CN116121621A - 一种高结合强度的表面金属化陶瓷微球及其制备方法和应用 - Google Patents

一种高结合强度的表面金属化陶瓷微球及其制备方法和应用 Download PDF

Info

Publication number
CN116121621A
CN116121621A CN202211606327.4A CN202211606327A CN116121621A CN 116121621 A CN116121621 A CN 116121621A CN 202211606327 A CN202211606327 A CN 202211606327A CN 116121621 A CN116121621 A CN 116121621A
Authority
CN
China
Prior art keywords
ceramic
ceramic microspheres
sio
microsphere
bonding strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211606327.4A
Other languages
English (en)
Inventor
郭伟明
梁振铨
于俊杰
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Guangdong Polytechnic Normal University
Original Assignee
Guangdong University of Technology
Guangdong Polytechnic Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology, Guangdong Polytechnic Normal University filed Critical Guangdong University of Technology
Priority to CN202211606327.4A priority Critical patent/CN116121621A/zh
Publication of CN116121621A publication Critical patent/CN116121621A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于陶瓷金属化制备技术领域,公开了一种高结合强度的表面金属化陶瓷微球及其制备方法和应用。该方法是将金属纳米粉体、SiO2、Al2O3和Re2O3球磨干燥后得到混合粉体M‑SiO2‑Al2O3‑Re2O3,利用糖衣机及0.5mm口径的喷雾喷枪在陶瓷微球表面喷涂粘结剂,然后将混合粉体置于糖衣机中软化粘结剂,以使陶瓷微球包覆上M‑SiO2‑Al2O3‑Re2O3导电层,排胶后真空烧结,升温至1550~1750℃,制得高结合强度的表面金属化陶瓷微球。该表面金属化陶瓷的金属层与陶瓷基体的结合强度为50~60MPa,金属层厚度为20~50μm,在室温下的电阻率为5×10‑6~10×10‑5Ω·m。

Description

一种高结合强度的表面金属化陶瓷微球及其制备方法和应用
技术领域
本发明属于陶瓷金属化制备技术领域,更具体地,涉及一种高结合强度的表面金属化陶瓷微球及其制备方法和应用。
背景技术
陶瓷具有密度低,强度、硬度高,耐高温、耐磨损和耐腐蚀等优异性能,是综合性能非常好的材料,被广泛应用于航空航天、机械工业、化学工业、生物医学等领域。但某些陶瓷本身不具有导电性,目前用以提高陶瓷导电性能的方法主要是在基体材料中引入大量的(20~40vol%)第二导电相,而过多的第二导电相会导致基体材料的一些重要性能发生退化,同时也会降低陶瓷材料的致密度。基于以上的应用背景,亟需开发一种新的制备方法,使得陶瓷微球表面金属化后,具有高的热导率与导电性,表面金属层与陶瓷微球基体的结合面具有极高强度,同时保证陶瓷基体具有原有的高性能。
发明内容
为了解决现有技术中存在的缺点和不足之处,本发明首要目的在于提供一种高结合强度的表面金属化陶瓷微球的制备方法。该方法是在陶瓷微球的表面喷涂粘结剂,然后再包覆上金属导电层,在烧结时陶瓷体玻璃相与金属层中氧化物形成的玻璃相发生相互迁移,从而获得高结合强度的表面金属化陶瓷微球。
本发明的另一目的在于提供上述制备方法制备得到的表面高结合强度的金属化陶瓷微球。
本发明的再一目的在于提供上述面高结合强度的金属化陶瓷微球的应用。
本发明的目的通过下述技术方案来实现:
一种高结合强度的表面金属化陶瓷微球的制备方法,包括如下具体步骤:
S1.将纳米金属粉体M、SiO2、Al2O3和Re2O3混合,加入溶剂和球磨介质进行球磨,经干燥、过筛后得到混合粉体M-SiO2-Al2O3-Re2O3
S2.将陶瓷微球置于转速为300~500r/min的糖衣机中,采用0.5mm口径的喷雾喷枪于陶瓷微球的正上方20cm处,以140~200KPa的压力向陶瓷微球顶端的水平切线方向喷涂粘结剂,同时施加常温鼓风进行干燥,喷涂5~30min后,获得表面均匀包覆粘结剂的陶瓷微球;
S3.将100~200g混合粉体M-SiO2-Al2O3-Re2O3均匀加入转速为300~500r/min的糖衣机中,使陶瓷微球表面的粘结剂软化,经过5~60min的包覆后,干燥过筛后,制得表面包覆M-SiO2-Al2O3-Re2O3导电层的陶瓷微球;
S4.将导电层的陶瓷微球置于空气排胶炉中去除粘结剂,升温至250~300℃,保温2~5h,再升温至450~500℃,保温3~6h,然后随炉冷却,整个过程空气的流动速率为30~50L/min;
S5.将上述微球置于高温真空钎焊烧结炉中烧结,升温至1300~1400℃,再升温至1550~1750℃并保温,烧结过程中真空度为1.3~1.8×10-3Pa,制得具有高结合强度的金属化陶瓷微球。
优选地,步骤S1中所述的纳米金属粉体为Cr、Mo或W,所述的纳米金属粉体的粒径为25~100nm,纯度为99~99.999%,所述SiO2的粒径为50~150nm,所述Re2O3中Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;Re2O3粒径为3~6μm、Al2O3粒径为50~100nm,纯度均为99~99.99%,所述的M:SiO2:Al2O3:Re2O3的质量比为(65~80):(7~12):(7~12):(6~11),所述球磨介质:溶剂:混合粉体的质量比为(2~4):1:1。
优选地,步骤S2中所述陶瓷微球为ZrO2微球,Al2O3陶瓷微球或Si3N4陶瓷微球,所述陶瓷微球的直径为1.0~1.5mm。
优选地,步骤S2中粘结剂为PVA水溶液、松油醇和乙基纤维素、石蜡和CCl4
更为优选地,所述石蜡和CCl4的质量比为(1~10):(90~99),松油醇和乙基纤维素的质量比为(95~98):(2~5),PVA水溶液的浓度为8~15wt%。
优选地,步骤S4中所述升温的速率均为1~2℃/min。
优选地,步骤S5中所述的1300~1400℃的升温速率为15~20℃/min,所述1550~1750℃的升温速率为10~15℃/min,所述保温的时间为1~3h。
一种高结合强度的表面金属化陶瓷微球,所述表面金属化陶瓷微球是由所述的方法制备得到。
优选地,所述表面金属化的陶瓷微球中金属层与陶瓷基体的结合强度为50~60MPa,所述表面金属化的陶瓷微球的金属层厚度为20~50μm,所述表面金属化的陶瓷微球在室温下的电阻率为5×10-6~10×10-5Ω·m。
所述的高结合强度的表面金属化陶瓷微球在电气或核能领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明在陶瓷微球的表面包覆一层金属纳米粉体,不需要在陶瓷基体材料中引入大量的金属二次相,使得陶瓷基体材料可以保持原有的综合力学性能。
2.本发明制备的表面金属化的陶瓷微球中金属层厚度极薄(35~50μm),且导电性极高。
3.本发明制备的表面金属化的陶瓷微球中金属层与陶瓷基体的结合强度极高。
附图说明
图1是实施例1中制备的表面金属化的ZrO2陶瓷微球的SEM照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.将Mo、SiO2、Al2O3和Yb2O3的按照质量比为65:12:12:11混合,磨球介质为ZrO2,溶剂为无水乙醇,ZrO2磨球:混合粉体:无水乙醇的质量比为2:1:1的配比进行球磨混合,在辊式球磨机上球磨混合24h后,干燥得到Mo-SiO2-Al2O3-Yb2O3混合粉体。
2.按照质量比为5:95的石蜡和CCl4制得粘结剂,将粒径为1.0mm的ZrO2微球放置于糖衣机中,使糖衣机以500r/min的转速转动,用0.5mm口径的喷雾喷枪于陶瓷微球正上方20cm处,以150KPa的压力向ZrO2陶瓷微球顶端的水平切线方向喷涂粘结剂,同时施加常温鼓风干燥,喷涂时长为10min。
3.将100g的Mo-SiO2-Al2O3-Yb2O3混合粉体均匀撒向具有500r/min的转速的糖衣机中,同时施加80℃的鼓风30min,经干燥过筛后,制得包覆导电层的ZrO2微球,导电层为Mo-SiO2-Al2O3-Yb2O3,其厚度为40μm。
4.将干燥后的包覆导电层的ZrO2陶瓷微球置于排胶炉中去除粘结剂,以1℃/min的速率升温至250℃保温3h,再以1℃/min的速率升温至450℃保温3h,然后随炉冷却,整个过程中空气的流动速率为40L/min。
5.将排胶后的ZrO2陶瓷微球置于高温真空钎焊烧结炉中烧结,以速率15℃/min升温至1350℃,再以速率10℃/min升温至1600℃并保温2h,烧结过程中真空度为1.3×10-3Pa,制得Mo-SiO2-Al2O3-Yb2O3金属化的ZrO2陶瓷微球。
本实施例制得的金属化的ZrO2陶瓷微球中金属层与陶瓷基体的结合强度为58MPa,表面金属层的厚度为40μm,在室温下的电阻率为60×10-6Ω·m。
图1是实施例1中表面金属化的ZrO2陶瓷微球的SEM照片。从图1中可知,包覆后的ZrO2陶瓷微球表面光滑。说明利用糖衣机及0.5mm口径的喷雾喷枪可在ZrO2陶瓷微球表面涂覆上均匀的金属层Mo-SiO2-Al2O3-Yb2O3
实施例2
按照实施例1的方法制备金属化的ZrO2陶瓷微球,与实施例1不同的在于:本实施例中步骤1中的原料为Cr、SiO2、Al2O3和Y2O3,制得Cr-SiO2-Al2O3-Y2O3金属化的ZrO2陶瓷微球。
本实施例制得的金属化的ZrO2陶瓷微球中金属层Cr-SiO2-Al2O3-Y2O3与陶瓷基体ZrO2的结合强度为55MPa,表面金属层的厚度为35μm,室温下的电阻率为90×10-6Ω·m。
实施例3
按照实施例1的方法制备金属化的Al2O3陶瓷微球,与实施例1不同的在于:本实施例中步骤1中的原料为W、SiO2、Al2O3和Y2O3,制得W-SiO2-Al2O3-Y2O3金属化的Al2O3陶瓷微球。
本实施例制得的金属化的Al2O3陶瓷微球中金属层W-SiO2-Al2O3-Y2O3与陶瓷基体Al2O3的结合强度为45MPa,表面金属层的厚度为45μm,室温下的电阻率为10×10-5Ω·m。
实施例4
按照实施例1的方法制备金属化的Si3N4陶瓷微球,与实施例1不同的在于:本实施例步骤1中的原料为Mo、SiO2、Al2O3和Y2O3,步骤2中的的粘结剂为10wt%的PVA水溶液,全过程无需施加鼓风干燥,制得Mo-SiO2-Al2O3-Y2O3金属化的Si3N4陶瓷微球。
本实施例制得的金属化的Si3N4陶瓷微球中金属层Mo-SiO2-Al2O3-Y2O3与陶瓷基体Si3N4的结合强度为55MPa,表面金属层的厚度为40μm,室温下的电阻率为70×10-6Ω·m。
实施例5
按照实施例1的方法制备金属化的Si3N4陶瓷微球,与实施例1不同的在于:本实施例步骤1中的原料为W、SiO2、Al2O3和Yb2O3,步骤2中的粘结剂为质量比为97:3的松油醇和乙基纤维素,全过程无需施加鼓风干燥,制得W-SiO2-Al2O3-Yb2O3金属化的Si3N4陶瓷微球。
本实施例制得的金属化的Si3N4陶瓷微球中金属层W-SiO2-Al2O3-Yb2O3与陶瓷基体Si3N4的结合强度为60MPa,表面金属层的厚度为50μm,室温下的电阻率为10×10-5Ω·m。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高结合强度的表面金属化陶瓷微球的制备方法,其特征在于,包括如下具体步骤:
S1.将纳米金属粉体M、SiO2、Al2O3和Re2O3混合,加入溶剂和球磨介质进行球磨,经干燥、过筛后得到混合粉体M-SiO2-Al2O3-Re2O3
S2.将陶瓷微球置于转速为300~500r/min的糖衣机中,采用0.5mm口径的喷雾喷枪于陶瓷微球的正上方20cm处,以140~200KPa的压力向陶瓷微球顶端的水平切线方向喷涂粘结剂,同时施加常温鼓风进行干燥,喷涂5~30min后,获得表面均匀包覆粘结剂的陶瓷微球;
S3.将混合粉体M-SiO2-Al2O3-Re2O3均匀加入转速为300~500r/min的糖衣机中,使陶瓷微球表面的粘结剂软化,经过5~60min的包覆后,干燥过筛后,制得表面包覆M-SiO2-Al2O3-Re2O3导电层的陶瓷微球;
S4.将导电层的陶瓷微球置于空气排胶炉中去除粘结剂,升温至250~300℃,保温2~5h,再升温至450~500℃,保温3~6h,然后随炉冷却,整个过程空气的流动速率为30~50L/min;
S5.将步骤S4所得陶瓷微球置于高温真空钎焊烧结炉中烧结,升温至1300~1400℃,再升温至1550~1750℃并保温,烧结过程中真空度为1.3~1.8×10-3Pa,制得具有高结合强度的金属化陶瓷微球。
2.根据权利要求1所述的高结合强度的表面金属化陶瓷微球的制备方法,其特征在于,步骤S1中所述的纳米金属粉体为Cr、Mo或W,所述的纳米金属粉体的粒径为25~100nm,纯度为99~99.999%,所述SiO2的粒径为50~150nm,所述Re2O3中Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;Re2O3粒径为3~6μm、Al2O3粒径为50~100nm,纯度均为99~99.99%,所述的M:SiO2:Al2O3:Re2O3的质量比为(65~80):(7~12):(7~12):(6~11),所述球磨介质:溶剂:混合粉体的质量比为(2~4):1:1。
3.根据权利要求1所述的高结合强度的表面金属化陶瓷微球的制备方法,其特征在于,步骤S2中所述陶瓷微球为ZrO2微球,Al2O3陶瓷微球或Si3N4陶瓷微球,所述陶瓷微球的直径为1.0~1.5mm。
4.根据权利要求1所述的高结合强度的表面金属化陶瓷微球的制备方法,其特征在于,步骤S2中粘结剂为PVA水溶液、松油醇和乙基纤维素、石蜡和CCl4
5.根据权利要求4所述的高结合强度的表面金属化陶瓷微球的制备方法,其特征在于,所述石蜡和CCl4的质量比为(1~10):(90~99),松油醇和乙基纤维素的质量比为(95~98):(2~5),所述PVA水溶液的浓度为8~15wt%。
6.根据权利要求1所述的高结合强度的表面金属化陶瓷微球的制备方法,其特征在于,步骤S3中所述的热鼓风温度为60~80℃;步骤S4中所述升温的速率均为1~2℃/min。
7.根据权利要求1所述的高结合强度的表面金属化陶瓷微球的制备方法,其特征在于,步骤S5中所述的1300~1400℃的升温速率为15~20℃/min,所述1550~1750℃的升温速率为10~15℃/min,所述保温的时间为1~3h。
8.一种高结合强度的表面金属化陶瓷微球,其特征在于,所述表面金属化陶瓷微球是由权利要求1-7任一项所述的方法制备得到。
9.根据权利要求8所述的高结合强度的表面金属化陶瓷微球,其特征在于,所述表面金属化的陶瓷微球中金属层与陶瓷基体的结合强度为50~60MPa,所述表面金属化的陶瓷微球的金属层厚度为20~50μm,所述表面金属化的陶瓷微球在室温下的电阻率为5×10-6~10×10-5Ω·m。
10.权利要求8或9所述的高结合强度的表面金属化陶瓷微球在电气或核能领域中的应用。
CN202211606327.4A 2022-12-12 2022-12-12 一种高结合强度的表面金属化陶瓷微球及其制备方法和应用 Pending CN116121621A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211606327.4A CN116121621A (zh) 2022-12-12 2022-12-12 一种高结合强度的表面金属化陶瓷微球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211606327.4A CN116121621A (zh) 2022-12-12 2022-12-12 一种高结合强度的表面金属化陶瓷微球及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116121621A true CN116121621A (zh) 2023-05-16

Family

ID=86299992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211606327.4A Pending CN116121621A (zh) 2022-12-12 2022-12-12 一种高结合强度的表面金属化陶瓷微球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116121621A (zh)

Similar Documents

Publication Publication Date Title
CN112851388A (zh) 一种碳化硅陶瓷连接件及其连接方法和应用
CN109467457B (zh) 组合物、利用该组合物制得的多孔碳纤维隔热材料表面高发射率抗氧化涂层及其制备方法
US20210388506A1 (en) Preparation method for wear-resistant coating on cylindrical inner wall surface of aluminum alloy
CN106735249B (zh) 一种铌基复合材料及制备方法
JP2023549545A (ja) 接合はんだ及びその製造方法、炭化ケイ素被覆の接合方法
CN108358646A (zh) 一种硼化锆基陶瓷及其制备方法
CN102049514B (zh) 氧化铝陶瓷纳米金属化膏剂用粉料及其制备方法
CN114920575B (zh) 一种高性能陶瓷连接件及其制备方法和应用
CN108440023B (zh) 一种氧化铝陶瓷金属化的方法
CN115043648A (zh) 一种预应力氧化铝陶瓷复合材料及其制备方法
CN103449816B (zh) 一种耐等离子腐蚀热喷涂用造粒氧化钇及其制备方法
CN113816774A (zh) 一种高纯氧化铝刚玉陶瓷金属化方法
CN116121621A (zh) 一种高结合强度的表面金属化陶瓷微球及其制备方法和应用
CN108975953A (zh) 一种C/SiC复合材料表面激光熔覆强结合玻璃膜层的制备方法
CN114986402B (zh) 一种高性能低温陶瓷结合剂砂轮及其制备方法
CN110872713B (zh) 一种y/y2o3金属陶瓷防护涂层的冷喷涂制备方法
CN111348932B (zh) 一种纯钨材料和绝缘陶瓷的连接方法
CN114702306B (zh) 一种95氧化铝陶瓷基片的制备方法及其产品
CN115849919B (zh) 一种高性能的氮化硅导电陶瓷及其制备方法和应用
CN110591636B (zh) 一种适用于靶材邦定的有机胶黏剂及其制备方法
CN115321992B (zh) 一种GNPs/YSZ复合陶瓷粉体及其制备方法和应用
CN110592577B (zh) 一种在碳材料表面激光熔覆制备二氧化硅玻璃涂层的方法
CN109485387B (zh) 一种环境障涂层用空心球形bsas粉末的制备方法
CN113213905A (zh) 一种堇青石基微晶玻璃结合Al2O3-SiO2系统陶瓷材料及其制备方法
CN112062590A (zh) 一种陶瓷连接件及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination