CN116120088A - 一种多孔氧化铝陶瓷的制备方法 - Google Patents

一种多孔氧化铝陶瓷的制备方法 Download PDF

Info

Publication number
CN116120088A
CN116120088A CN202211727804.2A CN202211727804A CN116120088A CN 116120088 A CN116120088 A CN 116120088A CN 202211727804 A CN202211727804 A CN 202211727804A CN 116120088 A CN116120088 A CN 116120088A
Authority
CN
China
Prior art keywords
porous alumina
alumina ceramic
aluminum
salt
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211727804.2A
Other languages
English (en)
Other versions
CN116120088B (zh
Inventor
孙石友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Shiyou Plumbing And Sanitary Ware Co ltd
Original Assignee
Hunan Shiyou Plumbing And Sanitary Ware Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Shiyou Plumbing And Sanitary Ware Co ltd filed Critical Hunan Shiyou Plumbing And Sanitary Ware Co ltd
Priority to CN202211727804.2A priority Critical patent/CN116120088B/zh
Publication of CN116120088A publication Critical patent/CN116120088A/zh
Application granted granted Critical
Publication of CN116120088B publication Critical patent/CN116120088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明涉及陶瓷材料领域,具体为一种多孔氧化铝陶瓷的制备方法,将铝盐、锆盐、钇盐、加入水中搅拌溶解,再将燃料、铝粉、氮化铝和包覆改性铝粉加入并加热搅拌得到凝胶,将所得凝胶引燃,得到的粉体压制成型后烧结即可,本发明方法所制备多孔氧化铝陶瓷的气孔率>50%,抗弯强度>30MPa,在保持较高孔隙率的同时还具有良好的力学性能。

Description

一种多孔氧化铝陶瓷的制备方法
技术领域
本发明涉及陶瓷材料领域,具体为一种多孔氧化铝陶瓷的制备方法。
背景技术
多孔陶瓷是一种材料内部含有大量孔洞(彼此相通或闭合气孔)的无机非金属材料,可利用其较高的表面积和材质本身等特点,应用于各个领域,具有广阔的发展前景。
氧化铝多孔陶瓷是多孔陶瓷材料中尤为重要的一种材料,它不仅具备氧化铝硬度高、耐高温、耐腐蚀、高的电绝缘性与低的介电损耗等特点,以及材料体内较高的比表面积,被广泛应用于气体和液体过滤、净化分离、化工催化载体、生物植入材料、吸声减震和传感器材料等众多领域,并且应用领域迅速拓宽,市场需求量也日益增大,前景非常广阔。
由于多孔氧化铝陶瓷优异的性能和广阔的应用前景,一直受到国内外研究工作者的广泛关注。虽然有很多制备工艺能制备出性能较高的多孔氧化铝陶瓷,但是仍有一些问题需要解决,其中主要问题就是处理好强度与气孔率之间的关系。
发明内容
发明目的:针对上述技术问题,本发明提出了一种多孔氧化铝陶瓷的制备方法。
所采用的技术方案如下:
一种多孔氧化铝陶瓷的制备方法:
将铝盐、锆盐、钇盐、加入水中搅拌溶解,再将燃料、铝粉、氮化铝和包覆改性铝粉加入并加热搅拌得到凝胶,将所得凝胶引燃,得到的粉体压制成型后烧结即可。
进一步地,所述铝盐、锆盐、钇盐为铝、锆、钇的可溶性盐,优选为硝酸盐。
进一步地,所述铝盐、锆盐、钇盐的质量比为300-400:20-40:1-3。
进一步地,所述燃料包括尿素。
进一步地,所述燃料还包括EDTA和柠檬酸。
进一步地,所述包覆改性铝粉为有机硅树脂包覆改性铝粉。
进一步地,所述有机硅树脂包覆改性铝粉的制备方法如下:
取有机硅树脂,搅拌滴加入氨水,滴毕后超声搅拌处理得到溶胶,将铝粉于其中浸渍处理后滤出、干燥即可。
进一步地,所述铝粉、氮化铝的质量比为1-3:1-3。
进一步地,粉体压制成型的压力为10-20MPa。
进一步地,烧结温度为1400-1500℃。
本发明的有益效果:
唐钰栋,白佳海等利用低温燃烧-烧结法制备了多孔Al2O3/ZrO2(Y2O3)陶瓷,发明人以此作为参考,加入高熔点和高硬度的氮化铝颗粒,将其均匀分散在陶瓷基体中,可以使陶瓷基体的位错运动产生钉扎作用,同时,氮化铝与氧化铝膨胀系数存在差别而造成热膨胀失配增韧,由于热膨胀失配,在氮化铝颗粒和氧化铝周围产生残余应力场,因此,在氮化铝颗粒处产生拉应力,而氧化铝晶粒径向处于拉伸状态,其切向处于压缩状态,这时,裂纹倾向于绕过氮化铝颗粒继续扩展,即造成裂纹偏转,从而达到增韧的目的,所制备的多孔氧化铝陶瓷内大面积生长有晶须,经测试为氮化铝晶须,可能是尿素在燃烧时释放的氮气与铝粉反应所生成,其与颗粒状的氮化铝起到复合增韧的效果,而且原位生成的氮化铝晶须可以在陶瓷基体中均匀分散且对孔隙起到良好的支撑作用,对部分铝粉进行有机硅树脂包覆改性,可以保护铝粉避免其过早氧化,而且可以抑制铝粉的爆炸释气和氧化膨胀,使形成的孔隙趋于规则,本发明方法所制备多孔氧化铝陶瓷的气孔率>50%,抗弯强度>30MPa,在保持较高孔隙率的同时还具有良好的力学性能。
附图说明
图1为本发明实施例1中所制备多孔氧化铝陶瓷的SEM图。
图2为本发明实施例1中所制备多孔氧化铝陶瓷断面处的SEM图,可以明显看到有氮化铝晶须。
具体实施方式
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。本发明未提及的技术均参照现有技术。
实施例1:
一种多孔氧化铝陶瓷的制备方法:
将375.1g Al(NO3)3·9H2O、28.5g Zr(NO3)4·5H2O、2.1g Y(NO3)3·6H2O加入650mL水中搅拌溶解,再将由126g尿素、12g EDTA和50g柠檬酸组成的燃料、2g铝粉、1g氮化铝和1.5g有机硅树脂包覆改性铝粉加入并加热搅拌得到凝胶,将所得凝胶放入600℃的马弗炉中加热至燃烧,向收集得到的粉体中加入质量分数为8%的PVA溶液,造粒后在20MPa下压制成型后以5℃/min的速度升温至1480℃烧结2h即可。
其中,有机硅树脂包覆改性铝粉的制备方法如下:
取75mL TM10甲基硅树脂,在搅拌下,滴加入25mL氨水,滴毕后超声搅拌处理8min后得到溶胶,将铝粉于其中浸渍处理后滤出,60℃干燥10h即可。
实施例2:
一种多孔氧化铝陶瓷的制备方法:
将375.1g Al(NO3)3·9H2O、28.5g Zr(NO3)4·5H2O、2.1g Y(NO3)3·6H2O加入650mL水中搅拌溶解,再将由126g尿素、12g EDTA和50g柠檬酸组成的燃料、3g铝粉、3g氮化铝和1.5g有机硅树脂包覆改性铝粉加入并加热搅拌得到凝胶,将所得凝胶放入600℃的马弗炉中加热至燃烧,向收集得到的粉体中加入质量分数为8%的PVA溶液,造粒后在20MPa下压制成型后以5℃/min的速度升温至1500℃烧结2h即可。
其中,有机硅树脂包覆改性铝粉的制备方法同实施例1。
实施例3:
一种多孔氧化铝陶瓷的制备方法:
将375.1g Al(NO3)3·9H2O、28.5g Zr(NO3)4·5H2O、2.1g Y(NO3)3·6H2O加入650mL水中搅拌溶解,再将由126g尿素、12g EDTA和50g柠檬酸组成的燃料、3g铝粉、1g氮化铝和1.5g有机硅树脂包覆改性铝粉加入并加热搅拌得到凝胶,将所得凝胶放入600℃的马弗炉中加热至燃烧,向收集得到的粉体中加入质量分数为8%的PVA溶液,造粒后在20MPa下压制成型后以5℃/min的速度升温至1400℃烧结2h即可。
其中,有机硅树脂包覆改性铝粉的制备方法同实施例1。
实施例4:
一种多孔氧化铝陶瓷的制备方法:
将375.1g Al(NO3)3·9H2O、28.5g Zr(NO3)4·5H2O、2.1g Y(NO3)3·6H2O加入650mL水中搅拌溶解,再将由126g尿素、12g EDTA和50g柠檬酸组成的燃料、1g铝粉、1g氮化铝和1.5g有机硅树脂包覆改性铝粉加入并加热搅拌得到凝胶,将所得凝胶放入600℃的马弗炉中加热至燃烧,向收集得到的粉体中加入质量分数为8%的PVA溶液,造粒后在10MPa下压制成型后以5℃/min的速度升温至1400℃烧结2h即可。
其中,有机硅树脂包覆改性铝粉的制备方法同实施例1。
实施例5:
一种多孔氧化铝陶瓷的制备方法:
将375.1g Al(NO3)3·9H2O、28.5g Zr(NO3)4·5H2O、2.1g Y(NO3)3·6H2O加入650mL水中搅拌溶解,再将由126g尿素、12g EDTA和50g柠檬酸组成的燃料、1g铝粉、3g氮化铝和1.5g有机硅树脂包覆改性铝粉加入并加热搅拌得到凝胶,将所得凝胶放入600℃的马弗炉中加热至燃烧,向收集得到的粉体中加入质量分数为8%的PVA溶液,造粒后在10MPa下压制成型后以5℃/min的速度升温至1500℃烧结2h即可。
其中,有机硅树脂包覆改性铝粉的制备方法同实施例1。
性能测试:
将本发明实施例1-5中所制备的多孔氧化铝陶瓷作为试样;
用Archimedes法测得试样的气孔率;用三点弯曲试验机(跨距为30mm,加载速度为0.5mm/min)测得试样的抗弯强度;
测试结果如下表1所示:
表1
由上表1可知,本发明方法所制备多孔氧化铝陶瓷的气孔率>50%,抗弯强度>30MPa,在保持较高孔隙率的同时还具有良好的力学性能。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种多孔氧化铝陶瓷的制备方法,其特征在于,将铝盐、锆盐、钇盐、加入水中搅拌溶解,再将燃料、铝粉、氮化铝和包覆改性铝粉加入并加热搅拌得到凝胶,将所得凝胶引燃,得到的粉体压制成型后烧结即可。
2.如权利要求1所述的多孔氧化铝陶瓷的制备方法,其特征在于,所述铝盐、锆盐、钇盐为铝、锆、钇的可溶性盐,优选为硝酸盐。
3.如权利要求1所述的多孔氧化铝陶瓷的制备方法,其特征在于,所述铝盐、锆盐、钇盐的质量比为300-400:20-40:1-3。
4.如权利要求1所述的多孔氧化铝陶瓷的制备方法,其特征在于,所述燃料包括尿素。
5.如权利要求4所述的多孔氧化铝陶瓷的制备方法,其特征在于,所述燃料还包括EDTA和柠檬酸。
6.如权利要求1所述的多孔氧化铝陶瓷的制备方法,其特征在于,所述包覆改性铝粉为有机硅树脂包覆改性铝粉。
7.如权利要求6所述的多孔氧化铝陶瓷的制备方法,其特征在于,所述有机硅树脂包覆改性铝粉的制备方法如下:
取有机硅树脂,搅拌滴加入氨水,滴毕后超声搅拌处理得到溶胶,将铝粉于其中浸渍处理后滤出、干燥即可。
8.如权利要求1所述的多孔氧化铝陶瓷的制备方法,其特征在于,所述铝粉、氮化铝的质量比为1-3:1-3。
9.如权利要求1所述的多孔氧化铝陶瓷的制备方法,其特征在于,粉体压制成型的压力为10-20MPa。
10.如权利要求1所述的多孔氧化铝陶瓷的制备方法,其特征在于,烧结温度为1400-1500℃。
CN202211727804.2A 2022-12-30 2022-12-30 一种多孔氧化铝陶瓷的制备方法 Active CN116120088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211727804.2A CN116120088B (zh) 2022-12-30 2022-12-30 一种多孔氧化铝陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211727804.2A CN116120088B (zh) 2022-12-30 2022-12-30 一种多孔氧化铝陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN116120088A true CN116120088A (zh) 2023-05-16
CN116120088B CN116120088B (zh) 2024-05-28

Family

ID=86311168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211727804.2A Active CN116120088B (zh) 2022-12-30 2022-12-30 一种多孔氧化铝陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116120088B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279673A2 (en) * 1987-02-20 1988-08-24 Keramont Research Corporation Composite powder of alpha-alumina, and process for preparing the same
CN105924182A (zh) * 2016-04-11 2016-09-07 瑞泰科技股份有限公司 一种高温氮化烧成金属——氮化物结合碳化硅砖及其制备方法
CN107778028A (zh) * 2017-11-17 2018-03-09 石家庄铁道大学 一种氧化铝基多孔陶瓷粉体及其制备方法和应用
CN111662090A (zh) * 2020-07-07 2020-09-15 中钢集团洛阳耐火材料研究院有限公司 一种镁铝尖晶石-碳化硅-铝复合耐火材料
CN112645730A (zh) * 2020-12-28 2021-04-13 福建美士邦精细陶瓷科技有限公司 一种净化水用多孔陶瓷及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279673A2 (en) * 1987-02-20 1988-08-24 Keramont Research Corporation Composite powder of alpha-alumina, and process for preparing the same
CN105924182A (zh) * 2016-04-11 2016-09-07 瑞泰科技股份有限公司 一种高温氮化烧成金属——氮化物结合碳化硅砖及其制备方法
CN107778028A (zh) * 2017-11-17 2018-03-09 石家庄铁道大学 一种氧化铝基多孔陶瓷粉体及其制备方法和应用
CN111662090A (zh) * 2020-07-07 2020-09-15 中钢集团洛阳耐火材料研究院有限公司 一种镁铝尖晶石-碳化硅-铝复合耐火材料
CN112645730A (zh) * 2020-12-28 2021-04-13 福建美士邦精细陶瓷科技有限公司 一种净化水用多孔陶瓷及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
唐钰栋;白佳海;郭红;刘安法;: "淀粉燃料对多孔Al_2O_3-ZrO_2(Y_2O_3)陶瓷性能的影响", 耐火材料, no. 06, pages 396 - 340 *
张美杰 等: "干熄焦炉用原位生成 AlN 晶须增强莫来石-碳化硅质耐火材料", 《耐火材料》, vol. 53, no. 4, pages 247 - 253 *
林铭 等: "基于铝粉造孔的氧化铝陶瓷的制备和研究", 《佛山陶瓷》, vol. 30, no. 2, pages 21 - 24 *

Also Published As

Publication number Publication date
CN116120088B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
CN109824381B (zh) 一种碳化硅陶瓷膜及其制备方法和用途
CN108610050A (zh) 一种多孔碳化硅陶瓷及其制备方法
EP3192786A1 (en) Preparation method of sic porous ceramic material and porous ceramic material manufactured by using same
CN104211422A (zh) 一种晶须增强SiC多孔陶瓷材料及其制备方法
CN102807384B (zh) 高气孔率的碳化硅多孔陶瓷的制备方法
CN103467102A (zh) 一种氮化硅多孔陶瓷及其制备方法
CN112110740B (zh) 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品
CN116120088B (zh) 一种多孔氧化铝陶瓷的制备方法
CN114956828A (zh) 碳化硅陶瓷及其制备方法和应用
JP4465435B2 (ja) セラミックフィルター及びその製造方法
CN109748595A (zh) 一种混合渗剂、用途及反应熔渗制备方法
CN115893980B (zh) 一种利用球化剂微粉制备多孔支撑体陶瓷的工艺
CN101759436B (zh) 一种基于纳米四组份烧结助剂的碳化硅陶瓷制造方法
JP2000016872A (ja) 多孔質炭化珪素焼結体及びその製造方法
Chang et al. In situ formation of mullite strengthened SiC porous ceramics via gelcasting with high strength and good alkali resistance
CN113896538B (zh) 氧化铝纤维增强碳化硅陶瓷材料的制备方法及制得的氧化铝纤维增强碳化硅陶瓷材料
CN115159997A (zh) 一种高强耐腐蚀SiC质耐火材料及其制备方法
CN114988903A (zh) 一种高强度低收缩率多孔陶瓷及其制备方法
EP1452488B1 (en) Method of producing silicon carbide ceramics from plant precursors
CN115490534B (zh) 一种mim连续烧结炉用氧化铝承烧板及其制备方法
CN104744062A (zh) 一种陶瓷与非晶的连接方法和一种非晶合金-陶瓷复合体
CN117125994B (zh) 一种抗热震碳化硅电热元件及其加工工艺
JP4041879B2 (ja) セラミックス多孔体及びその製造方法
CN112142479B (zh) 一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法
CN111233502B (zh) 一种轻质隔热高强度莫来石材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant