CN116083878A - 一种一体化异质型mems硫化氢传感器气敏薄膜制备方法 - Google Patents

一种一体化异质型mems硫化氢传感器气敏薄膜制备方法 Download PDF

Info

Publication number
CN116083878A
CN116083878A CN202211392327.9A CN202211392327A CN116083878A CN 116083878 A CN116083878 A CN 116083878A CN 202211392327 A CN202211392327 A CN 202211392327A CN 116083878 A CN116083878 A CN 116083878A
Authority
CN
China
Prior art keywords
mems
preparation
zno
ald
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211392327.9A
Other languages
English (en)
Inventor
鲁玺龙
徐甲强
张景韬
高天歌
董喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Appraisal Center Of Ministry Of Public Security
University of Shanghai for Science and Technology
Original Assignee
Appraisal Center Of Ministry Of Public Security
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Appraisal Center Of Ministry Of Public Security, University of Shanghai for Science and Technology filed Critical Appraisal Center Of Ministry Of Public Security
Priority to CN202211392327.9A priority Critical patent/CN116083878A/zh
Publication of CN116083878A publication Critical patent/CN116083878A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及气敏薄膜制备技术领域,具体地说是一种一体化异质型MEMS硫化氢传感器气敏薄膜制备方法,在原子层沉积ALD之前,首先对MEMS晶圆进行清洁和干燥,将MEMS转移至ALD反应器中,以二乙基锌和水为前驱体沉积ZnO薄膜,通过在ALD反应器中控制CoOx在MEMS上沉积的循环次数,以获得不同数量CoOx‑ZnO异质结构薄膜,同现有技术相比,本发明利用ALD可在原子水平上精准控制纳米颗粒大小或膜厚度以及精确调控和原位一体化结构等优势,实现高结合强度、高灵敏度和长期稳定的MEMS气敏薄膜制备,有效提高MEMS传感器的一致性,实现高通量、一致性和均匀性制备,提高MEMS硫化氢传感器的制备效率。

Description

一种一体化异质型MEMS硫化氢传感器气敏薄膜制备方法
技术领域
本发明涉及气敏薄膜制备技术领域,具体地说是一种一体化异质型MEMS硫化氢传感器气敏薄膜制备方法。
背景技术
众所周知,硫化氢是一种有毒有害气体的气体,在煤矿中过量的硫化氢会引起中毒甚至爆炸。因此,开发合适的仪器来确定和控制产生、运输、储存和利用过程中的硫化氢含量变得越来越重要和紧迫。
已有研究报道,晶圆的形貌、晶面和尺寸等多种气敏性能影响因素。纳米敏感材料的粒径大于德拜长度时,其粒径变化对敏感性能影响较小,而随着粒径减小气敏响应逐渐升高。因此,减小纳米颗粒直径是提高敏感性能有效手段之一。
然而,传统制备方法如滴涂法、旋涂法等很难在晶圆上制备均匀薄膜,而接近电子耗尽层厚度的气敏材料粒径一般较小,工作温度较高,因此气敏材料的纳米颗粒在工作温度下容易发生团聚,进而降低气敏材料的响应和稳定性。同时,传统滴涂法制备的敏感膜(厚度常在微米级)因颗粒堆积,克努森扩散等气体扩散方式虽增加了气体分子同敏感材料的碰撞几率,但同样使敏感膜底部很难同气体分子反应。因此构建接近德拜长度的气敏薄膜一体化结构,实现MOS(Metal Oxide Semiconductor)薄膜电子耗尽同时有效降低颗粒团聚是提高气敏材料传感性能和稳定性的重要策略。
因此,为了解决上述问题,本发明提供一种一体化异质型MEMS硫化氢传感器气敏薄膜制备方法,采用ALD(原子层沉积)技术构建氧化锌一体化薄膜,精准控制纳米颗粒大小或膜厚度,有效减少传统滴涂法制备敏感膜中的气体扩散缓慢和颗粒团聚等问题,提高气敏薄膜的热力学稳定性和气敏性能。
发明内容
本发明的目的是克服现有技术的不足,提供一种一体化异质型MEMS硫化氢传感器气敏薄膜制备方法,采用ALD(原子层沉积)技术构建ZnO-CoOx一体化薄膜,精准控制纳米颗粒大小或膜厚度,有效减少传统滴涂法制备敏感膜中的气体扩散缓慢和颗粒团聚等问题,提高气敏薄膜的热力学稳定性和气敏性能。
为了达到上述目的,本发明提供一种一体化异质型MEMS硫化氢传感器气敏薄膜制备方法,包括以下步骤:
S1,在原子层沉积ALD之前,首先对MEMS晶圆进行清洁和干燥;
S2,将MEMS转移至ALD反应器中;
S3,以二乙基锌和水为前驱体沉积ZnO薄膜;
S4,通过在ALD反应器中控制ZnO在MEMS上沉积的循环次数,以获得不同厚度ZnO薄膜;
S4中的沉积方法包括:
S41,在MEMS沉积20-50nm ZnO后继续沉积氧化钴CoOx
S42,以二茂钴(CoCp2)和水为前体,沉积温度控制在100-350℃;
S43,CoCp2的脉冲、暴露和吹扫时间分别为0.0001~50秒,水的脉冲和吹扫时间分别为0.0001~50秒;
改变MEMS上沉积ALD CoOx的循环次数获得不同比例ZnO-CoOx异质结的敏感材料。
二乙基锌前驱体温度为0~100℃。
同现有技术相比,本发明利用ALD可在原子水平上精准控制纳米颗粒大小或膜厚度以及精确调控和原位一体化结构等优势,实现高结合强度、高灵敏度和长期稳定的MEMS气敏薄膜制备,有效提高MEMS传感器的一致性,实现高通量、一致性和均匀性制备,提高MEMS硫化氢传感器的制备效率。
本申请具备以下有益效果:
根据本申请的制备方法制备的ALD一体化ZnO-CoOx异质薄膜具有极高的机械强度,其结合强度是普通滴涂、旋涂等方法的140倍;具有极高的具有非常的一致性和均匀性,可实现8英寸以下MEMS晶圆的原位制备,同时具有优异的硫化氢传感性能,其MEMS传感器相比于传统方法具有电阻低、灵敏度高和低功耗等特点。
附图说明
图1为本发明传统制备方法和ALD原子层沉积技术对比示意图。
图2为本发明所制备的ZnO薄膜一致性性能示意图。
图3为本发明所制备的ZnO薄膜结合强度数据曲线图。
图4为本发明所制备的ALD薄膜-基底结合强度和涂覆法薄膜-基底强度数据曲线图。
图5为本发明所制备的MEMS传感器性能表现示意图。
具体实施方式
现结合附图对本发明做进一步描述。
参见图1~4,本发明提供了一种一体化异质型MEMS硫化氢传感器气敏薄膜制备方法,包括以下步骤:
S1,在原子层沉积ALD之前,首先对MEMS晶圆进行清洁和干燥;
S2,将MEMS转移至ALD反应器中;
S3,以二乙基锌和水为前驱体沉积ZnO薄膜;
S4,通过在ALD反应器中控制ZnO在MEMS上沉积的循环次数,以获得不同厚度ZnO薄膜;
S4中的沉积方法包括:
S41,在MEMS沉积20-50nm ZnO后继续沉积氧化钴CoOx
S42,以二茂钴(CoCp2)和水为前体,沉积温度控制在100-350℃;
S43,CoCp2的脉冲、暴露和吹扫时间分别为0.0001~50秒,水的脉冲和吹扫时间分别为0.0001~50秒;
S44,改变MEMS上沉积ALD CoOx的循环次数获得不同比例ZnO-CoOx异质结的敏感材料。
二乙基锌前驱体温度为0~100℃。
以上仅是本发明的优选实施方式,只是用于帮助理解本申请的方法及其核心思想,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
本发明解决了现有技术中很难在晶圆上制备均匀薄膜,纳米颗粒在工作温度下容易发生团聚,进而降低气敏材料的响应和稳定性,且很难同气体分子反应的技术问题,采用ALD(原子层沉积)技术构建氧化锌一体化薄膜,精准控制纳米颗粒大小或膜厚度,有效减少传统滴涂法制备敏感膜中的气体扩散缓慢和颗粒团聚等问题,提高气敏薄膜的热力学稳定性和气敏性能。

Claims (2)

1.一种一体化异质型MEMS硫化氢传感器气敏薄膜制备方法,其特征在于,包括以下步骤:
S1,在原子层沉积ALD之前,首先对MEMS晶圆进行清洁和干燥;
S2,将MEMS转移至ALD反应器中;
S3,以二乙基锌和水为前驱体沉积ZnO薄膜;
S4,通过在ALD反应器中控制所述ZnO在MEMS上沉积的循环次数,以获得不同厚度ZnO薄膜;
所述S4中的沉积方法包括:
S41,在MEMS沉积20-50nm ZnO后继续沉积氧化钴CoOx
S42,以二茂钴(CoCp2)和水为前体,沉积温度控制在100-350℃;
S43,所述CoCp2的脉冲、暴露和吹扫时间分别为0.0001~50秒,水的脉冲和吹扫时间分别为0.0001~50秒;
S44,改变MEMS上沉积ALD CoOx的循环次数获得不同比例ZnO-CoOx异质结的敏感材料。
2.根据权利要求1所述的一体化异质型MEMS硫化氢传感器气敏薄膜制备方法,其特征在于,所述二乙基锌前驱体温度为0~100℃。
CN202211392327.9A 2022-11-08 2022-11-08 一种一体化异质型mems硫化氢传感器气敏薄膜制备方法 Pending CN116083878A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211392327.9A CN116083878A (zh) 2022-11-08 2022-11-08 一种一体化异质型mems硫化氢传感器气敏薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211392327.9A CN116083878A (zh) 2022-11-08 2022-11-08 一种一体化异质型mems硫化氢传感器气敏薄膜制备方法

Publications (1)

Publication Number Publication Date
CN116083878A true CN116083878A (zh) 2023-05-09

Family

ID=86209013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211392327.9A Pending CN116083878A (zh) 2022-11-08 2022-11-08 一种一体化异质型mems硫化氢传感器气敏薄膜制备方法

Country Status (1)

Country Link
CN (1) CN116083878A (zh)

Similar Documents

Publication Publication Date Title
CN111312898B (zh) 一种HfO2基铁电薄膜材料及其制备方法和应用
US20230304980A1 (en) Flexible hydrogen sensor with ultra-high sensitivity and wide range and fabrication method therefor
CN108529690A (zh) 一种氧化镍纳米晶体的制备方法及其应用
CN109980097A (zh) 一种薄膜的制备方法与qled器件
Loh et al. Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells
CN101692463B (zh) 一种混合纳米晶存储器的电容结构及其制备方法
CN111987310A (zh) 一种活性金属氧化物多重修饰正极材料及其制备方法
CN103204537A (zh) 一种具有纤锌矿结构纳米材料的制备方法
CN116083878A (zh) 一种一体化异质型mems硫化氢传感器气敏薄膜制备方法
CN114152652A (zh) 一种一体化mems氢气传感器制备方法
Nakamine et al. Size reduction and phosphorus doping of silicon nanocrystals prepared by a very high frequency plasma deposition system
CN117399617A (zh) 一种低银含量下实现银包铜粉致密包覆的制备方法
CN110412082A (zh) 一种半导体多孔晶体薄膜传感器及制备方法
Zhang et al. p-Cu2O/n-ZnO nanowires on ITO glass for solar cells
CN112176394A (zh) 一种掺镧铁酸铋单晶薄膜的制备方法
CN101533891A (zh) 一种非易失性阻变存储器结构及其制备方法
Seong et al. Fabrication of Fe3O4-ZnO core-shell nanoparticles by rotational atomic layer deposition and their multi-functional properties
CN114012103B (zh) 一种在硅表面制备尺寸可控银纳米粒子的方法
CN102225871B (zh) 一种Sn催化的Ga掺杂ZnO纳米线的制备方法
TWI496304B (zh) 太陽能電池與其形成方法及n型ZnS層的形成方法
CN110863189A (zh) 一种脉冲式注入反应物生长单层碲化物掺杂结构的方法
CN109524654B (zh) 一种离子-电子混合导电石榴石结构包覆正极材料的方法
CN115710695A (zh) 一种一体化晶圆级硫化氢气敏薄膜及单个mems硫化氢气敏薄膜的制备方法
CN101800169A (zh) 一种制作复合俘获层的方法
KR101621021B1 (ko) 코어-쉘 나노와이어를 포함하는 센서 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination