CN116120574A - 一种钴基无定形金属有机骨架材料Co-aMOF的制备方法及应用 - Google Patents

一种钴基无定形金属有机骨架材料Co-aMOF的制备方法及应用 Download PDF

Info

Publication number
CN116120574A
CN116120574A CN202211721506.2A CN202211721506A CN116120574A CN 116120574 A CN116120574 A CN 116120574A CN 202211721506 A CN202211721506 A CN 202211721506A CN 116120574 A CN116120574 A CN 116120574A
Authority
CN
China
Prior art keywords
amof
cobalt
metal organic
amorphous metal
organic framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211721506.2A
Other languages
English (en)
Inventor
郑盛润
冯颖
蔡松亮
范军
章伟光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Longsim Biochemical Technology Co ltd
South China Normal University Qingyuan Institute of Science and Technology Innovation Co Ltd
Original Assignee
Guangdong Longsim Biochemical Technology Co ltd
South China Normal University Qingyuan Institute of Science and Technology Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Longsim Biochemical Technology Co ltd, South China Normal University Qingyuan Institute of Science and Technology Innovation Co Ltd filed Critical Guangdong Longsim Biochemical Technology Co ltd
Priority to CN202211721506.2A priority Critical patent/CN116120574A/zh
Publication of CN116120574A publication Critical patent/CN116120574A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于吸附材料技术领域,具体涉及一种钴基无定形金属有机骨架材料Co‑aMOF的制备方法及应用。本发明往(1H‑咪唑基‑1‑苯基)‑2,6‑二(4‑(2H‑四唑基)苯基)吡啶和钴盐中加入氨水和N,N’‑二甲基乙酰胺,所得悬浊液混匀后进行加热反应,反应后经过滤制得一种Co‑aMOF材料。所制得的Co‑aMOF材料无定形但具有多孔性的特点,具有微孔和中孔孔道,且具有大的芳香共轭平面,能够快速和高容量的吸附有机染料,对水中的甲基橙和刚果红均具有较高的吸附容量和快速的吸附速率。此外,本发明制备Co‑aMOF材料的方法简单易行,具有产量和纯度高的特点。

Description

一种钴基无定形金属有机骨架材料Co-aMOF的制备方法及应用
技术领域
本发明属于吸附材料技术领域,具体涉及一种钴基无定形金属有机骨架材料Co-aMOF的制备方法及应用。
背景技术
有机染料在塑料、食品、造纸、皮革、印染、化妆品等工业领域应用广泛,然而,许多有机染料是有毒的,在热、光和氧化剂下具有高稳定性,并且容易溶于水中。因此,有机染料的广泛使用往往会造成大量废水排入环境水体中,造成严重的污染问题,对环境安全和人类健康产生不利影响。为此,在排放前从废水中去除有机染料是非常必要的。当前,已有多种技术(化学氧化、生物处理、光解降解、膜过滤和吸附等)已被开发用于去除水中的有机染料。其中,吸附法因其可行性强、效率高、成本低、副产物少、操作简单等优点而备受关注。传统的多孔材料(如沸石、活性炭等)虽然已广泛用于染料的吸附中,但由于它们具有低多孔性和缺乏吸附位点而在低吸附容量、吸附速率和选择性方面仍存在一些不足之处。可见,发展用于染料吸附和分离的新型多孔材料是非常有意义的。
金属有机框架(MOF)作为一种新型多孔材料,由于其具有BET表面积大、孔隙率高、孔隙可调、功能位点多等特点,在吸附、分离、催化、传感等方面表现出巨大的应用潜力,受到人们的广泛关注。近年来,MOF作为吸收剂用于从水中去除有机染料的用途已被广泛研究。其中一些表现出高吸附容量、快速吸附动力学和良好的选择性。然而,大多数报道的MOF都是微晶材料,不利于加工和塑形,因此不适用于工业应用。最近,无定形金属有机框架(aMOFs)引起了越来越多的关注,该类材料虽然缺乏长程有序的晶格,但却保留了与其晶体对应物相似的局部结构基序。aMOFs的优点在于:(1)有利于大规模合成、加工和塑形;(ii)可能比MOF含有更多的缺陷和额外的孔隙,这使得它们与cMOF相比可能具有不同的性能。到目前为止,aMOF已在药物递送、分离、催化等方面显示出较好的应用效果,而在水中污染物去除方面的应用还非常少见。因此,开发一种能用于水中染料吸附的aMOFs材料具有巨大的应用前景。
发明内容
为了克服上述现有技术的不足,本发明提供了一种钴基无定形金属有机骨架材料Co-aMOF,该材料具有多孔性,可以作为吸附剂吸附水中的结晶紫、甲基橙和刚果红染料,克服了传统吸附剂吸附量低、吸附速率慢以及晶相MOF材料难以加工和塑形的问题。
为实现上述目的,本发明是通过以下技术方案来实现的:
本发明第一方面提供了一种钴基无定形金属有机骨架材料Co-aMOF的制备方法,具体为:往(1H-咪唑基-1-苯基)-2,6-二(4-(2H-四唑基)苯基)吡啶和钴盐中加入氨水和N,N’-二甲基乙酰胺,所得悬浊液混匀后进行加热反应,反应后经过滤即得。
优选地,所述钴盐包括六水合硝酸钴、六水合氯化钴和硫酸钴。
优选地,所述(1H-咪唑基-1-苯基)-2,6-二(4-(2H-四唑基)苯基)吡啶和钴盐的摩尔比为0.8~1:1~1.5。
优选地,所述加热反应的温度为80~160℃,时间为2~4天。
优选地,悬浊液混匀的方式为超声分散,超声分散的时间为15~30min。
优选地,所述氨水和N,N’-二甲基乙酰胺的体积比为1~2:100,每1mol(1H-咪唑基-1-苯基)-2,6-二(4-(2H-四唑基)苯基)吡啶使用N,N’-二甲基乙酰胺50~100mL。
本发明第二方面提供了采用第一方面所述的制备方法制备得到的钴基无定形金属有机骨架材料Co-aMOF。
本发明第三方面提供了第一方面所述的钴基无定形金属有机骨架材料Co-aMOF在吸附水中染料分子中的应用。
本发明的Co-aMOF材料具有多孔性,可以作为吸附剂吸附水中的结晶紫、甲基橙和刚果红染料,呈现高的吸附量以及可循环使用性。
优选地,所述染料分子包括结晶紫、甲基橙和刚果红。
本发明第四方面提供了一种用于处理水中染料分子的吸附剂,所述吸附剂以第一方面所述的钴基无定形金属有机骨架材料Co-aMOF作为主要活性成分。
与现有技术相比,本发明的有益效果是:
本发明公开了一种Co-aMOF材料的制备方法,往(1H-咪唑基-1-苯基)-2,6-二(4-(2H-四唑基)苯基)吡啶和钴盐中加入氨水和N,N’-二甲基乙酰胺,所得悬浊液混匀后进行加热反应,反应后经过滤即得。所制得的Co-aMOF材料无定形但具有多孔性的特点,具有微孔和中孔孔道,且具有大的芳香共轭平面,能够快速和高容量的吸附有机染料,对水中的甲基橙和刚果红均具有较高的吸附容量和快速的吸附速率。此外,本发明制备Co-aMOF材料的方法简单易行,产率高。
附图说明
图1为Co-aMOF的粉末衍射图;
图2为Co-aMOF及其配体的红外光谱图;
图3为Co-aMOF及其配体的N1s XPS图;
图4为Co-aMOF的Co2p XPS图;
图5为Co-aMOF的热重曲线;
图6为Co-aMOF在77K下的氮气吸附-脱附等温线;
图7为Co-aMOF的孔径分布曲线;
图8为Co-aMOF的SEM图。
图9为往(a)MLB、(b)CV、(c)MO和(d)CR染料溶液中加入Co-aMOF后溶液的UV-Vis图;
图10为Co-aMOF对MLB、CV、MO和CR的饱和吸附等温线;
图11为吸附了(a)MO和(b)CR染料的Co-aMOF在NaCl的DMF溶液中的染料脱附曲线;
图12为Co-aMOF吸附MO和CR染料的三次循环使用性能。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到。
实施例1一种Co-aMOF材料的制备方法
根据下列的合成路线,Co-aMOF的制备过程如下:常温下将配体(1H-咪唑基-1-苯基)-2,6-二(4-(2H-四唑基)苯基)吡啶(0.05mmol,24.9mg)和六水硝酸钴(0.05mmol,14.6mg)混合均匀,然后向混合物中加入NH3·H2O(1.28M,30μL)和N,N’-二甲基乙酰胺(3mL)得到悬浊液,将悬浊液放入反应釜内衬中超声处理30分钟,再将反应釜放入鼓风干燥箱中,在90℃条件下加热反应3天,反应后缓慢冷却至室温,对反应液进行过滤,得到紫色Co-aMOF粉末,即为本发明的无定形金属有机骨架材料Co-aMOF。通过多次重复可以获得足够量的Co-aMOF材料,产率为92%。
实验例1Co-aMOF的结构表征和性能测试
(1)粉末X射线衍射测定
对实施例1的Co-aMOF材料进行粉末X射线衍射测定,如图1的X-射线粉末衍射图所述,该材料属于无定形材料。
(2)红外测定
对实施例1的Co-aMOF材料进行红外测定,图2为Co-aMOF及其配体的红外光谱图,可以看到,与配体相比,归属于C=N和N=N伸缩振动的峰在Co-aMOF中发生红移,表明配体中的N原子可能发生了配位。另外,红外图谱中没有观察到硝酸根的特征峰,表明结构中不存在硝酸根。
(3)XPS能谱分析
对实施例1的Co-aMOF材料进行XPS能谱分析,图3为Co-aMOF及其配体的N1s XPS谱,可以看到,Co-aMOF中,N的结合能与配体相比,结合能增加了0.4eV,进一步确定N原子发生了配位。此外,N1s XPS中也观察不到NO3 -的峰。Co2p XPS图谱表明材料中的Co离子为+2价,如图4所示。
(4)元素分析
对实施例1的Co-aMOF材料进行元素分析,结果为:C,60.47;H,3.13;N,26.98,表明材料中配体和金属离子的比例约为1:1。
(5)ICP测试
对实施例1的Co-aMOF材料进行ICP测试,结果表明,材料中Co的含量为9.85%,进一步证实配体和金属离子的比例约为1:1。
(6)热重分析
对实施例1的Co-aMOF材料进行热重分析,图5为活化后的Co-aMOF的热重分析图,可以看到,材料直到275℃之后才开始分解,具有较好的热稳定性。
(7)氮气吸附-脱附曲线
对实施例1的Co-aMOF材料进行吸附性能测试,图6为活化后的Co-aMOF在77K下的氮气吸附-脱附曲线,结果表明,其BET比表面积为136.3m2/g,孔径分布在1.9nm左右(如图7所示)。
(8)扫描电镜分析
对实施例1的Co-aMOF材料进行扫描电镜(SEM)分析,图8为Co-aMOF的SEM图,结果表明,该材料由20-50nm的球形颗粒团聚而成。
(9)Co-aMOF对水中染料的吸附效果测试
取10mg实施例1制备的Co-aMOF分别加入到30mL浓度为20ppm的亚甲基蓝(MLB)、结晶紫(CV)、甲基橙(MO)和刚果红(CR)溶液中,然后在中性条件下持续搅拌,并在给定时间取约3mL上层溶液通过UV-vis检测染料浓度。结果如图9所示,该Co-aMOF材料对四种染料均具有一定的吸附性能。其中,对阳离子型染料MLB和CV的吸附速率相对较慢,需要分别在1440和240min才能达到吸附平衡,去除率分别为65%和98.5%。而对阴离子型染料MO和CR的吸附速率很快,在5分钟左右,去除率就达到99.3%和99.5%。
进一步对Co-aMOF材料的吸附等温线进行测试:将2.5mg Co-aMOF添加到具有不同初始浓度的10mL染料(MLB、CV、MO和CR)水溶液中,浸泡并搅拌1天后,取出溶液,用注射器过滤,并测量平衡浓度。测试结果如图10所示,Co-aMOF对MLB、CV、MO和CR的最大吸附量分别高达1010mg/g、1079mg/g、1042mg/g和1625mg/g。
此外,还考察了Co-aMOF材料对MO和CR的吸附循环性能:首先,将吸附了染料的Co-aMOF材料浸泡在NaCl的饱和DMF溶液中,以实现染料的脱附,在5分钟左右脱附率即可接近100%,如图11所示。然后,将脱附后的Co-aMOF材料进行循环吸附MO和CR的测试,结果如图12所示,表明Co-aMOF材料经过三次循环之后,对MO和CR仍保持有60%和50%以上的吸附容量。
综上可见,本发明的Co-aMOF材料具有多孔性,且该材料可以作为吸附剂吸附水中的结晶紫、甲基橙和刚果红染料,呈现高的吸附量以及可循环使用性。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (10)

1.一种钴基无定形金属有机骨架材料Co-aMOF的制备方法,其特征在于,往(1H-咪唑基-1-苯基)-2,6-二(4-(2H-四唑基)苯基)吡啶和钴盐中加入氨水和N,N’-二甲基乙酰胺,所得悬浊液混匀后进行加热反应,反应后经过滤即得。
2.根据权利要求1所述的一种钴基无定形金属有机骨架材料Co-aMOF的制备方法,其特征在于,所述钴盐包括六水合硝酸钴、六水合氯化钴和硫酸钴。
3.根据权利要求1所述的一种钴基无定形金属有机骨架材料Co-aMOF的制备方法,其特征在于,所述(1H-咪唑基-1-苯基)-2,6-二(4-(2H-四唑基)苯基)吡啶和钴盐的摩尔比为0.8~1:1~1.5。
4.根据权利要求1所述的一种钴基无定形金属有机骨架材料Co-aMOF的制备方法,其特征在于,所述加热反应的温度为80~160℃,时间为2~4天。
5.根据权利要求1所述的一种钴基无定形金属有机骨架材料Co-aMOF的制备方法,其特征在于,悬浊液混匀的方式为超声分散,超声分散的时间为15~30min。
6.根据权利要求1所述的一种钴基无定形金属有机骨架材料Co-aMOF的制备方法,其特征在于,所述氨水和N,N’-二甲基乙酰胺的体积比为1~2:100,每1mol(1H-咪唑基-1-苯基)-2,6-二(4-(2H-四唑基)苯基)吡啶使用N,N’-二甲基乙酰胺50~100mL。
7.采用权利要求1-6任一项所述的制备方法制备得到的钴基无定形金属有机骨架材料Co-aMOF。
8.权利要求7所述的钴基无定形金属有机骨架材料Co-aMOF在吸附水中染料分子中的应用。
9.根据权利要求8所述的应用,其特征在于,所述染料分子包括结晶紫、甲基橙和刚果红。
10.一种用于处理水中染料分子的吸附剂,其特征在于,所述吸附剂以权利要求7所述的钴基无定形金属有机骨架材料Co-aMOF作为主要活性成分。
CN202211721506.2A 2022-12-30 2022-12-30 一种钴基无定形金属有机骨架材料Co-aMOF的制备方法及应用 Pending CN116120574A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211721506.2A CN116120574A (zh) 2022-12-30 2022-12-30 一种钴基无定形金属有机骨架材料Co-aMOF的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211721506.2A CN116120574A (zh) 2022-12-30 2022-12-30 一种钴基无定形金属有机骨架材料Co-aMOF的制备方法及应用

Publications (1)

Publication Number Publication Date
CN116120574A true CN116120574A (zh) 2023-05-16

Family

ID=86311113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211721506.2A Pending CN116120574A (zh) 2022-12-30 2022-12-30 一种钴基无定形金属有机骨架材料Co-aMOF的制备方法及应用

Country Status (1)

Country Link
CN (1) CN116120574A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240340A (ja) * 2006-12-13 2011-12-01 Korea Res Inst Of Chem Technol 多孔性有・無機混成体及びこれを含有する吸着剤
CN105669773A (zh) * 2015-12-31 2016-06-15 郑州大学 一种Co-MOF材料及其制备方法、用途
CN106588781A (zh) * 2016-12-21 2017-04-26 北京林业大学 Zif‑67纳米材料的制备及其快速吸附阴离子型染料的应用
CN109821574A (zh) * 2019-02-18 2019-05-31 河海大学 一种铕基金属有机骨架材料Eu-MOF及其制备方法、刚果红染料光催化降解方法
CN112280051A (zh) * 2020-09-22 2021-01-29 许昌学院 一种钴基金属有机骨架Co-MOF材料的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240340A (ja) * 2006-12-13 2011-12-01 Korea Res Inst Of Chem Technol 多孔性有・無機混成体及びこれを含有する吸着剤
CN105669773A (zh) * 2015-12-31 2016-06-15 郑州大学 一种Co-MOF材料及其制备方法、用途
CN106588781A (zh) * 2016-12-21 2017-04-26 北京林业大学 Zif‑67纳米材料的制备及其快速吸附阴离子型染料的应用
CN109821574A (zh) * 2019-02-18 2019-05-31 河海大学 一种铕基金属有机骨架材料Eu-MOF及其制备方法、刚果红染料光催化降解方法
CN112280051A (zh) * 2020-09-22 2021-01-29 许昌学院 一种钴基金属有机骨架Co-MOF材料的制备方法及应用

Similar Documents

Publication Publication Date Title
Yang et al. Selective separation of methyl orange from water using magnetic ZIF-67 composites
Guo et al. Green and facile synthesis of cobalt-based metal–organic frameworks for the efficient removal of Congo red from aqueous solution
Yang et al. Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal–organic framework: effects of Ce (III) doping
Ahsan et al. Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water
Gao et al. Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light
Yang A facile approach to fabricate an immobilized-phosphate zirconium-based metal-organic framework composite (UiO-66-P) and its activity in the adsorption and separation of organic dyes
Bai et al. A novel functional porous organic polymer for the removal of uranium from wastewater
Li et al. Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes
Shen et al. Hierarchically mesostructured MIL-101 metal–organic frameworks with different mineralizing agents for adsorptive removal of methyl orange and methylene blue from aqueous solution
He et al. Modulation of coordinative unsaturation degree and valence state for cerium-based adsorbent to boost phosphate adsorption
Yang et al. Rapid adsorptive removal of cationic and anionic dyes from aqueous solution by a Ce (III)-doped Zr-based metal–organic framework
Ma et al. Two lanthanide-based metal–organic frameworks for highly efficient adsorption and removal of fluoride ions from water
Zhang et al. Superior selective adsorption of anionic organic dyes by MIL-101 analogs: Regulation of adsorption driving forces by free amino groups in pore channels
Xiao et al. One-dimensional coordination supramolecular polymer [Cu (bipy)(SO4)] n as an adsorbent for adsorption and kinetic separation of anionic dyes
Xu et al. Fabrication of hybrid magnetic HKUST-1 and its highly efficient adsorption performance for Congo red dye
Lv et al. Fabrication of Fe 3 O 4@ UiO-66-SO 3 H core–shell functional adsorbents for highly selective and efficient removal of organic dyes
Mehmandoust et al. Nitrate adsorption from aqueous solution by metal–organic framework MOF-5
CN109499529A (zh) 一种氮掺杂的磁性多孔碳材料及其制备方法和应用
Ke et al. Hierarchical camellia-like metal–organic frameworks via a bimetal competitive coordination combined with alkaline-assisted strategy for boosting selective fluoride removal from brick tea
Wang et al. Highly efficient and selective capture Pb (II) through a novel metal-organic framework containing bifunctional groups
Li et al. Modified carbon spheres as universal materials for adsorption of cationic harmful substances (paraquat and dyes) in water
Jais et al. Solvothermal growth of the bimetal organic framework (NiFe-MOF) on sugarcane bagasse hydrochar for the removal of dye and antibiotic
Fan et al. Guanidinium ionic liquid-controlled synthesis of zeolitic imidazolate framework for improving its adsorption property
Ma et al. Confined growth of MOF in chitosan matrix for removal of trace Pb (Ⅱ) from reclaimed water
CN112156752A (zh) 吸附性可再生的改性活性炭及其在废水处理中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination