CN116143524B - 一种三维网状碳化硅纳米线及其制备方法 - Google Patents

一种三维网状碳化硅纳米线及其制备方法 Download PDF

Info

Publication number
CN116143524B
CN116143524B CN202310164950.7A CN202310164950A CN116143524B CN 116143524 B CN116143524 B CN 116143524B CN 202310164950 A CN202310164950 A CN 202310164950A CN 116143524 B CN116143524 B CN 116143524B
Authority
CN
China
Prior art keywords
powder
silicon carbide
nanowire
pmvg
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310164950.7A
Other languages
English (en)
Other versions
CN116143524A (zh
Inventor
姚荣迁
黄雯燕
梁家浩
王玉峰
郑艺浓
卯声建
陶倩雯
詹嘉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202310164950.7A priority Critical patent/CN116143524B/zh
Publication of CN116143524A publication Critical patent/CN116143524A/zh
Application granted granted Critical
Publication of CN116143524B publication Critical patent/CN116143524B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种三维网状碳化硅纳米线及其制备方法,将PMVG粉末或PVG粉末与碳化硅陶瓷粉末混合,将混合粉末原坯置于加盖的坩埚中,经过高温裂解,得到三维网状碳化硅纳米线;或者将PMVG粉末或PVG粉末与碳化硅陶瓷粉末和造孔剂粉末混合,将混合粉末原坯置于加盖的坩埚中,经过高温裂解与造孔,得到三维网状碳化硅纳米线,产量高,通过工艺调控可得到直线状纳米线、螺旋状纳米线、念珠状纳米线等多种形态交织的纳米线,无需复杂纺丝编织工艺便可获得网状结构。

Description

一种三维网状碳化硅纳米线及其制备方法
技术领域
本发明涉及陶瓷材料领域,尤其涉及一种三维网状碳化硅纳米线及其制备方法。
背景技术
碳化硅(SiC)陶瓷具有密度低、强度高、高温力学性能优异、禁带宽、介电常数小、电子迁移率高、抗氧化和耐腐蚀等特性,在新能源、新材料、国防军工及航空航天等领域具有极大的应用潜力。一维碳化硅纳米线既保留传统碳化硅材料的固有优点,还具有缺陷少、量子限域效应、小尺寸效应、高比表面积等优异性能,应用范围广,特别是低功耗、高响应度、高开关比等性能优异的微纳器件,还可作为吸收频带宽、吸波能力强、热稳定性好、抗热震的轻质电磁波吸收材料。此外,碳化硅纳米线也广泛用于增强陶瓷基、树脂基等先进复合材料,改善复合材料基体内部微米尺度缺陷,增强界面连接,进而提高多级增强复合材料的力学性能。
目前碳化硅纳米线的制备方法包括碳热还原法、化学气相渗透法、溶胶凝胶法与聚合物先驱体法等。中国专利CN 114249323 A公开了一种利用食品废弃物合成的碳化硅纳米线及其制备方法,将食品废弃物碳化后与硅粉、SiO2混合粉末在1450~1550℃进行碳热还原反应提纯得到碳化硅纳米线,但该方法耗时、产量低,不易控制所得纳米线的组成、尺寸和形貌。中国专利CN 112144039A公开了一种镍碳泡沫制备3D网状碳化硅纳米线的方法,以三氯甲基硅烷为前驱体,镍碳泡沫为生长纳米线的基体,利用化学气相沉积炉在1150~1250℃下制备3D网络状碳化硅纳米线,但该方法设备成本高、工艺依赖性强,且引入镍金属催化剂,带来重金属污染的问题。中国专利ZL 202010894119.3公开了一种在碳化硅纤维表面原位生长碳化硅纳米线的方法,利用溶胶凝胶反应在碳化硅纤维表面原位合成高纯度、分散均匀的碳化硅纳米线,但其需在1400℃高温烧结才能获得大量纳米线并一定程度造成碳化硅纤维内部晶粒粗化。
先驱体法具有无需添加烧结助剂、烧结温度低、工艺简单等优点,可对聚合物先驱体改性以调控陶瓷的微观结构和性能。在聚合物先驱体裂解转化陶瓷的过程中,小分子气体原位逸出,可有效制备孔隙率均匀的多孔陶瓷。同时,先驱体法易于制作复杂形状陶瓷,尤其是在制备低维碳化硅陶瓷(纤维、纳米线、薄膜)方面拥有较大优势。中国专利ZL202010721613.X公开了一种原位碳化硅纳米线增韧碳化硅陶瓷的制备方法,通过聚碳硅烷和二茂铁为原料裂解得到碳化硅块体陶瓷,同时在其内部和表面原位生长碳化硅纳米线,通过进一步的先驱体浸渍裂解工艺,制备高致密度的碳化硅纳米线增韧碳化硅陶瓷,但其引入金属铁污染,热膨胀系数失配,且影响陶瓷抗氧化性和耐高温性能。
发明内容
本发明的目的在于解决现有技术中的上述问题,提供一种高产量、耐高温、抗氧化的三维网状碳化硅纳米线。本发明的另一目的在于提供适用于工业生产的简单且经济的上述碳化硅纳米线的制备方法。
为达到上述目的,本发明采用如下技术方案:
一种三维网状碳化硅纳米线的制备方法,将PMVG粉末或PVG粉末与碳化硅陶瓷粉末混合,将混合粉末原坯置于加盖的坩埚中,经过高温裂解,得到三维网状碳化硅纳米线;或者将PMVG粉末或PVG粉末与碳化硅陶瓷粉末和造孔剂粉末混合,将混合粉末原坯置于加盖的坩埚中,经过高温裂解与造孔,得到三维网状碳化硅纳米线。
所述PVG粉末的制备方法参考本申请人在先前专利CN202010722118.0。
所述PMVG粉末的制备如下:将聚碳硅烷粉末与金属氯化物粉末溶于四氢呋喃中反应,旋蒸得到PMCS粉末,再将粉末溶于二甲苯中,与乙烯基三乙氧基硅烷/石墨烯分散液反应,除去水层旋蒸,研磨得到PMVG粉末。
所述金属氯化物粉末为MoCl5、TiCl4、ZrCl4、HfCl4中的一种;所述聚碳硅烷粉末与金属氯化物粉末质量比为100:(5~20)。
所述聚碳硅烷粉末与金属氯化物粉末在四氢呋喃中的反应,是在氩气保护下恒温水浴50℃~70℃搅拌4~6h。
所述PMCS粉末溶于二甲苯中与乙烯基三乙氧基硅烷/石墨烯分散液反应,是在铂金催化剂下恒温水浴50℃~70℃搅拌0.5~1h。
所述碳化硅陶瓷粉末为PMVG或PVG粉末于1200~1400℃氩气气氛高温裂解得到。
所述造孔剂粉末可为高分子造孔剂如聚苯乙烯、聚甲基丙烯酸甲酯等,也可为无机造孔剂如碳粉等,用于提高碳化硅陶瓷基体孔隙率,为纳米线快速沉积提供更多通道。
所述PMVG粉末或PVG粉末与碳化硅陶瓷粉末和造孔剂粉末的粒径为0.5~20μm,质量比为100:(100~200):(0~100)。
所述坩埚为氧化铝坩埚,盖子为氧化铝坩埚盖。
所述造孔为纳米线高产量快速沉积提供通道与高比表面积,可采用牺牲造孔剂法提高孔隙率,即高温裂解时原位除去高分子造孔剂或者氧化除去无机造孔剂。
所述高温裂解是指在管式炉中先驱体裂解生成SiO、CO等气相分子,为碳化硅纳米线提供硅源及碳源;体系内气体通过孔道快速沉积原位反应生长为硅源(SiO)、碳源(CO)等在陶瓷基体多孔通道处快速沉积得到固相碳化硅纳米线,如反应式(1)所示;高温裂解的温度为1200~1400℃,保护气氛为氩气,流速为50~100mL/min。
SiO(g) + CO(g) → SiC(s) + CO2(g) (1)
所述一种三维网状碳化硅纳米线,以聚合物先驱体PMVG/PVG、碳化硅陶瓷粉末以及造孔剂为原料,通过在碳化硅陶瓷基体中均匀快速制造多孔通道,供先驱体裂解产生的SiO(硅源)、CO(碳源)等气相分子沉积,原位生成高产量、耐高温、抗氧化的碳化硅纳米线。
相对于现有技术,本发明技术方案取得的有益效果是:
(1)本发明制备的碳化硅纳米线产量高,形貌呈三维网状结构,通过工艺调控可得到直线状纳米线、螺旋状纳米线、念珠状纳米线等多种形态交织的纳米线,无需复杂纺丝编织工艺便可获得网状结构。
(2)本发明制备的碳化硅纳米线与碳化硅陶瓷基体的组分及微观结构相似,相容性良好,不存在界面热膨胀系数失配的问题,其在陶瓷内部均匀分布,且高密度分布于孔隙处,通过纳米线拔出、纳米线桥连、超塑性变形和塑性断裂可用于多级增强碳化硅陶瓷基复合材料。
(3)本发明所述的碳化硅纳米线采用先驱体法制备而成,不依赖化学气相沉积炉等大型复杂设备,无需引入铁、镍等金属催化剂杂质影响陶瓷高温稳定性与抗氧化性,同时可以通过在分子尺度上引入钼、钛、锆、铪等具有优异的耐高温、抗氧化性过渡金属元素进行原位改性,以进一步提升碳化硅纳米线的高温稳定性与抗氧化能力。
(4)本发明所述的碳化硅纳米线在1200~1400℃便可实现高产量高质量,节约能源,突破传统生长温度(1400℃以上)的技术瓶颈,原位生长的碳化硅纳米线与碳化硅基体同时完成终烧,不存在会造成基体内部晶粒粗化的问题。在1200~1400℃下,聚合物先驱体PMVG/PVG化学分解生成SiO、CO等气相分子作为硅源和碳源,进入钼、钛、锆、铪中形成固溶体析出形核择优生长碳化硅纳米线,或者气相分子待饱和后发生气相反应在碳化硅陶瓷基体内部生成固相碳化硅纳米线,尤其是在大比表面积的多孔沉积通道中可实现碳化硅纳米线高产量快速沉积。
(5)本发明方法工艺简单经济环保,碳化硅纳米线形貌、浓度和长径比等性质可通过调整先驱体分子结构、造孔剂比例等工艺进行调控,有利于实现工业化生产。
附图说明
图1为聚碳硅烷(PCS)以及PMCS、PMVG的红外光谱图。
图2为实施例1的碳化硅纳米线扫描电子显微镜能谱面扫描(EDS mapping)图片。
图3为实施例1的碳化硅纳米线表面扫描电子显微镜图;在图3中,(a)对应低倍数表面扫描电子显微镜图,(b)对应高倍数表面扫描电子显微镜图。
图4为实施例1的碳化硅纳米线经高温氧化喷火后的表面扫描电子显微镜图;在图4中,(a)对应低倍数表面扫描电子显微镜图以及表面能谱元素分析(EDS)数据,(b)、(c)对应高倍数表面扫描电子显微镜图。
图5为实施例2的碳化硅纳米线表面扫描电子显微镜图。
图6为实施例3的碳化硅纳米线表面扫描电子显微镜图;在图6中,(a)对应低倍数表面扫描电子显微镜图,(b)、(c)、(d)对应高倍数表面扫描电子显微镜图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明做进一步详细说明。
实施例1
1、取2g的聚碳硅烷(PCS)粉末和0.2g五氯化钼粉末溶解在60mL四氢呋喃中,在恒温水浴锅内升温至60℃搅拌反应5h,氩气流速60mL·min-1,反应结束后旋蒸得到PMCS深棕色粉末。将2g的PMCS粉末溶于40mL二甲苯中后加入0.05mL卡斯特铂金催化剂,0.02g氧化石墨烯粉末超声分散在40mL去离子水中后加入2mL乙烯基三乙氧基硅烷和适量稀盐酸将溶液pH值调节到1~2。将上述两种溶液混合置于恒温水浴锅内60℃搅拌保温30min。取上层悬浊液旋蒸得到PMVG粉末。
2、将PMVG粉末在氩气气氛下进行高温裂解,温度1300℃,流速60mL·min-1,升温速率4℃·min-1,保温时间30min,随炉冷却后得到碳化硅陶瓷粉末。
3、将PMVG粉末(40.0wt.%)和碳化硅陶瓷粉末(60.0wt.%)球磨混合9h,介质为无水乙醇,随后置于烘箱中干燥并研磨。取0.5g倒入模具中,在油压机100MPa压力下保持20s压制成型,脱模后得到混合粉末原坯。
4、将混合粉末原坯置于带盖的氧化铝坩埚中,在氩气气氛下进行高温裂解,温度1300℃,流速60mL·min-1,升温速率4℃·min-1,保温30min,随炉冷却后得到三维网状碳化硅纳米线。
实施例2
1、取2g的聚碳硅烷粉末和0.2g五氯化钼粉末溶解在60mL四氢呋喃中,在恒温水浴锅内升温至60℃搅拌反应5h,氩气流速60mL·min-1,反应结束后旋蒸得到PMCS深棕色粉末。将2g的PMCS粉末溶于40mL二甲苯中后加入0.05mL卡斯特铂金催化剂,0.02g氧化石墨烯粉末超声分散在40mL去离子水中后加入2mL乙烯基三乙氧基硅烷和适量稀盐酸将溶液pH值调节到1~2。将上述两种溶液混合置于恒温水浴锅内60℃搅拌保温30min。取上层悬浊液旋蒸得到PMVG粉末。
2、将PMVG粉末在氩气气氛下进行高温裂解,温度1300℃,流速60mL·min-1,升温速率4℃·min-1,保温时间30min,随炉冷却后得到碳化硅陶瓷粉末。
3、将PMVG粉末(36.4wt.%)和碳化硅陶瓷粉末(54.5wt.%)球磨混合9h,介质为无水乙醇,随后置于烘箱中干燥并研磨,再加入粒径10μm的聚苯乙烯(9.1wt.%)均匀混合,得到混合粉末。取0.5g倒入模具中,在油压机100MPa压力下保持20s压制成型,脱模后得到混合粉末原坯。
4、将混合粉末原坯置于带盖的氧化铝坩埚中,在氩气气氛下进行高温裂解,温度1300℃,流速60mL·min-1,升温速率4℃·min-1,保温30min,随炉冷却后得到三维网状碳化硅纳米线。
实施例3
1、将2g的聚碳硅烷粉末溶于40mL二甲苯中后加入0.05mL卡斯特铂金催化剂,0.02g氧化石墨烯粉末超声分散在40mL去离子水中后加入2mL乙烯基三乙氧基硅烷和适量稀盐酸将溶液pH值调节到1~2。将上述两种溶液混合置于恒温水浴锅内60℃搅拌保温30min。取上层悬浊液旋蒸得到PVG粉末。
2、将PVG粉末在氩气气氛下进行高温裂解,温度1300℃,流速60mL·min-1,升温速率4℃·min-1,保温时间30min,随炉冷却后得到碳化硅陶瓷粉末。
3、将PVG粉末(28.6wt.%)和碳化硅陶瓷粉末(42.8wt.%)球磨混合9h,介质为无水乙醇,随后置于烘箱中干燥并研磨,再加入粒径2000目的碳粉(28.6wt.%)均匀混合,得到混合粉末。取1g倒入模具中,在油压机100MPa压力下保持20s压制成型,脱模后得到混合粉末原坯。
4、将混合粉末原坯置于带盖的氧化铝坩埚中,在氩气气氛下进行高温裂解,温度1300℃,流速60mL·min-1,升温速率4℃·min-1,保温30min,随炉冷却后再置于高温箱式炉中氧化造孔,温度700℃,升温速率7℃·min-1,保温3h,随炉冷却后得到三维网状碳化硅纳米线。
本发明所制备的碳化硅纳米线材料具有如下特征:形态复杂呈三维网状均匀分布、抗氧化、耐高温、高产量、高长径比、高力学强度,可原位增强碳化硅陶瓷基体。
本发明的聚合物先驱体PMVG在红外光谱图(图1)显示,体系中存在Si-C(780cm-1)、Si-O-C(1100cm-1)、C-C(1170cm-1)、Si-CH2-Si(1020cm-1)、Si-H(2100cm-1)、-CH2-(1410cm-1)、Si-CH3(1250cm-1、2950cm-1)等结构,其中,Si-H峰强减少说明Si-H键和Mo-Cl键反应形成Si-Mo键。
所述碳化硅纳米线在扫描电子显微镜能谱面扫描(EDS mapping)图片(图2)中具有以下特征:三维网状碳化硅纳米线与碳化硅陶瓷基体的界面处元素分布均匀,表明三维网状碳化硅纳米线与碳化硅陶瓷基体成分相似,而且原位形成的热稳定相MoSi2与碳化硅相容性良好,有利于增强碳化硅陶瓷。Mo元素在三维网状碳化硅纳米线根部聚集且逐渐扩散,证实三维网状碳化硅纳米线的气液固生长机制,呈喷射状生长延伸。
所述碳化硅纳米线的表面扫描电子显微镜图(图3)具有以下特征:三维网状碳化硅纳米线由直线状纳米线、螺旋状纳米线、念珠状纳米线等多种形态复杂的纳米线组成,通过纳米线拔出、纳米线桥连多级增强碳化硅陶瓷基体。
所述碳化硅纳米线高温喷火氧化后的表面扫描电子显微镜图和表面能谱元素分析(EDS)数据(图4)具有以下特征:三维网状碳化硅纳米线高温喷火氧化后固有形状仍保持稳定,与碳化硅陶瓷基体依旧连接良好,有利于维持多级增强效应;表面能谱元素分析(EDS)数据表明高温喷火氧化后,得力于引入优异抗氧化性的钼元素,能够及时形成致密的SiO2/Mo4.8Si3C0.6自愈/钝化层,具有良好耐高温、抗氧化能力。
所述碳化硅纳米线的表面扫描电子显微镜图(图5)具有以下特征:三维网状碳化硅纳米线通过调控可得到直线状纳米线、螺旋状纳米线、念珠状纳米线等多种形态复杂的纳米线,其中直线状纳米线和螺旋状纳米线易富集于孔洞底部,念珠状纳米线易富集于孔洞斜坡处,通过纳米线拔出、纳米线桥连多级增强碳化硅陶瓷基体。
所述碳化硅纳米线的表面扫描电子显微镜图(图6)中具有以下特征:三维网状碳化硅纳米线产量高、长径比大且分布均匀,直径约为100nm。
表1
表1为实施例1~3所述的三维网状碳化硅纳米线/碳化硅陶瓷多级增强体的基本物理参数,其中实施例1的断裂韧性为4.20~4.32MPa·m1/2

Claims (6)

1.一种三维网状碳化硅纳米线的制备方法,其特征在于:将PMVG粉末或PVG粉末与碳化硅陶瓷粉末混合,将混合粉末原坯置于加盖的坩埚中,经过高温裂解,得到三维网状碳化硅纳米线;或者将PMVG粉末或PVG粉末与碳化硅陶瓷粉末和造孔剂粉末混合,将混合粉末原坯置于加盖的坩埚中,经过高温裂解与造孔,得到三维网状碳化硅纳米线;
所述PMVG粉末的制备如下:将聚碳硅烷粉末与MoCl5溶于四氢呋喃中反应,旋蒸得到粉末,再将粉末溶于二甲苯中,与乙烯基三乙氧基硅烷/石墨烯分散液反应,除去水层旋蒸,研磨得到PMVG粉末;所述聚碳硅烷粉末与MoCl5的质量比为100:(5~20);
所述碳化硅陶瓷粉末为PMVG或PVG粉末于1200~1400°C氩气气氛高温裂解得到;PMVG粉末或PVG粉末与碳化硅陶瓷粉末和造孔剂粉末的粒径为0.5~20μm,质量比为100:(100~200):(0~100)。
2.如权利要求1所述的一种三维网状碳化硅纳米线的制备方法,其特征在于:所述聚碳硅烷粉末与金属氯化物粉末在四氢呋喃中的反应,是在氩气保护下恒温水浴50°C~70°C搅拌4~6h。
3.如权利要求1所述的一种三维网状碳化硅纳米线的制备方法,其特征在于:所述粉末溶于二甲苯中与乙烯基三乙氧基硅烷/石墨烯分散液反应,是在铂金催化剂下恒温水浴50°C~70°C搅拌0.5~1h。
4.如权利要求1所述的一种三维网状碳化硅纳米线的制备方法,其特征在于:所述造孔剂粉末为高分子造孔剂或无机造孔剂。
5.如权利要求1所述的一种三维网状碳化硅纳米线的制备方法,其特征在于:高温裂解的温度为1200~1400℃,保护气氛为氩气,流速为50~100mL/min。
6.权利要求1~5任一项制备方法所制备的三维网状碳化硅纳米线。
CN202310164950.7A 2023-02-24 2023-02-24 一种三维网状碳化硅纳米线及其制备方法 Active CN116143524B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310164950.7A CN116143524B (zh) 2023-02-24 2023-02-24 一种三维网状碳化硅纳米线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310164950.7A CN116143524B (zh) 2023-02-24 2023-02-24 一种三维网状碳化硅纳米线及其制备方法

Publications (2)

Publication Number Publication Date
CN116143524A CN116143524A (zh) 2023-05-23
CN116143524B true CN116143524B (zh) 2023-12-22

Family

ID=86340549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310164950.7A Active CN116143524B (zh) 2023-02-24 2023-02-24 一种三维网状碳化硅纳米线及其制备方法

Country Status (1)

Country Link
CN (1) CN116143524B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077678A (ko) * 2004-01-30 2005-08-03 한국과학기술연구원 탄화규소 나노로드 및 나노와이어의 제조 방법
CN107032816A (zh) * 2017-05-10 2017-08-11 西北工业大学 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法
CN108328617A (zh) * 2018-01-20 2018-07-27 南京航空航天大学 一种碳化硅纳米线气凝胶及其制备方法
CN110922191A (zh) * 2019-12-20 2020-03-27 厦门大学 一种碳化硅聚合物先驱体陶瓷缺陷愈合方法
CN111454061A (zh) * 2020-04-07 2020-07-28 厦门大学 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法
CN111848172A (zh) * 2020-07-24 2020-10-30 厦门大学 二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200526824A (en) * 2004-02-11 2005-08-16 Ind Tech Res Inst Manufacturing method of silicon nanowire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077678A (ko) * 2004-01-30 2005-08-03 한국과학기술연구원 탄화규소 나노로드 및 나노와이어의 제조 방법
CN107032816A (zh) * 2017-05-10 2017-08-11 西北工业大学 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法
CN108328617A (zh) * 2018-01-20 2018-07-27 南京航空航天大学 一种碳化硅纳米线气凝胶及其制备方法
CN110922191A (zh) * 2019-12-20 2020-03-27 厦门大学 一种碳化硅聚合物先驱体陶瓷缺陷愈合方法
CN111454061A (zh) * 2020-04-07 2020-07-28 厦门大学 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法
CN111848172A (zh) * 2020-07-24 2020-10-30 厦门大学 二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法

Also Published As

Publication number Publication date
CN116143524A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN111454061B (zh) 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法
Ding et al. The synthesis of titanium nitride whiskers on the surface of graphite by molten salt media
Ding et al. Growth of SiC nanowires on wooden template surface using molten salt media
CN110467467B (zh) 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法
CN115058885B (zh) 一种碳纤维布表面定向SiC纳米线阵列及制备方法
CN113718370B (zh) 一种中空碳化硅纤维的制备方法
Ding et al. Preparation and characterisation of porous biomorphic SiC/C ceramic from molten salt
CN109437203A (zh) 一种高纯一维SiC纳米材料的制备方法
CN111848196B (zh) 一种原位碳化硅纳米线增韧碳化硅陶瓷的制备方法
Liu et al. Facile preparation of morph-genetic SiC/C porous ceramic at low temperature by processed bio-template
CN111848172A (zh) 二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法
Qin et al. Preparation of SiC nanowires based on graphene as the template by microwave sintering
CN110668447B (zh) 碳化硅纳米线的合成方法
CN115259900B (zh) 一种极长(TaxHf1-x)C超高温陶瓷固溶体纳米线及制备方法
Wu et al. Polymer precursor synthesis of novel ZrC–SiC ultrahigh-temperature ceramics and modulation of their molecular structure
CN116143524B (zh) 一种三维网状碳化硅纳米线及其制备方法
CN109503172A (zh) 一种具有蠕虫状晶粒的多孔碳化硅陶瓷的制备方法
CN115231911B (zh) 原位反应聚合物转化Sc2Si2O7-SiOC复相陶瓷及制备方法
CN104086183B (zh) 一种气孔率可控多孔Si3N4的制备方法
Wu et al. Effect of ZrC content on the properties of biomorphic C–ZrC–SiC composites prepared using hybrid precursors of novel organometallic zirconium polymer and polycarbosilane
KR101071282B1 (ko) 메조포러스 실리카로부터 제조된 탄화규소 분말 및 그 제조방법
CN110923493B (zh) 一种孔结构SiC/Al复合材料的制备工艺
CN113061040A (zh) 一种多孔氮化硼陶瓷的制备方法
Li et al. Silicon assistant carbothermal reduction for SiC powders
CN112174690A (zh) 一种利用木棉纤维制备中空钛酸铝纤维的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant