CN1161683A - 乙烷的热解 - Google Patents

乙烷的热解 Download PDF

Info

Publication number
CN1161683A
CN1161683A CN95195818A CN95195818A CN1161683A CN 1161683 A CN1161683 A CN 1161683A CN 95195818 A CN95195818 A CN 95195818A CN 95195818 A CN95195818 A CN 95195818A CN 1161683 A CN1161683 A CN 1161683A
Authority
CN
China
Prior art keywords
ethane
reaction zone
steam
pyrolysis reactor
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95195818A
Other languages
English (en)
Other versions
CN1055673C (zh
Inventor
E·M·J·杜伊森斯
P·奥登霍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
French Institute of Petroleum
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Priority to CN95195818A priority Critical patent/CN1055673C/zh
Publication of CN1161683A publication Critical patent/CN1161683A/zh
Application granted granted Critical
Publication of CN1055673C publication Critical patent/CN1055673C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/22Aliphatic unsaturated hydrocarbons containing carbon-to-carbon triple bonds
    • C07C11/24Acetylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/35Formation of carbon-to-carbon triple bonds only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及通过热解乙烷制备乙炔的方法,该方法采用蒸汽/乙烷的摩尔比至多为3的蒸汽作为稀释气体,在热解反应器中于950-1500℃的温度下加热乙烷,持续时间小于0.5秒。

Description

乙烷的热解
本发明涉及通过热解乙烷制备乙炔的方法。
乙烷热解生产乙炔的原理是众所周知的。在英国专利1,335,892中公开了一种通过热解乙烷制备乙炔的方法,该方法包括在内径至多为5厘米的管式反应器中,于1000-1100℃的温度下,将预热的重量比为1∶2-3(即蒸汽/乙烯的摩尔比为31/3-5)的乙烷和蒸汽混合物加热,持续时间小于0.1秒,例如0.07秒。根据该专利,内径必须不超过5厘米,否则达不到所需的温度,而所申请的乙烷与蒸汽的重量比对限制积碳的生成是必不可少的。实际上,在预热混合物的过程中,由于所述积碳生成的原因,必须有蒸汽存在。该实例说明制备乙炔的收率为13.5%wt(以干燥后总流出物为基准)。
在较早的美国专利3,116,344中,公开了一种对乙炔的选择性极好的热解乙烷制备乙炔的方法,该方法采用涡流管反应器,在没有氧或含氧离解产物(例如蒸汽)存在的情况下,热解预热的混合物。然而,物料平衡未提到积碳的量,因而可以意识到(由英国专利1,335,892的说明看出)生成的积碳(损耗原料且是反应器的污染物)将是显著的。该(最好的)实例II说明制备乙炔的收率为50.1%wt(以总流出物为基准),然而没有排除生成的积碳。
因此,虽然已知一些有利于通过热解乙烷生成乙炔的条件(在例如950-1500℃下加热乙烷,持续时间小于0.5秒),但是仍然希望在更高的选择性和收率下生产乙炔,即避免积碳生成。
现在已发现一种方法,利用该方法可以在高选择性和高收率的情况下通过热解乙烷生产乙炔。因此,本发明提供了一种通过热解乙烷制备乙炔的方法,该方法采用蒸汽作为稀释气体,在热解反应器中于950-1500℃的温度下加热乙烷,持续时间小于0.5秒,其特征在于按蒸汽/乙烷的摩尔比至多为3。
该反应优选在1000-1200℃的温度下进行。高于1000℃有助于使乙炔的选择性高到足以符合工业上的要求,而低于1500℃更易于控制该反应。在热解反应器中的总停留时间(包括用于其预热区中的时间,若有的话)优选为0.05-0.3秒,更优选0.1-0.25秒,最优选0.15-0.2秒。
该反应优选在具有陶瓷反应区的热解反应器中进行。已知碳化硅可以减少热解反应器中的积碳生成,因此,它是优选的陶瓷材料。此外,优选装有加热区级联的热解反应器,以使蒸汽/乙烷的混合物能达到所需的温度而无需单独预热(过早转化)乙烷。已发现能满足上述条件的热解反应器是美国专利4,973,777中公开的热解反应器。上述热解反应器有一个陶瓷反应区,该反应区包括一系列分为若干排并覆盖了至少一部分反应区的长度、平行于其轴的并列通道,所述通道排彼此不邻接,当这些通道覆盖了整个反应区的长度时,该反应区一方面还包括在一部分反应区上或在一部分反应区长度上环绕着通道排的加热区,另一方面在加热区之后有一个冷却区。
可以看出,美国专利4,973,777中公开的热解反应器是用于将甲烷转化为高分子量的烃。虽然规定将蒸汽按例如蒸汽/甲烷的重量比为1∶1至10∶1用作稀释气体,但是既未证实也未说明蒸汽存在的好处。此外,采用甲烷作为原料所获得的结果非常令人失望。仅有一部分(50%)甲烷得到转化,而产生的主要是乙烯(15摩尔;420克)。对乙炔的选择性(162.5克或以包括未转化的氢气和甲烷的总流出物计为8.3%wt)只能与对苯的选择性(117克)和对除苯之外的液相选择性(104克)相比。此外,如众所周知,在热解甲烷时,乙烷以中间产物的形式生成(参见Revue de l’institute Francais du Pétrol,1993,vol.48,pp.115-125),可以料到这是由甲烷转化成用作原料的乙烷的相同结果。非常令人惊奇的是,采用本发明的方法获得了更好的结果。
除了乙烷之外,本发明的原料可以含任何摩尔比的乙烯,因为乙烯同样可以转化为乙炔。然而,从经济上考虑(乙烯通常是从C2馏分中脱除的有价值产品),该原料通常含不大于5%摩尔、通常约为1.5%摩尔或更少的乙烯。该原料可以含少量例如至多1%摩尔的其他烃类而不会影响该方法的效率和选择性。优选该原料由纯乙烷组成。
蒸汽/乙烷的摩尔比优选为1.5-2.5。与英国专利1,335,892中所述的相反,在所申请的蒸汽/乙烷摩尔比的情况下生成的积碳仍然很低,而令人惊奇的是由于有按所申请的摩尔比的蒸汽存在,对乙炔的选择性有积极的影响。上述发现确实清楚地表明与根据美国专利3,116,344中所述的期望相反。
本发明将通过以下实施例详细说明。
设备
采用如美国专利4,973,777中所公开的电加热的热解反应器。它在12kW下操作,最大流量为每小时10Nm3并配备了三个衬以碳化硅的加热区。
原料
采用含有约1.5%摩尔乙烯的乙烷,它相当于低级烯烃工厂的乙烯/乙烷分解器所生产的乙烷。
实施例1和2以及对比例A
所有的4个试验均采用每小时4.2Nm3的流量和总停留时间为0.1秒的条件进行。实施例1和2采用高温下的蒸汽作为稀释剂(摩尔比为2)。对比例A采用氮气作为稀释气体。所得结果和工艺条件列于表1。实施例2在1002℃的反应温度下进行,可提供最高的乙炔/乙烯比。虽然对比例A在超过实施例1或2的温度下进行,然而其乙炔/乙烯比最低。
实施例3和4
两个试验均采用蒸汽(摩尔比为2)作为稀释气体,在986℃的反应温度下进行。实施例3和4在流量和总停留时间上有所不同;其流量分别为每小时4.2Nm3和每小时2.2Nm3,总停留时间分别为0.1秒和0.16秒。比较结果显示出最好采用稍长的总停留时间。所得试验结果和工艺条件列于表2。
实施例5和6以及对比例B
所有的3个试验均采用每小时2.2Nm3的流量和总停留时间为0.16秒的条件进行。实施例5和6采用蒸汽作为稀释气体,而对比例B则采用氮气(摩尔比为2)。所得结果和工艺条件列于表3。实施例5和对比例B的比较说明采用蒸汽作为稀释气体可以得到较高的乙炔/乙烯比。实施例6说明有利的温度影响。
                          表1
    试验编号     1     2     A
加热区1中的温度(℃)加热区2中的温度(℃)加热区3中的温度(℃)氮/乙烷摩尔比蒸汽/乙烷摩尔比流量(Nm3/小时)总停留时间(秒)     701911993-24.20.1     7049141002-24.20.1     73693010122-4.20.1
成品的比例(以乙烯为基准)丙炔,丙二烯甲烷乙炔苯1,3-丁二烯一氧化碳二氧化碳转化率(%) <0.010.360.370.030.020.110.0198.7 <0.010.390.430.030.020.160.0199.5 <0.010.380.330.030.01--97.7
                          表2
    试验编号     3     4
加热区1中的温度(℃)加热区2中的温度(℃)加热区3中的温度(℃)氮/乙烷摩尔比蒸汽/乙烷摩尔比流量(Nm3/小时)总停留时间(秒)     707910986-24.20.1     675822986-22.20.16
成品的比例(以乙烯为基准)丙炔,丙二烯甲烷乙炔苯1,3-丁二烯一氧化碳二氧化碳转化率(%) <0.010.340.280.030.020.250.0298.3 0.010.440.590.040.010.07<0.0199.3
                              表3
    试验编号     5     6     B
加热区1中的温度(℃)加热区2中的温度(℃)加热区3中的温度(℃)氮/乙烷摩尔比蒸汽/乙烷摩尔比流量(Nm3/小时)总停留时间(秒)     7078561014-22.20.16     7459031069-22.20.16     70783910142-2.20.16
成品的比例(以乙烯为基准)丙炔,丙二烯甲烷乙炔苯1,3-丁二烯一氧化碳二氧化碳转化率(%) 0.10.580.830.050.010.240.0299.7 0.020.981.730.110.010.560.0399.9 0.010.570.730.060.01--99.4

Claims (9)

1.一种通过热解乙烷制备乙炔的方法,该方法采用蒸汽作为稀释气体,在热解反应器中于950-1500℃的温度下加热乙烷,持续时间小于0.5秒,其特征在于按蒸汽/乙烷的摩尔比至多为3。
2.根据权利要求1的方法,其中该反应在1000-1200℃的温度下进行。
3.根据权利要求1或2的方法,其中在热解反应器中的停留时间为0.05-0.3秒,优选0.1-0.25秒,更优选0.15-0.2秒。
4.根据权利要求1-3中任一项的方法,其中该反应在具有陶瓷反应区的热解反应器中进行。
5.根据权利要求4的方法,其中该陶瓷材料是碳化硅。
6.根据权利要求1-5中任一项的方法,其中该热解反应器装有加热区级联。
7.根据权利要求6的方法,其中该热解反应器有一个陶瓷反应区,该反应区包括一系列分为若干排并覆盖了至少一部分反应区的长度、平行于其轴的并列通道,所述通道排彼此不邻接,当这些通道覆盖了整个反应区的长度时,该反应区一方面还包括在一部分反应区上或在一部分反应区长度上环绕着通道排的加热区,另一方面在加热区之后有一个冷却区。
8.根据权利要求1-7中任一项的方法,其中采用含乙烯不大于5%摩尔的乙烷、优选采用含乙烯约为1.5%摩尔或更少的乙烷。
9.根据权利要求1-8中任一项的方法,其中蒸汽/乙烷的摩尔比为1.5-2.5。
CN95195818A 1994-09-30 1995-09-27 乙烷的热解 Expired - Fee Related CN1055673C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN95195818A CN1055673C (zh) 1994-09-30 1995-09-27 乙烷的热解

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP94202837.4 1994-09-30
EP94202837 1994-09-30
CN95195818A CN1055673C (zh) 1994-09-30 1995-09-27 乙烷的热解

Publications (2)

Publication Number Publication Date
CN1161683A true CN1161683A (zh) 1997-10-08
CN1055673C CN1055673C (zh) 2000-08-23

Family

ID=8217248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95195818A Expired - Fee Related CN1055673C (zh) 1994-09-30 1995-09-27 乙烷的热解

Country Status (10)

Country Link
US (1) US5942652A (zh)
EP (1) EP0783471B1 (zh)
JP (1) JPH10507164A (zh)
KR (1) KR970706220A (zh)
CN (1) CN1055673C (zh)
AU (1) AU3653095A (zh)
DE (1) DE69506894T2 (zh)
MY (1) MY113853A (zh)
WO (1) WO1996010547A1 (zh)
ZA (1) ZA958159B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223602B2 (en) 2001-09-05 2007-05-29 Coleman Dennis D Continuous tracer generation method
US6793699B2 (en) * 2001-09-05 2004-09-21 Dennis D. Coleman Continuous tracer generation apparatus
US9309470B2 (en) * 2008-09-17 2016-04-12 Asahi Kasei Chemicals Corporation Process and apparatus for producing olefin
US9783463B2 (en) 2014-09-30 2017-10-10 Exxonmobil Chemical Patents Inc. Conversion of acetylene and methanol to aromatics

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA620174A (en) * 1961-05-16 Farbwerke Hoechst Aktiengesellschaft Vormals Meister Lucius And Bruning Manufacture of low molecular unsaturated hydrocarbons
US2645673A (en) * 1945-12-08 1953-07-14 Eastman Kodak Co Process of producing acetylene
US2482438A (en) * 1946-05-24 1949-09-20 Phillips Petroleum Co Acetylene manufacture
US2790838A (en) * 1952-01-16 1957-04-30 Eastman Kodak Co Process for pyrolysis of hydrocarbons
US3018309A (en) * 1959-09-21 1962-01-23 Phillips Petroleum Co Pyrolytic conversion of paraffins
US3116344A (en) * 1960-08-19 1963-12-31 Shell Oil Co Vortex tube reactor and process for converting hydrocarbons therein
DE1169435B (de) * 1960-12-31 1964-05-06 Dynamit Nobel Ag Verfahren und Vorrichtung zur thermischen Spaltung von Kohlenwasserstoffen
US3153104A (en) * 1961-03-22 1964-10-13 Du Pont Cooling by recirculated product in diffusion flame process for production of acetylene and ethylene
CA835434A (en) * 1964-11-09 1970-02-24 Happel John Pyrolysis of hydrocarbons
NL7010275A (zh) * 1970-07-10 1972-01-12
BE795403A (fr) * 1972-02-14 1973-08-14 Kramer Leonard Procede pour empecher la formation de coke au cours de la pyrolyse d'hydrocarbures en acetylene et hydrogene
GB8426344D0 (en) * 1984-10-18 1984-11-21 British Petroleum Co Plc Conversion process
US4973777A (en) * 1985-11-08 1990-11-27 Institut Francais Du Petrole Process for thermally converting methane into hydrocarbons with higher molecular weights, reactor for implementing the process and process for realizing the reactor
FR2648145B1 (fr) * 1989-06-08 1991-10-04 Inst Francais Du Petrole Utilisation d'alliages a base de nickel dans un procede de craquage thermique d'une charge petroliere et reacteur pour la mise en oeuvre du procede

Also Published As

Publication number Publication date
MY113853A (en) 2002-06-29
JPH10507164A (ja) 1998-07-14
US5942652A (en) 1999-08-24
AU3653095A (en) 1996-04-26
CN1055673C (zh) 2000-08-23
WO1996010547A1 (en) 1996-04-11
EP0783471B1 (en) 1998-12-23
DE69506894D1 (de) 1999-02-04
EP0783471A1 (en) 1997-07-16
KR970706220A (ko) 1997-11-03
ZA958159B (en) 1996-05-08
DE69506894T2 (de) 1999-05-12

Similar Documents

Publication Publication Date Title
KR101447770B1 (ko) 올레핀의 제조방법
ES2347184T3 (es) Produccion de propileno y etileno a partir de butano y etano.
KR20190120249A (ko) 중질 알킬 방향족 및 알킬-브릿지된 비-축합 알킬 방향족 화합물로부터 경질 알킬 모노-방향족 화합물을 회수하는 공정.
CA1207343A (en) Process for the production of ethylene and propylene
EP2364342A1 (en) Catalytic cracking process of a stream of hydrocarbons for maximization of light olefins
CN103121894A (zh) 生产低碳烯烃的组合方法
KR101026317B1 (ko) 묽은 에틸렌 스트림들로부터 프로필렌 및 에틸벤젠 제조방법
SG174748A1 (en) Integrated processing of methanol to olefins
CN1055673C (zh) 乙烷的热解
KR20080080362A (ko) 복분해를 이용한 함산소물의 올레핀으로의 전환
KR20170095304A (ko) 경질 지방족 탄화수소에서 방향족으로의 전환 방법
US20080154075A1 (en) Process for the Production of Olefins
CN113620767A (zh) 一种生产低碳烯烃和芳烃的方法及反应系统
KR20170013988A (ko) 선택도가 높은 파라자일렌을 제조하고 프로필렌을 공동 생성하는 방법
AU2003246826A1 (en) Production of olefins
WO2024108511A1 (zh) 一种石脑油和甲醇耦合制芳烃装置及方法
WO2024108507A1 (zh) 循环流化床反应再生装置及应用方法
KR20150023155A (ko) 경질 알칸으로부터 프로필렌을 제조하는 방법
US12122966B2 (en) Process for converting naphtha to light olefins with separation
US20230357107A1 (en) Process for catalytically converting naphtha to light olefins
US20230357654A1 (en) Process for converting naphtha to light olefins with separation
TW202432804A (zh) 具有氫滑移之石腦油製乙烷及丙烷單元
KR20240054505A (ko) 포화 탄화수소의 탈수소-크래킹 반응을 통한 올레핀 제조방법
CN118059773A (zh) 一种石脑油和甲醇耦合制备芳烃联产烯烃的流化床装置及方法
CN118059772A (zh) 循环流化床反应再生装置及应用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. TO: FRENCH PETROLEUM ADMINISTRATION

CP03 Change of name, title or address

Address after: French Malmaison

Applicant after: French Institute of Petroleum

Address before: Holland Hague

Applicant before: Shell Internationale Research Maatschappij B. V.

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee