CN116183695B - 一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用 - Google Patents

一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用 Download PDF

Info

Publication number
CN116183695B
CN116183695B CN202310013726.8A CN202310013726A CN116183695B CN 116183695 B CN116183695 B CN 116183695B CN 202310013726 A CN202310013726 A CN 202310013726A CN 116183695 B CN116183695 B CN 116183695B
Authority
CN
China
Prior art keywords
microelectrode
layer
pedot
microelectrode array
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310013726.8A
Other languages
English (en)
Other versions
CN116183695A (zh
Inventor
吴硕
逄弘宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202310013726.8A priority Critical patent/CN116183695B/zh
Publication of CN116183695A publication Critical patent/CN116183695A/zh
Application granted granted Critical
Publication of CN116183695B publication Critical patent/CN116183695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明属于微电极阵列电化学检测领域,提供一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用。采用标准的微纳加工工艺制备的微电极阵列包括衬底、黏附层、导电层、绝缘层和特异性传感电极,相邻两个微电极的距离远大于十倍微电极的尺寸,有效的避免了微电极电信号之间的串扰;采用电化学沉积法对传感电极修饰选择性修饰Pt‑black/PEDOT和PEDOT膜,分别用于H2O2和DA检测,灵敏度分别为45.2nA/μM/mm2和38.1nA/μM/mm2。本发明的微电极阵列的制备工艺具有支持低成本、大批量生产的潜力,且具备同时检测H2O2和DA的能力,响应时间短,彼此信号之间无串扰。

Description

一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用
技术领域
本发明属于微电极阵列多组分检测领域,特别涉及一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用。
背景技术
活性氧(ROS)是生物体内有氧代谢形成的产物,它参与了包括能量代谢以及对增殖信号的响应等不同细胞功能的氧化还原过程。过氧化氢(H2O2)作为ROS的一种,可以穿透生物膜并扩散,并且和羟基自由基以及氧负离子比较,寿命更长,因此更适合作为信号分子。H2O2作为生物体系中存在的一种重要小分子,在许多生理过程中发挥重要作用。由于高浓度的H2O2能够损伤、脂质和蛋白质以及DNA,当正常细胞中的H2O2含量过度升高时,细胞可以被过氧化氢直接或间接地诱导,发生恶性转化,最终癌变。同时研究发现,它的异常表达对心血管疾病以及神经性推行疾病也有很大的关联性。
多巴胺(DA)是在人体及其他哺乳动物神经中枢系统中分泌的一种儿茶酚胺类的神经传导递质,是一种由其前体化学物质左旋多巴分子去除羧基而合成的胺。它在肾脏、血管、消化系统、免疫系统、激素系统和中枢神经系统中起着重要作用,可以促进心脏保持兴奋、增强心脏中肌肉收缩、扩张内脏的血管和增加肾血流量,可以用来治疗突发性心肌梗塞、支气管哮喘、肾功能衰竭以及心源性休克等多种疾病。DA作为中枢系统的一种主要的神经递质,在记忆调节、身体运动、睡眠-觉醒周期、学习、认知技能、信息流、感知和压力反应等方面起着重要的作用,广泛存在于大脑和生物体液中。人血和血清中DA水平的变化可作为某些神经系统疾病的指标。
有许多研究指出,H2O2和DA可以作为诊断帕金森病的两种有效的生物标志物,其中,DA浓度与H2O2浓度密切相关。例如,DA的氧化可在神经元中产生H2O2,其衍生物可促进线粒体释放H2O2。同时,内源H2O2可作为信号分子,通过ATP敏感的K+通道调节轴突释放的DA。综上所述,同时检测DA和H2O2对PD的诊断/治疗以及了解两者之间的相互作用具有重要意义。
迄今为止,许多方法如荧光、分光光度法、液相色谱法和电化学传感技术已被开发用于有效检测DA和H2O2。其中,电化学传感器因其灵敏度高、检出限低、时间分辨率高以及易于最小化到微米级而被认为是最有前途的技术,详见C.He,M.Tao,C.Zhang,Y.He,W.Xu,Y.Liu,W.Zhu,Microelectrode-Based Electrochemical Sensing Technology for inVivo Detection of Dopamine:Recent Developments and Future Prospects,Crit.Rev.Anal.Chem,2022,52,544-554。然而,传统的电化学传感器是单一物质检测,难以实现多种物质同时检测。此外,常规电极需要多次清洗和修改才能重复使用,这需要大量的样品和多次实验,造成额外的时间和成本浪费。
针对目前需求,我们将微电极阵列与电化学传感方法的结合,制备了一种能够同时DA和H2O2的双功能微电极阵列,采用标准的微纳制造技术,设计并定义了微电极阵列的尺寸和分布,可以在一个平台上集成多种功能,实现高时空分辨率的多种生物分子的联合监测。
发明内容
本发明的目的是提供一种基于双功能微电极阵列的传感器,可用于DA和H2O2的同时检测,且具有响应时间短、选择性好、多信号之间无串扰等优点。
本发明的技术方案:
一种检测过氧化氢和多巴胺双组分的微电极阵列,包括衬底、铬黏附层、导电层、绝缘层和特异性敏感层;
衬底的材料为玻璃,单个玻璃衬底上包含四个微电极阵列,每个微电极阵列含有多个微电极,每个微电极为20×20um的正方形,相邻两个微电极的距离为750um,远大于十倍微电极的尺寸,因此有效的避免了微电极电信号之间的串扰。
通过磁控溅射的方式在衬底上镀膜;衬底上为铬黏附层,其厚度为20nm;铬黏附层上为金导电层,其厚度为100nm;金导电层外使用SU8封装绝缘层,其厚度为2um,将金导电层紧密包覆住,并露出微电极部分;
特异性敏感层作为传感电极,为在露出的金导电层上电化学沉积的铂黑纳米粒子层以及聚3,4-乙烯二氧噻吩薄膜层,即分别形成Pt-black/PEDOT电极和PEDOT电极;其中铂黑纳米粒子作为对H2O2的敏感材料,聚3,4-乙烯二氧噻吩薄膜既作为防污涂层又作为DA的敏感材料。
通过磁控溅射的方式在衬底上镀膜;衬底上为铬黏附层,其厚度为20nm;铬黏附层上为金导电层,其厚度为100nm,其优点是所形成的薄膜致密且连续。金导电层外使用SU8封装绝缘层,其厚度为2um,将金导电层紧密包覆住,并露出微电极部分,避免漏电的情况发生。特异性敏感层作为传感电极,为在金导电层上电化学沉积的铂黑纳米粒子层(Pt-black)以及聚3,4-乙烯二氧噻吩薄膜层(PEDOT),其中Pt-black作为对H2O2的敏感材料,PEDOT薄膜既可作为防污涂层又可以作为DA的敏感材料。
Pt-black电极表面中毒是长期以来存在的问题,这常常是由于体系中的蛋白质等有机生物分子吸附在其表面,使其表面的原有的催化活性位点钝化失活引起的,将PEDOT薄膜沉积到Pt-black电极可有效解决这一问题,该电极对H2O2检测的灵敏度为45.2nA/μM/mm2。PEDOT电极对DA检测的灵敏度为38.1nA/μM/mm2
一种微电极阵列同时检测过氧化氢和多巴胺双组分的方法,向4mL稀释50倍的人血清体系中连续加入3次10μL、0.2MH2O2溶液,Pt-black/PEDOT电极立即有明显的响应,PEDOT电极的信号平稳无变化;再向上述体系中连续加入3次10μL、0.2MDA,PEDOT电极立即有明显的电流变化,Pt-black/PEDOT电极的信号平稳无变化,微电极阵列同时对H2O2和DA双组分进行检测,相互之间无干扰。
具体步骤如下:
(1)用多通道电化学工作站同时记录相邻四个微电极在5mmol/L铁氰化钾溶液中的循环伏安曲线。扫速:50mV/s,扫描范围:-0.1~0.6V。循环伏安图显示了微电极的特征S形特征曲线(图1)。
(2)配制pH=7.4、浓度为10mM的PBS缓冲溶液,取10μL、20mM的H2O2溶液加入4mL上述PBS溶液中,用多通道电化学工作站记录Pt-black电极以及Pt-black/PEDOT在有无H2O2循环伏安曲线,扫速:50mV/s,扫描范围:-0.5~0.9V,根据循环伏安图可以得出:H2O2在Pt-black/PEDOT电极上的还原电位为-0.2V(图2)。
(3)取10μL、20mM的DA溶液加入4mL上述PBS溶液中,用多通道电化学工作站记录PEDOT电极的循环伏安曲线,扫速:50mV/s,扫描范围:-0.5~0.9V,根据循环伏安图可以得出:DA在PEDOT电极上的氧化电位为0.5V(图3)。
(4)将80μL人血清用PBS溶液稀释到4mL,用多通道电化学工作站对Pt-black/PEDOT电极施加-0.2V的电压,在上述溶液中连续添加5次10μL、20mM的H2O2溶液,记录电流-时间曲线,由此得到血清中H2O2浓度的工作曲线(图4)。
(5)将80μL人血清用PBS溶液稀释到4mL,用多通道电化学工作站对PEDOT电极施加0.5V的电压,在上述溶液中连续添加5次10μL、20mM的DA溶液,记录电流-时间曲线,由此得到血清中DA浓度的工作曲线(图5)。
(6)将80μL人血清用PBS溶液稀释到4mL,用多通道电化学工作站分别对Pt-black/PEDOT电极和PEDOT电极施加-0.2V和0.5V的电压,向该体系中分别连续添加3次10μL、0.2M的DA和H2O2溶液,记录电流-时间曲线(图6)。
本发明的有益效果:
(1)上述技术方案制备的微电极阵列传感器可以实现同时对体系中H2O2和DA的双模检测,二者电流信号之间无串扰,具有较强的抗沾污性能以及较高的灵敏度和良好的选择性,响应迅速,具有较强的应用价值。
(2)上述技术方案中,微电极阵列的制备过程中包括光刻、磁控溅射镀膜等工艺与商业芯片制备工艺相兼容,具有支持低成本、大批量生产的潜力。
附图说明
图1a、图1b、图1c、图1d分别为本发明的四个相邻微电极在5mM铁氰化钾中的循环伏安曲线;
图2为Pt-black电极以及Pt-black/PEDOT电极在有无H2O2存在的PBS中的循环伏安曲线;
图3为PEDOT电极在有无DA存在的PBS溶液中的循环伏安曲线;
图4为Pt-black/PEDOT电极在稀释的血清中对H2O2响应曲线;
图5为PEDOT电极在稀释的血清中对DA响应曲线;
图6为本发明微电极阵列同时检测H2O2和DA;
图7为本发明器件实物图;
图8a为不同沉积条件的电极灵敏度对比,图8b为浸泡DMEM前后Pt-black/PEDOT电极以及Pt-black电极电流峰值对比,图8c上述电极对H2O2响应的电流时间曲线;
图9为Pt-black/PEDOT电极的选择性;
图10为PEDOT电极对DA响应的电流时间曲线;
图11为PEDOT电极的选择性。
具体实施方式
下面将结合实施例和附图对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。
实施例1
微电极阵列的制备:
(1)将玻璃衬底依次用玻璃洗液、食人鱼洗液清洗,用纯净水冲洗干净,然后用氮气吹干,200℃加热10分钟,最后用氧等离子体清洗机清洗300秒以供后续使用。将S1805光刻胶用匀胶机旋涂到玻璃表面,115℃烘烤2分钟后,用光刻机曝光20秒,在ZX-238显影液中显影1分钟后用纯净水冲洗,再用氮气吹干。用氧等离子体处理150秒。
(2)使用高真空磁控溅射系统在上述样品表面镀膜,180W,溅射2分钟铬;30W,溅射4分钟金。之后放在除胶液中70℃加热10分钟,将多余的金除去,留下所需要的金线条。
(3)将SU8光刻胶用匀胶机旋涂到上述样品表面,105℃前烘2分钟,用光刻机曝光100秒后,105℃后烘两分钟,用SU8显影液显影1分钟后用异丙醇冲洗干净。200℃固化30分钟,使SU8完全绝缘。器件实物图如图7所示。
实施例2
Pt-black/PEDOT电极的制备:
(1)配制4mL含有0.1M氯化钾、1mM醋酸铅和5mM氯铂酸的水溶液,施加-0.2V的电压,当沉积电流分别达到0.3,0.4,0.5,0.6μA的时候,终止电沉积,对这四个电极进行电测试,得出H2O2浓度的工作曲线,由图8a可以看出,当沉积终电流是0.6μA的时候,电极对H2O2响应的灵敏度最高,但是此时的噪声信号也较高,最终选择沉积终电流为0.5μA的作为后续实验条件,配制4ml含有10mM EDOT和8mg聚苯乙烯磺酸钠的水溶液,在Pt-black电极上施加1V的电压,分别电沉积10、20、30、40秒PEDOT薄膜得到Pt-black/PEDOT电极,分别记录新鲜Pt-black电极、Pt-black/PEDOT电极以及浸入DMEM生物培养基中浸泡12小时后对H2O2循环伏安响应的电流峰值对比,从图8b中可以得出,修饰20秒PEDOT薄膜的Pt-black/PEDOT电极灵敏度仍保持原来的60%以上,而不加PEDOT膜修饰的裸Pt-black电极,在浸泡DMEM培养基12小时后,已经完全失活。上述电极对H2O2响应的电流时间曲线在图8c中给出。上述结果表明,Pt-black/PEDOT电极可以对H2O2有较好的响应,并且具备较强的抗沾污性能。
实施例3
在4mLPBS(10mM,pH=7.4)溶液中,依次加入终浓度1mM谷胱甘肽(GSH)、半胱氨酸(Cys)、赖氨酸(Lys)、抗坏血酸(AA)、多巴胺(DA)、葡萄糖(Glu)、氯化钠(NaCl)、氯化钾(KCl)和200μMH2O2溶液,用电化学工作站记录在-0.2V恒电位条件下,Pt-black/PEDOT电极响应的电流时间曲线。由图9可见,该电极对其他分析物没有明显的电流响应。
上述结果表明,Pt-black/PEDOT电极对H2O2有很好的选择性。
实施例4
PEDOT电极的制备:
配制4ml含有10mM EDOT和8mg聚苯乙烯磺酸钠的水溶液,在Au微电极上施加1V的电压,电沉积80秒,得到PEDOT电极。在pH=7.4、浓度为10mM的PBS缓冲溶液中连续添加10μL,4mM(3次)、8mM(2次)、16mM(3次)的DA溶液,记录电流-时间曲线,由此得到DA浓度的工作曲线(图10)。上述结果表明,PEDOT电极可以对DA有较灵敏的电流响应。
实施例5
在4mLPBS(10mM,pH=7.4)溶液中,依次加入终浓度1mM谷胱甘肽(GSH)、半胱氨酸(Cys)、赖氨酸(Lys)、过氧化氢(H2O2)、氯化钾(KCl)、氯化钠(NaCl)和200μMDA溶液,用电化学工作站记录在0.5V恒电位条件下,PEDOT电极响应的电流时间曲线。由图11可见,该电极对其他分析物没有明显的电流响应。
上述结果表明,PEDOT电极对DA有很好的选择性。
实施例6
将80μL人血清用PBS溶液稀释到4mL,用多通道电化学工作站分别对Pt-black/PEDOT电极和PEDOT电极施加-0.2V和0.5V的电压,向该体系中分别连续添加5次10μL,20mM的DA和H2O2溶液,记录电流-时间曲线。计算得出加标回收率平均值分别为97.0%和98.2%,相对标准偏差分别为2.1%和1.9%。
上述结果表明,该微电极阵列可以应用于生物体系中H2O2和DA的检测。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。

Claims (2)

1.一种检测过氧化氢和多巴胺双组分的微电极阵列,其特征在于,该微电极阵列包括衬底、铬黏附层、导电层、绝缘层和特异性敏感层;
衬底的材料为玻璃,单个玻璃衬底上包含四个微电极阵列,每个微电极阵列含有多个微电极,每个微电极为20×20μm的正方形,相邻两个微电极的距离为750μm;
通过磁控溅射的方式在衬底上镀膜;衬底上为铬黏附层,其厚度为20nm;铬黏附层上为金导电层,其厚度为100nm;金导电层外使用SU8封装绝缘层,其厚度为2μm,将金导电层紧密包覆住,并露出微电极部分;
特异性敏感层作为传感电极,为在露出的金导电层上电化学沉积的铂黑纳米粒子层以及聚3,4-乙烯二氧噻吩薄膜层,即分别形成Pt-black/PEDOT电极和PEDOT电极;其中铂黑纳米粒子作为对H2O2的敏感材料,聚3,4-乙烯二氧噻吩薄膜既作为防污涂层又作为DA的敏感材料。
2.权利要求1所述的微电极阵列用于同时检测过氧化氢和多巴胺双组分的方法,其特征在于,向4mL稀释50倍的人血清体系中连续加入3次10μL、0.2MH2O2溶液,Pt-black/PEDOT电极立即有明显的响应,PEDOT电极的信号平稳无变化;再向上述体系中连续加入3次10μL、0.2MDA,PEDOT电极立即有明显的电流变化,Pt-black/PEDOT电极的信号平稳无变化,微电极阵列同时对H2O2和DA双组分进行检测,相互之间无干扰。
CN202310013726.8A 2023-01-05 2023-01-05 一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用 Active CN116183695B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310013726.8A CN116183695B (zh) 2023-01-05 2023-01-05 一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310013726.8A CN116183695B (zh) 2023-01-05 2023-01-05 一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用

Publications (2)

Publication Number Publication Date
CN116183695A CN116183695A (zh) 2023-05-30
CN116183695B true CN116183695B (zh) 2024-05-24

Family

ID=86451641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310013726.8A Active CN116183695B (zh) 2023-01-05 2023-01-05 一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用

Country Status (1)

Country Link
CN (1) CN116183695B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149267A (zh) * 2013-02-06 2013-06-12 河南省科学院高新技术研究中心 一种检测多巴胺的电化学生物传感器及其制备方法
CN111982988A (zh) * 2020-08-31 2020-11-24 中国科学院空天信息创新研究院 用于多巴胺释放的检测的微电极阵列芯片及制备方法
CN112006685A (zh) * 2020-09-07 2020-12-01 中国科学院空天信息创新研究院 皮层癫痫脑功能定位柔性微纳电极阵列及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287699B2 (en) * 2013-04-16 2019-05-14 Purdue Research Foundation Sensors and methods of manufacture thereof
WO2020051366A1 (en) * 2018-09-05 2020-03-12 Axosim, Inc. Microelectrode array and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149267A (zh) * 2013-02-06 2013-06-12 河南省科学院高新技术研究中心 一种检测多巴胺的电化学生物传感器及其制备方法
CN111982988A (zh) * 2020-08-31 2020-11-24 中国科学院空天信息创新研究院 用于多巴胺释放的检测的微电极阵列芯片及制备方法
CN112006685A (zh) * 2020-09-07 2020-12-01 中国科学院空天信息创新研究院 皮层癫痫脑功能定位柔性微纳电极阵列及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Fractal form PEDOT/Au assemblies as thin-film neural interface materials;Katarzyna Krukiewicz et al.;Biomedical Materials;20180704;第13卷(第5期);全文 *
Simultaneous electrochemical detection of dopamine and hydrogen peroxide based on bifunctional microelectrode array;Hongyu Pang et al.;Journal of Materials Science:Materials in Electronics;20230404;第34卷(第883期);全文 *
Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids;Sekli-Belaidi, Fadhila et al.;Journal of Electroanalytical Chemistry;20100901;第647卷(第2期);159-168 *
王保光 ; 邱吟 ; 胡海峰 ; 张雪华 ; 何声太 ; 贺涛 ; .聚3,4-乙撑二氧噻吩/金复合电极的制备及其在多巴胺检测中的应用.应用化工.2015,(03),全文. *
神经刺激/记录f MEA的高性能3D结构铂纳米镀层的研究;黄兆岭 等;稀有金属材料与工程;20201015;第49卷(第10期);3536-3543 *

Also Published As

Publication number Publication date
CN116183695A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
Karimi-Maleh et al. A critical review on the use of potentiometric based biosensors for biomarkers detection
Bartlett et al. An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly (aniline) film
Chowdhury et al. Highly sensitive electrochemical biosensor for glucose, DNA and protein using gold-polyaniline nanocomposites as a common matrix
Cai et al. Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrations
Niwa Electroanalysis with interdigitated array microelectrodes
Pereira et al. Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles
Liu et al. Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode
WO2019214363A1 (zh) 无酶的葡萄糖电化学传感器及其检测方法
EP0251915A2 (en) Enzyme sensor
US20020028441A1 (en) Detection of molecules and molecule complexes
Wu et al. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode
Zhang et al. Simultaneous voltammetric detection of dopamine, ascorbic acid and uric acid using a poly (2-(N-morpholine) ethane sulfonic acid)/RGO modified electrode
Lata et al. L-amino acid biosensor based on L-amino acid oxidase immobilized onto NiHCNFe/c-MWCNT/PPy/GC electrode
CN108680632A (zh) 一种pet基底薄膜金电极葡萄糖传感器的制备方法及其应用
Deng et al. Label-free electrochemical sensing platform for the detection of protease
CN113311038B (zh) 一种dna生物传感器的分子识别部分、其制备和应用
CN116183695B (zh) 一种检测过氧化氢和多巴胺双组分的微电极阵列及其应用
JP3527185B2 (ja) 生体組織の電気化学計測方法
Zhan et al. An electrochemical microbiosensor for serotonin based on surface imprinted layer coordinated bimetal functionalized acupuncture needle
Simkova et al. Electrochemical DNA biosensors and flow-through analysis. A review
CN108845121A (zh) 一种冈田酸三维金纳米柱阵列免疫电极的制备方法
Hsieh et al. Assays for serum cholinesterase activity by capillary electrophoresis and an amperometric flow injection choline biosensor
EP0308514B1 (en) Method of fabrication of a biomicroelectrode
JPH04279854A (ja) 白金被覆カーボンファイバー電極およびこれを用いた            酵素膜センサ
JP6795188B2 (ja) フコース検出用電極

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant