh) 一种载铁介孔硅复合材料及其制备方法和应用
CN109126691B (zh) 一种用于净化水中四环素的改性方解石及其制备方法
CN116196973B (zh) 一种生物基模板CA-MnO2@Co-N/C磁性微马达及其制备方法和应用
CN113813919A (zh) 一种氨基化生物质碳材料制备方法及其应用
CN104399531A (zh) 一种AgI基无机-有机杂化半导体材料的合成及光催化降解染料的应用
Wei et al. Coupling membrane catalysis and biodegradation for nitric oxide removal in a novel hybird catalytic membrane biofilm reactor
Qu et al. Optimizing concentration and interaction mechanism of Demodesmus sp. and Achromobacter pulmonis sp. consortium to evaluate their potential for dibutyl phthalate removal from synthetic wastewater
CN109092360A (zh) 一种用于催化降解有机物的纳米杂化凝胶膜的制备方法
Kassim et al. Rapid and facile chemical synthesis of Fe3O4/biochar nanocomposite for the adsorptive removal of fluoroquinolones from aqueous solution
CN114984980B (zh) 一种双功能FeCo2O4-CdS管状微马达及其制备方法和应用
Lakshmi et al. Removal of pharmaceutical Compounds: Overview of Treatment methods
CN111282600B (zh) 一种混合铁氧化物纳米材料及其仿生矿化方法和应用
KR20170101449A (ko) 연안 표층 퇴적물 개선제
CN116571250A (zh) 一种基于梧桐果绒毛的CuAl-LDHs@MnO2-C管状微马达及制备方法和应用
CN107500406A (zh) 含苯甲酸废水的处理方法以及苯甲酸厌氧生物降解方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant